Disconnected Contributions to Nucleon Charges

Boram Yoon, Tanmoy Bhattacharya and Rajan Gupta

Los Alamos National Laboratory

Lattice 2014 Columbia University, June 23 – 28, 2014

LA-UR-14-24462

General Three-point Functions

• Isoscalar operators $(q_i = q_j)$ have disconnected quark loops

Physics with Disconnected Contributions

Physics		Observables Diagrams		
Neutron β -decay			Connected	
		g_V, g_A, g_S, g_T	No-disconnected	
nEDM	qEDM	g_T	Connected &	
	(cEDM	$\langle N \overline{q} \sigma \cdot G q N \rangle$	Disconnected	
Sigma term		$\langle N \overline{\alpha} \rangle \langle N \rangle$	Connected &	
Dark-matter search		$\langle \mathcal{I}\mathbf{v} \mathcal{Q}\mathcal{Q} \mathcal{I}\mathbf{v} \rangle$	Disconnected	
TMDs		$\sqrt{N a(0)} \Gamma \mathcal{U}^{b} a(b) N\rangle$	Connected &	
		$\langle \mathcal{U} q(0) \mathcal{U} \alpha_0 q(0) \mathcal{U} \rangle$	Disconnected	

D^{-1} : Improvement & Error Reduction Techniques

- Multigrid Solver [Osborn, *et al.*, 2010; Babich, *et al.*, 2010] [Plenary talk: Andreas Frommer, Tue 10:15]
- All-Mode Averaging (AMA) for Two-point Correlators
 [Blum, Izubuchi and Shintani, 2013]
- Hopping Parameter Expansion (HPE)
 [Thron, et al., 1998; McNeile and Michael , 2001]
- Truncated Solver Method (TSM) [Bali, Collins and Schäfer, 2007]
- Dilution [Bernardson, et al., 1994; Viehoff, et al., 1998]

Lattice Setup for Comparison Study

• MILC $N_f = 2 + 1 + 1$ HISQ lattice

- $a=0.12\,\mathrm{fm}$
- $m_{\pi} = 305 \,\mathrm{MeV}$
- Geometry $= 24^3 \times 64$
- Number of confs = 1013
- Clover valence quarks (Clover on HISQ)
- HYP smeared gauge links

All-Mode Averaging (AMA) for Two-point Correlators

Improved Estimator of Two-point Function

- All-mode averaging (AMA) [Blum, Izubuchi and Shintani, 2013] with Multigrid solver for Clover in Chroma [Osborn, et al., 2010]
- Exploiting translation symmetry of lattice, 2pt-func is averaged on multiple source positions
- "LP" term is the low-precision estimate, truncated the inverter with a low accuracy stopping criterion (e.g., $r_{LP} = 10^{-3}$)
- "HP" (high-precision) correction term (e.g., r_{HP} = 10⁻⁸) makes the estimator unbiased; Systematic error ⇒ Statistical error
- $N_{\text{LP}} \gg N_{\text{HP}}$ brings computational gain (e.g., N_{LP} = 60, N_{HP} = 4)

Gain in Computational Cost

	4 HP		28 LP + 4 Crxn		60 LP + 4 Crxn	
	$g_\Gamma^{\sf dis}$	Gain	$g_\Gamma^{\sf dis}$	Gain	$g_\Gamma^{\sf dis}$	Gain
g_S^{dis}	1.253(192)	1	1.202(<mark>83</mark>)	1.4	1.203(71)	1.1
g_A^{dis}	-0.0828(173)	1	-0.0877(<mark>62</mark>)	2.0	-0.0872(<mark>48</mark>)	2.0
g_T^{dis}	-0.0141(<mark>82</mark>)	1	-0.0122(<mark>31</mark>)	1.8	-0.0136(<mark>23</mark>)	2.0
Cost	1		3.8		6.4	

- Nucleon charges at $t_{sep} = 8a$, $t_{ins} = 4a$
- · All sources are distributed on 4 timeslices
- Gain = $\frac{\text{Decrease of } \sigma^2}{\text{Increase of Compt. cost}}$
- Between "28 LP + 4 Crxn" and "60 LP + 4 Crxn", cost and error scale in the same way, and the gain stays around 2
- We use "60 LP + 4 Crxn" setup

Hopping Parameter Expansion (HPE)

Hopping Parameter Expansion (Preconditioning)

$$\begin{split} M &= \frac{1}{2\kappa} \left(\mathbbm{1} - \kappa D \right) \\ M^{-1} &= 2\kappa \mathbbm{1} + 2\kappa^2 D + \kappa^2 D^2 M^{-1} \end{split}$$

For disconnected quark loops, we need $\operatorname{Tr}\left[M^{-1}\Gamma\right]$

- (1) $\operatorname{Tr}[2\kappa\Gamma]_{\Gamma=1} = 24\kappa$
- (2) $\operatorname{Tr}[2\kappa\Gamma]_{\Gamma\neq\mathbf{1}} = 0$
- (3) Tr $\left[2\kappa^2 D\Gamma\right] = 0$
- Need to calculate only $\kappa^2 D^2 M^{-1}$
- Removed noise from first two orders (1-3) reduces error

Truncated Solver Method (TSM)

Truncated Solver Method (TSM)

[Bali, Collins and Schäfer, 2007]

- Stochastic estimate of M^{-1}
- Same form as AMA
 - $C^{\operatorname{2pt}} \Longrightarrow M^{-1}$
 - Sum over source positions \Longrightarrow Sum over random noise sources
- $|\eta_i\rangle$: complex random noise vector satisfying

$$\frac{1}{N}\sum_{i=1}^{N}|\eta_{i}\rangle = \mathcal{O}\left(\frac{1}{\sqrt{N}}\right), \qquad \frac{1}{N}\sum_{i=1}^{N}|\eta_{i}\rangle\langle\eta_{i}| = \mathbb{1} + \mathcal{O}\left(\frac{1}{\sqrt{N}}\right)$$

• $|s_i\rangle$: solution vector; $M|s_i\rangle = |\eta_i\rangle$

Random Noise

• Type of random noises investigated

Туре	Noise	Condition
\mathbb{Z}_2	r_r	$r_r \in \{1, -1\}$
$\mathbb{Z}_2 \otimes i\mathbb{Z}_2$	$r_r + ir_i$	$r_{r,i} \in \{\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\}$
\mathbb{Z}_4	r_c	$r_c \in \{1,i,-1,-i\}$
Gaussian	$r_r + ir_i$	$r_{r,i}\sim { m Gaussian}/\sqrt{2}$

- Statistical error in g_T at $t_{sep} = 8a$, $t_{ins} = 4a$ (mid point)
- Random noise sources are placed only on 8 timeslices (dilution)
- Gaussian random noise is (marginally) better than others

Required Number of Random Sources

Total statistical error scales as

$$\sigma_{\mathrm{tot}} = \sigma_{\!\infty} \sqrt{1 + rac{X_{\mathrm{TSM}}}{N_{\mathrm{LP}}}}$$

- X_{TSM} depends on TSM parameters, $N_{\text{LP}}/N_{\text{HP}}$ and r_{LP}

- Statistical error in g_S at $t_{sep} = 8a$, $t_{ins} = 4a$ (mid point)
- Noise srcs are placed on 44 timeslices that satisfy $|t_{src} t| \ge 3a$
- Conclusion : $N_{\rm LP} \approx 500$ is enough

- Statistical error in g_A at $t_{sep} = 8a$, $t_{ins} = 4a$ (mid point)
- Noise srcs are placed on 44 timeslices that satisfy $|t_{src} t| \ge 3a$
- Conclusion : $N_{\rm LP} \approx 3000$ is enough

- Statistical error in g_T at $t_{sep} = 8a$, $t_{ins} = 4a$ (mid point)
- Noise srcs are placed on 44 timeslices that satisfy $|t_{src} t| \ge 3a$
- Conclusion : $N_{\rm LP}\gtrsim 5000$ is needed

Dilution

Dilution Technique

• Divide $\mathcal{R} = \{$ spacetime \otimes color \otimes spin $\}$ into m subspaces \mathcal{R}_j

$$\mathcal{R} = \sum_{j=1}^m \mathcal{R}_j$$

• Sum M^{-1} evaluated on each subspaces

$$M^{-1} \approx \sum_{j=1}^{m} \left[\frac{1}{N} \sum_{i=1}^{N} |s_i\rangle \langle \eta_i| \right]$$

• If noise is reduced by more than \sqrt{m} , worth doing dilution

 Statistical error of a disconnected quark loop with time Dilution for different number of source timeslices (N_{tsrc})

16(2000)

Nterc (NIP)

32(4000)

64(8000)

- e.g., if $N_{\text{tsrc}} = 32$, random noises are on 32 timeslices; cover all timeslices with two applications for a $24^3 \times 64$ Lattice
- Total computational cost is fixed ($N_{\rm LP} \times 64/N_{\rm tsrc}$ =fixed)

8(1000)

• Time dilution is not efficient!

0.9

4(500)

Results

Removing Excited States Contamination

· Fitting functions include one excited state

$$\begin{split} C^{2\mathsf{pt}}(t_{\mathsf{sep}}) &= A_1 e^{-M_0 t_{\mathsf{sep}}} + A_2 e^{-M_1 t_{\mathsf{sep}}} \\ C^{3\mathsf{pt}}(t_{\mathsf{sep}}, t_{\mathsf{ins}}) &= B_1 e^{-M_0 t_{\mathsf{sep}}} + B_2 e^{-M_1 t_{\mathsf{sep}}} \\ &+ B_{12} \left[e^{-M_0 t_{\mathsf{ins}}} e^{-M_1 (t_{\mathsf{sep}} - t_{\mathsf{ins}})} + e^{-M_1 t_{\mathsf{ins}}} e^{-M_0 (t_{\mathsf{sep}} - t_{\mathsf{ins}})} \right] \end{split}$$

• A_1 and B_1 are the results for the ground state

 g_S : t_{sep} and t_{ins} dependence

 g_A : t_{sep} and t_{ins} dependence

 g_T : t_{sep} and t_{ins} dependence

Unrenormalized Isoscalar Nucleon Charges on a = 0.12 fm and $m_{\pi} = 305 \text{ MeV}$ Lattice

Preliminary!!!

	Disconnected	Connected ¹
g_S	1.90(15)	5.79(22)
g_A	-0.120(12)	0.632(36)
g_T	-0.0252(49)	0.650(24)

¹PRD89 094502 (2014)

Renormalized Isoscalar Nucleon Charges

Preliminary!!!

	PND	ME, LANL	Abdel-Rehim, et al.2		
	$a = 0.12 \mathrm{fm}$, $m_{\pi} = 305 \mathrm{MeV}$	a = 0.082 fm	$u = 0.082 \mathrm{fm}, m_{\pi} = 375 \mathrm{MeV}$	
	Clover on HISQ		Twi	Twisted Mass	
	Con.	Discon.	Con.	Discon.	
g_S	5.16(24)	1.69(13)	6.30(27)	0.639(95)	
g_A	0.610(37)	-0.116(12)	0.576(13)	-0.0699(89)	
g_T	0.613(26)	-0.0238(46)	0.673(13)	-0.0016(14)	

• Renormalization is done using only connected diagrams at $2\,{\rm GeV}$

²PRD89 034501 (2014)

Glance at the $a = 0.0888 \,\mathrm{fm}$ and $m_{\pi} = 313 \,\mathrm{MeV}$

Preliminary!!!

=	a	$0.09{ m fm}$	$0.12\mathrm{fm}$
_	$g_S^{\rm dis}$	1.43(12)	1.69(13)
	$g_A^{\sf dis}$	-0.107(16)	-0.116(12)
	g_T^{dis}	-0.0114(51)	-0.0238(46)

- Renormalization is done using only connected diagrams at $2\,{\rm GeV}$

Isoscalar Nucleon Charges (con + disc)

Preliminary!!!

a	$0.09\mathrm{fm}$	$0.12{ m fm}$
g_S	7.44(28)	6.91(26)
g_T	0.612(26)	0.594(27)

- Renormalization is done using only connected diagrams at $2\,{\rm GeV}$
- $m_{\pi} \approx 310 \,\mathrm{MeV}$
- Statistical error only

Summary and Outlook

- We calculate disconnected contribution to nucleon charges
- Disconnected contribution is about 30%, 20% and 4% for g_S , g_A and g_T , respectively
- All-mode averaging, Truncated solver method and Hopping parameter expansion are applied
- Disconnected contribution to the renormalization constants is under investigation
- Techniques can be applied to other physical objects

Computational Cost

		Src/Sink prep.	(18%)
	(31%)	Inversion	(11%)
2pt		etc.	(2%)
(37%)	4 HP (6%)	Src/Sink prep.	(2%)
		Inversion	(3%)
	(0,0)	etc.	(1%)
	5000 LP estimate	Inversion	(35%)
	(53%)	Src prep/Trace/HPE	(18%)
Disc. (63%)	166 Correction	LP Inversion	(1%)
		HP Inversion	(6%)
		Src prep/Trace/HPE	(1%)
	etc. (2%)		

• Inverter Improvements: BiCGStab \rightarrow Multigrid [x4 ; $m_{\pi} \approx 310 \,\mathrm{MeV}$] HP \rightarrow LP [x3 \sim x5 ; $r_{\text{LP}} = 0.001 \sim 0.005$]

64 source positions on a $24^3 \times 64$ Lattice

- On each timeslice t, 16 srcs are placed on $(x_1, y_1, z_1, t) \oplus (x_2, y_2, z_2, t)$ $x_1, y_1, z_1 \in \{0, \frac{L}{2}\}, \quad x_2, y_2, z_2 \in \{\frac{L}{4}, \frac{3L}{4}\}$
- On one of 16 source positions on a timeslice, calculate both HP and LP for correction term

Random Noise Type Dependence

Random Noise Type Dependence

Random Noise Type Dependence

