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Review: The background field method

Expect a mass shift equal to αEE
2 in the presence of a uniform background field

Determine polarizability by measuring neutron correlators with ~E = 0 and ~E = ±iE0x̂ , then
fitting them to determine the mass shift

Use the same value of ηd ≡ a2qE0 = 10−4 as in the valence-only study
Small enough to be well within the perturbative regime
Large enough to avoid numerical precision issues and extreme inverter precisions

When fitting correlators, the zero-field and nonzero-field correlators are correlated

These correlations result in a much smaller error on ∆M than on the mass measurements
themselves
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Coupling to the charged sea

αE describes the deformation of the hadron in
response to an electric field

As in other cases (spin, σ term), both valence and
sea quarks contribute

A valence-only calculation ignores crucial dynamics

Potentially large contribution: “stretching of the pion
cloud”

Likely to have large finite volume effects at small
volume
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Simulation parameters

Same ensembles used for the broader polarizability study (we use the same valence correlators):

(24, 48)× 242 × 48 lattices, 2 flavors of dynamical nHYP-clover fermions, 300 configs each

mπ = 306 MeV

a = 0.1245(16) fm by Sommer scale r0

Periodic boundary conditions used in MD for gauge generation; Dirichlet BC’s applied
afterwards
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Reweighting approach

How do we include the effects of the sea quark charges in the background field approach?

In principle it’s easy: just generate two otherwise identical ensembles, one with a background
field and one without

But this requires unaffordably high statistics, since our two mass measurements now no
longer have correlated errors

Lose all the information in the “cross-correlation” terms of the covariance matrix

Reweighting is a technique for extracting physics from a different action than the one used in
generation: “retroactively change the ensemble parameters”

We can use it to generate two correlated ensembles, one with and one without the electric
field

As in the valence-only case, the strength of the correlation between these ensembles drives
the overall error
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Determining the weight factors

In order to do reweighting, need the weight factors wi = e−∆S = det−1 M−1
η M0.

This weight factor is generally estimated stochastically

So long as the estimator is unbiased, the result will be too – just with larger error bars
For ordinary reweighting calculations, reweighting “succeeds” if the weight factors don’t fluctuate
much
Not true for us: we also require strong correlations between unreweighted and reweighted correlators
Possible to have fluctuations large enough to destroy these correlations

There is a standard stochastic estimator for the inverse determinant

Far too noisy when reweighting in the background field (standard improvements don’t work)

Try another approach: perturbative reweighting

W. Freeman (GWU) EM sea effects and reweighting June 26, 2014 7 / 20



Perturbative reweighting

Idea: expand weight factor as a power series in a small parameter, keep only a few orders

Useful whenever we only want a perturbatively-small shift in the action

Shift ms by perturbatively-small amount → compute
∂MN
∂ms

for nucleon strangeness

Turn on perturbatively-small electric field for the sea quarks

Easier to estimate ∂wi
∂η

∣∣∣
η=0

and ∂2wi
∂η2

∣∣∣
η=0

than wi itself?

Expand wi in a power series in η up to second order, about η = 0
Linear term in weight factor can combine with linear dependence of GN (t) on η to give quadratic
effect
Quadratic term in weight factor by itself can give quadratic effect

If we can estimate these derivatives instead we can evaluate at any η we choose to get wi (η)

Sea contributions taken into account in a way that is similar in practice to the
current-insertion approach of Engelhardt
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Derivation of the estimator

For the first derivative, we want ∂
∂η

det Mη
det M0

∣∣∣
η=0

. Rewrite detMη as a Grassman integral:

∂

∂η

detMη

detM0

∣∣∣∣
η=0

=
1

detM0

∂

∂η

∫
dψdψ̄ e−ψ̄Mψ

=
1

detM0

∫
dψdψ̄ − ψ̄

∂M0

∂η
e−ψ̄M0ψ

= Tr

(
∂M0

∂η
M−1

0

)
.

Standard stochastic estimator: TrO = 〈ξ|O|ξ〉ξ; ξ ∈ Z(4)

The second derivative proceeds similarly:

∂2

∂η2

detMη

detM0

∣∣∣∣
η=0

= Tr
∂2M

∂η2
M−1

0 − Tr

(
∂M

∂η
M−1

0

)2

+

(
Tr
∂M

∂η
M−1

0

)2

(Notation: These first two terms nearly cancel; we call them collectively w̃ ′′. The third is w ′2.)

These four terms correspond directly to the four disconnected diagrams that must be evaluated in
the fully-perturbative direct evaluation approach.

Unfortunately, stochastic estimators of the traces here are still very noisy, but can be improved in
a variety of ways.
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Origin of stochastic noise – first order

In order to design an improvement technique, we need to understand where the stochastic noise
comes from.

Since var(TrO) =
∑
i 6=j
|Oij |2; need to understand which offdiagonal elements Oij contribute most.

Can’t examine them all, but can map a representative sample of them.

Can look at this in two ways:

Contribution by Euclidean distance: Matrix element size by Euclidean distance:
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Origin of stochastic noise – second order

A preliminary study indicates that stochastic fluctuations in the second-order term cause a larger
overall hit to the error bar, so we should look at it too:

Contribution by Euclidean distance: Matrix element size by Euclidean distance:
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Designing an improvement technique

Our preliminary study used 7th-order hopping parameter expansion

While this substantially reduces the variance of the near-diagonal elements, it can only take
us so far (cost ∼ 14n), and we need something different.

Most of the noise comes from near-diagonal elements; we can eliminate them with dilution.

Dilution separates the matrix dimension into N subsets and stochastically estimates the trace
over each separately

Advantage: eliminates noise contributions from offdiagonal terms from different subsets

Disadvantage: Requires N operations to cover the lattice; could have reduced noise by factor of
√
N

by simple repetition
Only outperforms simple repetition if the offdiagonal matrix elements “kept” are lower than the
average

We should choose a (four-dimensional generalization) of the rightmost scheme to eliminate
the large near-diagonal elements
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Body-centered hypercubic dilution

In general, better to use the largest-N dilution scheme on which we can afford a single
estimator (dilution is better than repetition)

In the limit as N → 12V , the estimator variance goes to zero (full dilution)

Since Oij decays exponentially away from the diagonal, try to maximize the minimum
separation between elements of the same subspace

In 2D, this is reasonably done with a grid with additional red/black coloring

If the grid spacing here is ∆, the minimum
separation is

√
∆

4D extension: body-centered hypercubic
lattice

If the unit cell is 2∆, the minimum
separation is also 2∆

This achieves the same minimum separation
at half the cost of a grid

Must be combined with spin-color dilution
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First production run: 243 × 48 ensemble

We used a BCHC scheme with ∆ = 6, giving N = 124, 416 per configuration

We repeated our stochastic estimators 6 times on a single configuration to estimate their
noise

These noise levels correspond well with estimates obtained from doing a “simulated” dilution
on the Oij data

Benchmark goal for reweighting: σgauge > σstoc

Estimates of w ′ Estimates of w̃ ′′

Goal handily met for the first-order term; not there yet at second order
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Results

Of course, the end goal is to compute the polarizabilities:

Valence only 1st order w̃ ′′q only 2nd order

Neutron 2.56(19) 2.60(22) 2.89(55) 2.70(55)
Pion -0.21(14) -0.24(14) 0.21(22) 0.22(23)
Kaon 0.14(3) 0.13(3) 0.36(12) 0.38(12)

The first-order reweighting neither affects the errors or central values much

The second-order reweighting increases the errors significantly; need to do better with
estimates of w̃ ′′

Results still have lower/comparable error bars to other polarizability calculations

In general the full reweighting doesn’t cause any effect

The exception is the kaon, where the second-order terms cause a sizable shift in the central
value

This is consistent with the sensitivity of the kaon polarizability on the sea behavior seen in
the previous talk
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Second run: the 48 × 242 × 48 ensemble

Effects of the charged sea expected to be smallest on the 243× 48,mπ = 306 MeV ensemble
“Stretching” the pion cloud difficult in such a small volume

The ultimate goal is to reweight all the ensembles to do the same full volume and chiral
study as the valence-only data

We need a better way to estimate the weight factors, in particular at second order; affording
250k inversions/config on the larger volumes is tough

Look at the off-diagonal element maps again:

Need to do a better job of reducing long-distance contributions!
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Strategy: low mode substitution

We can increase the falloff rate of the off-diagonal elements by removing low modes from
M−1 and treating them separately: standard LMS idea

This is a technique to reduce noise from the long-distance tail
Only successful in combination with some other technique (dilution) to deal with the short-distance
noise
Remove low modes of the Dirac operator, not the operator whose trace is being computed

Subtract the low modes from the inverses in the stochastic estimator, and add their exact
traces back in later

Problem: we’re using Wilson quarks, so can’t get low modes of M since it’s not Hermitian

... but the low modes of γ5M capture the long-distance behavior about as well

Define Ml =
∑
λiγ5 |λi 〉 〈λi |, where |λi 〉 are the eigenmodes of γ5M, and Mh = M −Ml . Then:

TrM′M−1 =
〈
ξ|M′M−1

h |ξ
〉

+ TrM′M−1
l

TrM′′M−1 =
〈
ξ|M′′M−1

h |ξ
〉

+ TrM′′M−1
l

TrM′M−1M′M−1 =
〈
ξ|M′M−1

h M′M−1
h |ξ

〉
+ 2TrM′M−1

l M′M−1 − TrM′M−1
l M′M−1

l

The exact traces can be computed as sums over eigenvectors; cost dominated by Nev inversions
(not too bad).
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LMS: expected payoff

We can use the Oij -mapping technique to examine the benefit of LMS with 2000 eigenvectors:

First order Second order
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Performance vs. cost

Some overhead associated with LMS:

If the linear algebra is done on the CPU, it takes meaningful time

If the linear algebra is done on the GPU, it hurts scaling from memory requirements

Based on our resources we chose BCHC 33 × 6 with 1000 eigenvectors

This should give us lower errors in less time despite an ensemble with double the volume
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Conclusions

Perturbative reweighting can be used to calculate the sea polarizability (and many other
things too)

Stochastic estimators are very, very hard – consequence of this problem, not perturbative
reweighting in general

Offdiagonal-element mapping can be used to plan and evaluate estimator improvement
strategies

243 × 48 ensemble: N = 124, 416 dilution gives charged-sea polarizabilities with reasonable
errors

Kaon shows significant shift; other particles unaffected

Sea effects expected to be bigger for other ensembles in our study

Low-mode substitution along with strong dilution pays off for this problem

48× 242 × 48 ensemble: N = 15, 552 dilution along with 1000-vector LMS should give lower
errors in less time

... stay tuned for the result
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