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BRST-Symmetry Breaking
The study of color confinement in Yang-Mills theories in minimal Landau gauge
is an active area of research [1]. Let us recall that, in this case, the gauge con-
dition is implemented by restricting the functional integral over gauge-field con-
figurations to the so-called Gribov region Ω. This restriction can be achieved
by adding a nonlocal term Sh, the horizon function, to the usual Landau gauge-
fixed Yang-Mills action SYM +Sgf. One thus obtains the Gribov-Zwanziger (GZ)
action SGZ = SYM + Sgf + γ4Sh, where the massive parameter γ, known as the
Gribov parameter, is dynamically determined (in a self-consistent way) through
the so-called horizon condition. In order to localize the GZ action [2] one intro-
duces a pair of complex-conjugate bosonic fields (φac

µ ,φac
µ ) and a pair of Grass-

mann complex-conjugate fields (ωac
µ ,ωac

µ ). Then, the GZ action can be written as
SGZ = SYM +Sgf +Saux +Sγ, where
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Under the nilpotent BRST variation s, the four auxiliary fields form two BRST
doublets, i.e. sφac

µ = ωac
µ , sωac

µ = 0, sω
ac
µ = φ

ac
µ and sφ

ac
µ = 0, giving rise to a

BRST quartet. At the same time, one can check that the localized GZ theory
is not BRST-invariant. Indeed, while s(SYM + Sgf + Saux) = 0, one finds that
sSγ ∝ γ2 6= 0. Since a nonzero value for the Gribov parameter γ is related to the
restriction of the functional integration to the Gribov region Ω, it is clear that
BRST-symmetry breaking is a direct consequence of this restriction.

The Bose-Ghost Propagator
In order to study numerically the effect of the BRST-breaking term Sγ, one can
consider the expectation value of a BRST-exact quantity. One such possibility is
the correlation function

Qabcd
µν (x,y) = 〈s(φ

ab
µ (x)ω

cd
ν (y))〉 = 〈ωab

µ (x)ω
cd
ν (y) + φ

ab
µ (x)φ

cd
ν (y)〉 . (3)

While the above expectation value should be zero for a BRST-invariant theory,
it does not necessarily vanish if BRST symmetry is broken. Indeed, at tree level
(and in momentum space) one finds [2, 3]

Qabcd
µν (p, p′) =

(2π)4
δ(4) (p+ p′) g2

0 γ4 f abe f cdePµν(p)
p2
(

p4 +2g2
0Ncγ4

) , (4)

where Pµν(p) is the usual transverse projector. Thus, this propagator is propor-
tional to the Gribov parameter γ, i.e. its nonzero value is clearly related to the
breaking of the BRST symmetry in the GZ theory. One should also recall that
this Bose-ghost propagator has been proposed as a carrier of long-range confining
force in minimal Landau gauge [4, 5, 6].

On the lattice one does not have direct access to the auxiliary fields (φ
ac
µ ,φac

µ )
and (ωac

µ ,ωac
µ ). On the other hand, by 1) adding suitable sources to the GZ ac-

tion, 2) explicitly integrating over the four auxiliary fields and 3) taking the usual
functional derivatives with respect to the sources, one can verify that [4]

Qabcd
µν (x− y) = γ

4
〈

Rab
µ (x)Rcd

ν (y)
〉
, (5)

where Rac
µ (x) =

∫
d4z(M −1)ae(x,z)Bec

µ (z) and Bbc
ν (x) = g0 f bec Ae

ν(x).

Numerical Simulations
We evaluated [7] the Bose-ghost propagator as defined in Eq. (5) above —modulo the global factor γ4— using numerical simulations in the SU(2) case. In order to
check discretization and finite-volume effects, we considered three different values of the lattice coupling β and five different physical volumes, ranging from about
(3.366 f m)4 to (10.097 f m)4. Numerical results for the scalar function Q(k2), defined through the relation Qac(k) ≡ Qabcb

µµ (k) ≡ δacNc Pµµ(k)Q(k2) [see Eq. (4)], are
shown in Figs. 1 and 2. The data scale quite well, even though small deviations are observable in the IR limit (see Fig. 2). We also fit the data using the fitting function
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Figure 1 (left): data for β = 2.2, V = 484 (+) matched [8] with data for β = 2.34940204, V = 724 (×), fitted using
Eq. (6) with t = 3.2(0.3)(GeV 2), u = 3.6(0.4)(GeV ), s = 46(13)(GeV 2) and c = 114(13). Figure 2 (right): data for β =
2.34940204, V = 724 (×) matched [8] with data β= 2.43668228, V = 964 (∗), fitted using Eq. (6) with t = 3.0(0.2)(GeV 2),
u = 3.9(0.3)(GeV ), s = 58.0(9.8)(GeV 2) and c = 247(16).

f (p2) =
c
p4

p2 + s
p4 + u2 p2 + t2 . (6)

Following the analysis in [4, 6], this fitting func-
tion corresponds to considering an infrared-free ghost
propagator G(p2) and a massive gluon propagator
D(p2). The fit describes the data quite well. As a con-
sequence, the Bose-ghost propagator presents a p−4

singularity in the infrared (IR) limit. This result is
in agreement with the one-loop analysis carried out
in [9]. One should stress that, even though a double-
pole singularity is suggestive of a long-range interac-
tion, the above result does not imply a linearly-rising
potential between quarks [4, 6, 9]. Indeed, when cou-
pled to quarks via the A− φ propagator —which is
nonzero due to the vertex term φ

ac
µ g f acbAc

ν∂ν φbc
µ —,

the Bose-ghost propagator gets a momentum factor at
each vertex [4, 6], i.e. the effective propagator is given
by p−2 in the IR limit.

Conclusions
We presented the first numerical evaluation of the Bose-ghost propagator in min-
imal Landau gauge. We find that our data are well described by a simple fitting
function, which can be related to a massive gluon propagator in combination
with an IR-free (Faddeev-Popov) ghost propagator, implying a p−4 singularity
in the IR limit. Our results constitute the first numerical manifestation of BRST-
symmetry breaking due to the restriction of the functional integration to the Gri-
bov region Ω in the GZ approach. This directly affects continuum functional
studies in Landau gauge, which usually employ lattice results as an input and/or
as a comparison. At the same time, several questions are still open for a clear
understanding of the GZ approach. In particular, one should understand how a
physical positive-definite Hilbert space could be defined in this case.
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