Beyond-the-Standard-Model Neutral Kaon Mixing from a Mixed-Action Lattice Calculation

Maxwell T. Hansen University of Washington, Seattle

Supported in part by the Fermilab Fellowship in Theoretical Physics

June 24th, 2014

with Jack Laiho, Ruth S. Van de Water work in progress

Integrating out the **Standard-Model** weak bosons gives a low-energy hamiltonian that contains the operator

$$\mathcal{O}_1^{\Delta S} = [\overline{s}^{\alpha} \gamma_{\mu} (1 - \gamma_5) d^{\alpha}] [\overline{s}^{\beta} \gamma_{\mu} (1 - \gamma_5) d^{\beta}]$$

Parametrize nonperturbative hadronic contribution via

$$B_K = -\frac{\langle \bar{K}^0 | \mathcal{O}_1^{\Delta S=2} | K^0 \rangle}{N_1 \langle \bar{K}^0 | L_\mu | 0 \rangle \langle 0 | L_\mu | K^0 \rangle}$$

where $L_{\mu} = \bar{s}\gamma_{\mu}(1-\gamma_5)d$

Determining B_K gives the Standard-Model predictions for ΔM_K , ϵ_K

In theories **beyond-the-Standard-Model (BSM)** the hamiltonian receives contributions from additional operators

$$\mathcal{O}_{2}^{\Delta S} = [\overline{s}^{\alpha} (1 - \gamma_{5}) d^{\alpha}] [\overline{s}^{\beta} (1 - \gamma_{5}) d^{\beta}]$$
$$\mathcal{O}_{3}^{\Delta S} = [\overline{s}^{\alpha} (1 - \gamma_{5}) d^{\beta}] [\overline{s}^{\beta} (1 - \gamma_{5}) d^{\alpha}]$$
$$\mathcal{O}_{4}^{\Delta S} = [\overline{s}^{\alpha} (1 - \gamma_{5}) d^{\alpha}] [\overline{s}^{\beta} (1 + \gamma_{5}) d^{\beta}]$$
$$\mathcal{O}_{5}^{\Delta S} = [\overline{s}^{\alpha} (1 - \gamma_{5}) d^{\beta}] [\overline{s}^{\beta} (1 + \gamma_{5}) d^{\alpha}]$$

Parametrize hadronic contributions from these operators via

$$B_i^{\text{BSM}} = -\frac{\langle \bar{K}^0 | \mathcal{O}_i^{\Delta S=2} | K^0 \rangle}{N_i \langle \bar{K}^0 | \bar{s} \gamma_5 d | 0 \rangle \langle 0 | \bar{s} \gamma_5 d | K^0 \rangle}$$

In theories **beyond-the-Standard-Model (BSM)** the hamiltonian receives contributions from additional operators

Numerical lattice QCD calculations of B_i have been performed by ETM, RBC/UKQCD and SWME collaborations.

	N_f	B_K	B_2	B_3	B_4	B_5
ETM	2	0.51(2)	0.47(2)	0.78(4)	0.75(3)	0.60(3)
$\operatorname{RBC}/\operatorname{UKQCD}$	2+1	0.53(2)	0.43(5)	0.75(9)	0.69(7)	0.47(6)
SWME	2 + 1	0.518(04)(23)	0.532(05)(23)	0.785(07)(34)	0.913(32)(40)	0.660(22)(29)

in $\overline{\rm MS}$ at $\mu=3\,{\rm GeV}$

Because results are in tension, additional simulations are especially useful

Mixed action lattice set-up We present progress in a mixed-action calculation of B_i , We use MILC asqtad-improved staggered sea quarks and domain-wall valence quarks light quarks -> light dynamical pions, large volumes, fine lattice spacings reduce mixing between

wrong-chirality operators

Mixed action lattice set-up

We present progress in a mixed-action calculation of B_i ,

We use MILC asqtad-improved staggered sea quarks and domain-wall valence quarks

	2	sea sector		valence sector		
$\approx a(\text{fm})$	$\left(\frac{L}{a}\right)^3 \times \frac{T}{a}$	am_l/am_h	am_{π}	am_x	am_{π}	$N_{\rm conf.}$
0.06	$64^3 \times 144$	0.0018/0.018	0.06678(03)	0.0026,0.0108,0.033		96
0.06	$48^3 \times 144$	0.0036/0.018	0.09353(07)	0.0036, 0.0072, 0.0108, 0.033		129
0.09	$40^3 \times 96$	0.0031/0.0031		0.004, 0.0124, 0.0186, 0.046		103
0.09	$40^3 \times 96$	0.0031/0.031	0.10538(06)	0.004, 0.0124, 0.0186, 0.046	0.0999(12)	151
0.09	$28^3 \times 96$	0.0093/0.031		0.0062, 0.0124, 0.0186, 0.046		199
0.09	$28^3 \times 96$	0.0062/0.0186	0.14619(14)	0.0062, 0.0124, 0.0186, 0.046	0.1212(17)	169
0.09	$28^3 \times 96$	0.0062/0.031	0.14789(18)	0.0062, 0.0124, 0.0186, 0.046	0.1222(12)	374
0.09	$28^3 \times 96$	0.0124/0.031	0.20635(18)	0.0062, 0.0124, 0.0186, 0.046	0.1216(11)	199
0.12	$32^3 \times 64$	0.005/0.005	0.16081(09)	0.007, 0.02, 0.03, 0.05		175
0.12	$28^3 \times 64$	0.01/0.05	0.22421(12)	0.01,0.03		116
0.12	$24^3 \times 64$	0.005/0.05	0.15971(20)	0.007,0.02,0.03,0.05,0.065	0.1718(11)	217
0.12	$20^3 \times 64$	0.007/0.05	0.18891(20)	0.01, 0.02, 0.03, 0.04, 0.05, 0.065	0.1968(08)	279
0.12	$20^3 \times 64$	0.01/0.03	0.22357(19)	0.01, 0.02, 0.03, 0.05, 0.065	0.1946(18)	162
0.12	$20^3 \times 64$	0.01/0.05	0.22447(17)	0.01,0.02,0.03,0.05,0.065	0.1989(08)	227
0.12	$20^3 \times 64$	0.02/0.05	0.31125(16)	0.01, 0.03, 0.05, 0.065	0.1949(13)	117

Mixed action lattice set-up

We present progress in a mixed-action calculation of B_i ,

We use MILC asqtad-improved staggered sea quarks and domain-wall valence quarks

	2	sea se	ector	valence sector		
$\approx a(\mathrm{fm})$	$\left(\frac{L}{a}\right)^3 \times \frac{T}{a}$	am_l/am_h	$\approx m_{\pi} \; ({\rm MeV})$	am_x	$\approx m_{\pi} \; ({\rm MeV})$	
0.06	$64^3 \times 144$	0.0018/0.018	220	0.0026, 0.0108, 0.033		
0.06	$48^3 \times 144$	0.0036/0.018	310	0.0036, 0.0072, 0.0108, 0.033		
0.09	$40^3 \times 96$	0.0031/0.0031		0.004, 0.0124, 0.0186, 0.046		
0.09	$40^3 \times 96$	0.0031/0.031	250	0.004, 0.0124, 0.0186, 0.046	240	
0.09	$28^3 \times 96$	0.0093/0.031		0.0062, 0.0124, 0.0186, 0.046		
0.09	$28^3 \times 96$	0.0062/0.0186	350	0.0062, 0.0124, 0.0186, 0.046	290	
0.09	$28^3 \times 96$	0.0062/0.031	350	0.0062, 0.0124, 0.0186, 0.046	290	
0.09	$28^3 \times 96$	0.0124/0.031	500	0.0062, 0.0124, 0.0186, 0.046	290	
0.12	$32^3 \times 64$	0.005/0.005	260	0.007, 0.02, 0.03, 0.05		
0.12	$28^3 \times 64$	0.01/0.05	390	0.01,0.03	340	
0.12	$24^3 \times 64$	0.005/0.05	270	0.007,0.02,0.03,0.05,0.065	290	
0.12	$20^3 \times 64$	0.007/0.05	320	0.01, 0.02, 0.03, 0.04, 0.05, 0.065	340	
0.12	$20^3 \times 64$	0.01/0.03	380	0.01, 0.02, 0.03, 0.05, 0.065	330	
0.12	$20^3 \times 64$	0.01/0.05	390	0.01, 0.02, 0.03, 0.05, 0.065	340	
0.12	$20^3 \times 64$	0.02/0.05	550	0.01, 0.03, 0.05, 0.065	340	

Extraction of lattice B parameters
$$B_i^{\text{BSM}} = -\frac{\langle \bar{K}^0 | \mathcal{O}_i^{\Delta S=2} | K^0 \rangle}{N_i \langle \bar{K}^0 | \bar{s} \gamma_5 d | 0 \rangle \langle 0 | \bar{s} \gamma_5 d | K^0 \rangle}$$

We extract lattice B parameters by fitting the ratio of Euclidean-time-dependent lattice correlators to a plateau in the region far away from the source and sink

- fit uncertainties determined via jackknifing
- autocorrelations investigated via blocking & found to be negligible
- dependence on fit range thoroughly investigated

Extraction of lattice B parameters $B_i^{\text{BSM}} = -\frac{\langle \bar{K}^0 | \mathcal{O}_i^{\Delta S=2} | K^0 \rangle}{N_i \langle \bar{K}^0 | \bar{s} \gamma_5 d | 0 \rangle \langle 0 | \bar{s} \gamma_5 d | K^0 \rangle}$

We extract lattice B parameters by fitting the ratio of Euclidean-time-dependent lattice correlators to a plateau in the region far away from the source and sink

Extraction of lattice B parameters

p-value distributions found to be reasonable across the full set of fits to all valence-quark mass combinations, and for both fitting ranges

Operator renormalization We use one-loop tadpole-improved Lattice Perturbation Theory to relate

At this order the BSM operators mix in pairs

The mixing results in larger uncertainties in $B_i^{\rm BSM}$ than in B_K . We estimate this by using two alternative values for α_s in our renormalization calculation

BSM parameters more difficult

 BSM parameters have large uncertainty from truncation error in renormalization

statistical uncertainty 0.5%-2.5%

Rough estimate of individual data point uncertainties: from comparing two choices of $\, \alpha_s \, . \,$

 BSM parameters also have larger variation with valencequark mass and lattice spacing

Future plans for nonperturbative renormalization

We have data for NPR in RI-SMOM- $\gamma\mu$ scheme

Unfortunately conversion to $\overline{MS}\,$ is not currently available

We will calculate renormalization factors in this nonperturbative scheme

Result can be updated using NPR when continuum conversion factors are calculated

Future plans for chiral-continuum extrapolation

Plan to fit data using both SU(2) and SU(3) ChPT

Preliminary fits to BSM data (with only statistical) uncertainties lead to poor p values

Plan to incorporate renormalization uncertainties before fitting

Plan to consider golden-combinations, which remove leading chiral logs and potentially improve fit