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Motivation

The EOS of QGP in an external magnetic field is of interest to:

◮ Cosmology — Shortly after the big bang, strong magnetic fields of O(1016 T) and
higher may have existed as a result of the nonequilibrium dynamics of the electroweak
phase transition, generation of topological defects and other phenomena. Effects on
structure formation?

◮ Astrophysics — Very strong magnetic fields are also generated in the vicinity of mag-
netars [O(1011 T)] and if these fields permeate the interior of such a star, they may
affect the state of the high-density hadronic matter in its core and thus potentially
influence the star’s properties such as its temperature and diameter-to-mass ratio.

◮ Heavy-ion Collisions — The developing quark-gluon plasma is immersed in an external
magnetic field, which is estimated to be of O(1015 T). If such a strong magnetic field
modifies the properties of the plasma, the particle spectra produced might also be
affected.



The Taylor expansion method

◮ Expand the pressure in Taylor series with respect to the magnetic field.
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Due to CP symmetry only even terms are nonzero.

◮ Advantages: Computationally cheaper than other methods (to 4th order at least) —
no need to generate ensembles with explicit magnetic fields for each B studied. Can
be applied to other observables as well. Needs T = 0 subtraction only for the C2
coefficient. No pressure anisotropy (G.S. Bali et al. arXiv:1303.1328).

◮ But: Need to study the radius of convergence. Very large magnetic fields may require
high orders in the expansion.



Quantized magnetic field on a torus

◮ Let ~B = Bẑ. The magnetic field quantization (quark charge |q| = |e|/3) is:

|q|B = 2πb/(LxLya
2), 0 < b < LxLy/2.

◮ Chose a continuum vector potential:

Ay = Bx, Aµ = 0 for µ = x, z, t.

◮ Lattice U(1) links choice:

uy(B, q, X) = eia2qBx

ux,z,t(B, q, X) =

{

1 for x ∈ [0, Lx − 2]

e−ia2qBLxy for x = Lx − 1

◮ Quantization is problematic for a Taylor expansion.



The half-and-half field configuration

◮ Instead of working with a quantized magnetic field we change the field configuration
so that quantization is not necessary:

Bẑ(x) =

{

+B for x < Lx/2
−B for x ≥ Lx/2

◮ The flux through half of the hypersurface comes out from the other half. The config-
uration is CP-invariant.

◮ The changes in the field direction induce a surface effect ∼ O(1/Ls).

◮ Generally, for suitably large volumes, the pressure should not be strongly affected by
the surface effect (need more extensive tests for this statement). However, the size of
the finite volume effects may differ for the different Taylor coefficients; the expectation
is that higher orders are affected more strongly.



Choosing the vector potential

◮ We have freedom in how to chose the vector potential for the same resulting magnetic
field.

◮ The statistical noise in the measured observables is strongly influenced by the choice
of vector potential. The minimal noise configuration we work with (up to a lattice
translation) is:

uy(B, q, X) = eia2qB(x−Lx/4), x≤Lx/2

uy(B, q, X) = eia2qB(3Lx/4−x), x>Lx/2

ux,z,t(B, q, X) = 1

Statistical noise is reduced by a sizable factor when compared with other choices.



Analytic framework

◮ Partition function for 2 + 1 flavors
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◮ It is convenient to define the observable:
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with U = ln det Mu(qu, B)/4, D = ln det Md(qd, B)/4, S = ln det Ms(qs, B)/4.



Analytic framework continued

◮ Then
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◮ To calculate Amnl we need the derivatives ∂n ln det Mf/(∂a2B)n, which are com-
puted in terms of derivatives of the fermion matrix:
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◮ The derivatives are calculated using stochastic estimators.



Issues of renormalization and vacuum pressure

◮ An external magnetic field results in the appearance of vacuum pressure. Considering
that the HIC plasma is probably in an environment where the B field is nonzero both
in- and outside the plasma, the vacuum pressure may not play a large role in the
plasma expansion. Thus we consider only the thermal contribution of the magnetic
field to the pressure.

∆p(B, T ) = p(B, T ) − p(0, T ) − p(B, 0) + p(0, 0)

= Cr
2(T )(eB)2 + Cr

4(T )(eB)4/T 4 + . . .

where Cr
n(T ) = Cn(T ) − Cn(0).

◮ For the Cr
2 coefficient, the subtraction renormalizes the electric charge. There is no

vacuum pressure contribution. Cr
2 is entirely of thermal origin.

◮ The Cr
4 coefficient doesn’t need renormalization; the subtraction removes the 4th

order contribution of the vacuum pressure.



Simulation details

◮ We use 2 + 1 flavor HISQ plus tree-level Symanzik gauge action (HotQCD project).

◮ Follow the ml = 0.05ms line of constant physics at fixed Nt = 8.

◮ Prelimanary results to O(2) were published in PRL arXiv:1309.1142.

◮ We extended the study to O(4) and increased the statistics at T 6= 0.

◮ Cost so far: ∼440 000 GPU-hours using QUDA. (20% went into checking for finite
volume effects.)

T [MeV] β ml/ms VT 6=0 VT=0 Random sources Configurations Cr
2
× 10−3 C4 × 10−5

T 6= 0 T = 0 T 6= 0 T = 0

134 6.195 0.00440/0.0880 323 × 8 323 × 32 4800 400 210 50 −0.4(4) 1.7(1.0)

154 6.341 0.00370/0.0740 323 × 8 323 × 32 4800 500 200 50 0.6(4) 2.6(1.3)

167 6.423 0.00335/0.0670 323 × 8 323 × 32 2400 200 420 50 2.4(5) 2.5(1.3)

167 6.423 0.00335/0.0670 483 × 8 483 × 48 4800 400 150 70 2.5(4) 2.3(4.2)

173 6.460 0.00320/0.0640 323 × 8 323 × 64 2400 200 100 60 3.4(5) 2.8(1.1)

227 6.740 0.00238/0.0476 323 × 8 483 × 48 2400 200 50 50 10.3(8) 0.82(9)

373 7.280 0.00142/0.0284 323 × 8 483 × 64 1200 40 50 50 19.3(1.3) 0.64(5)

611 7.825 0.00082/0.0164 323 × 8 643 × 64 1200 40 50 50 27.7(1.4) 0.51(2)



The magnetic susceptibility Cr
2
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◮ Red circle shows larger volume result.

◮ QGP is paramagnetic above the transition (Cr
2 > 0).



The C4 coefficient
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◮ Red circle shows larger volume result.

◮ C4 shows a small peak in the transition region and large statistical fluctuations.



The pressure at eB = 0.2 GeV2
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◮ Pvac,HRG at B = 0.2 GeV2 is taken from Endrödi arXiv:1301.1307.

◮ With or without the vacuum pressure, the pressure contribution due to the magnetic
field is within a few percent of the full QGP pressure for field strengths relevant for
HIC.

◮ But, the O(4) contribution grows as (eB/T )4 when eB >> T .



Conclusions

◮ The Taylor expansion combined with the half-and-half magnetic field configuration is a
computationaly cheaper alternative to the current methods using quantized magnetic
fields.

◮ We have performed a calculation to O(4) on 2+1 flavor HISQ/tree ensembles with
ml = 0.05ms.

◮ At magnetic fields relevant for HIC [eB = 0.2 GeV2] the 4th order contribution is
small (within statistical errors for higher temperatures). The O(4)+O(2) contribution
to the QGP pressure is within a few percent.

◮ Still need larger statistics to determine the finite volume effects for the C4 coefficient.


