Investigation of the tetra-quark candidate $a_0(980)$: preliminary results

A. M. Abdel-Rehim

The Cyprus Institute (CASTORC)

Collaborators:
Constantia Alexandrou, Joshua Berlin, Mario Gravina,
Mattia Dalla Brida, Giannis Koutsou, Marc Wagner

Lattice 2014, 23-28 June 2014, Columbia University
Contents

- Interpolating Operators and Correlation Matrix.
- Gauge Configurations.
- Quark Propagators.
- Results.
- Conclusions & outlook.
Interpolating Operators

\[\mathcal{O}^{q\bar{q}} = \sum_x \left(\bar{d}_x u_x \right) \]

\[\mathcal{O}^{K\bar{K}, \text{point}} = \sum_x \left(\bar{s}_x \gamma_5 u_x \right) \left(\bar{d}_x \gamma_5 s_x \right) \]

\[\mathcal{O}^{\eta_s \pi, \text{point}} = \sum_x \left(\bar{s}_x \gamma_5 s_x \right) \left(\bar{d}_x \gamma_5 u_x \right) \]

\[\mathcal{O}^{Q\bar{Q}} = \sum_x \epsilon_{abc} \left(\bar{s}_{x,b} \left(C \gamma_5 \bar{d}^T_{x,c} \right) \right) \epsilon_{ade} \left(u^T_{x,d} \left(C \gamma_5 \right) s_{x,e} \right) \]

\[\mathcal{O}^{K\bar{K}, \text{2-part}} = \sum_{x,y} \left(\bar{s}_x \gamma_5 u_x \right) \left(\bar{d}_y \gamma_5 s_y \right) \]

\[\mathcal{O}^{\eta_s \pi, \text{2-part}} = \sum_{x,y} \left(\bar{s}_x \gamma_5 s_x \right) \left(\bar{d}_y \gamma_5 u_y \right) \]
The Correlation Matrix

\[C_{jk}(t) = \langle \mathcal{O}_j(t) \mathcal{O}^\dagger_k(0) \rangle \]

<table>
<thead>
<tr>
<th>(\mathcal{O}_{qq})</th>
<th>(\mathcal{O}_{KK}) (\text{point})</th>
<th>(\mathcal{O}_{\eta_s \pi}) (\text{point})</th>
<th>(\mathcal{O}Q\bar{Q})</th>
<th>(\mathcal{O}_{K\bar{K}}) (\text{2part})</th>
<th>(\mathcal{O}_{\eta_s \pi}) (\text{2part})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathcal{O}_{qq})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\mathcal{O}_{KK}) (\text{point})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\mathcal{O}_{\eta_s \pi}) (\text{point})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\mathcal{O}Q\bar{Q})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\mathcal{O}_{K\bar{K}}) (\text{2part})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\mathcal{O}_{\eta_s \pi}) (\text{2part})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For more details, see previous talk by Joshua Berlin (Wed. 11:30-11:50)

A. Abdel-Rehim (The Cyprus Institute) Tetra-quark \(a_0(980) \): Preliminary Results
Gauge configurations with 2+1 dynamical clover fermions and the Iwasaki gauge action.

Configurations available through the PACS-CS collaboration.

Lattice: $32^3 \times 64$, Lattice spacing ≈ 0.09 fm.

500 configurations at $M_\pi \approx 300$ MeV.

198 configurations at $M_\pi \approx 150$ MeV.
Propagators are smeared at the source and sink with APE smeared links and invariant Gaussian quark smearing.

Forward propagators for u, d, s quarks computed for 5 random source locations on each configuration.

Strange quark loops computed with Z_4 noises diluted in time.

5 noises per time slice and only 15 time steps from the source.
Results I: no 2-particle operators

<table>
<thead>
<tr>
<th>$\mathcal{O}^{q\bar{q}}$</th>
<th>$\mathcal{O}_{\text{point}}^{K\bar{K}}$</th>
<th>$\mathcal{O}_{\text{point}}^{\eta_s\pi}$</th>
<th>$\mathcal{O}_{\text{2part}}^{Q\bar{Q}}$</th>
<th>$\mathcal{O}_{\text{2part}}^{K\bar{K}}$</th>
<th>$\mathcal{O}_{\text{2part}}^{\eta_s\pi}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{O}^{q\bar{q}}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\mathcal{O}_{\text{point}}^{K\bar{K}}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\mathcal{O}_{\text{point}}^{\eta_s\pi}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\mathcal{O}^{Q\bar{Q}}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\mathcal{O}_{\text{2part}}^{K\bar{K}}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\mathcal{O}_{\text{2part}}^{\eta_s\pi}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results for $m_\pi \approx 300$ MeV, 2500 measurements
Note: no mixing between $q\bar{q}$ and tetra-quarks (as expected)
Eigenvector Components, 3x3 connected

$M_{\pi}=300\text{ MeV}, 3x3\text{ GEVP},\text{ connected only ground state}$

$M_{\pi}=300\text{ MeV}, 3x3\text{ GEVP},\text{ connected only first excited state}$

$M_{\pi}=300\text{ MeV}, 3x3\text{ GEVP},\text{ connected only second excited state}$
Eigenvector Components, 4x4 connected

$M_{\pi}=300$ MeV, 4x4 GEVP, connected only

ground state

1st excited state

2nd excited state

3rd excited state

A. Abdel-Rehim (The Cyprus Institute) Tetra-quark $a_0(980)$: Preliminary Results
Effective Mass, Connected+disconnected

$M_{\pi}=300$ MeV, $3x3$ GEVP, connected+disconnected

$M_{\pi}=300$ MeV, $4x4$ GEVP, connected+disconnected

A. Abdel-Rehim (The Cyprus Institute)

Tetra-quark $a_0(980)$: Preliminary Results
Eigenvector Components, 3x3 connected+disconnected

M_{\pi}=300 \text{ MeV}, 3x3 GEVP, connected+disconnected

- ground state
- first excited state
- second excited state

A. Abdel-Rehim (The Cyprus Institute)

Tetra-quark a_0(980): Preliminary Results
Eigenvector Components, 4x4 connected+disconnected

$M_{pi}=300$ MeV, 4x4 GEVP, connected+disconnected

ground state

1st excited state

2nd excited state

3rd excited state

A. Abdel-Rehim (The Cyprus Institute)

Tetra-quark $a_0(980)$: Preliminary Results
Comments on the eigenvector components

- $q\bar{q}$ mixing with tetraquark operators seem to be small but seems to affect the eigenvalues.
- Including disconnected diagrams but ignoring the $q\bar{q}$ seems to increase the diquark-antidiquark component of the lowest two states.
- Including $q\bar{q}$ seems to give a more consistent picture with or without disconnected diagrams where:
 - Ground state mainly $q\bar{q}$.
 - First and second excited states mainly a mix of $K\bar{K}$ and $\eta - \pi$.
 - Diquark-anti-diquark is the heaviest.
Two Exponential Fits
Two-Exponential Fits, 3x3 connected

M_{pi}=300 MeV, 3x3 correlation matrix, connected only

- State 1, connected
- State 2, connected
- State 3, connected

A. Abdel-Rehim (The Cyprus Institute) Tetra-quark a_0(980): Preliminary Results
Two-Exponential Fits, 4x4 connected

\[M_{\pi} = 300 \text{ MeV}, 4 \times 4 \text{ correlation matrix, connected only} \]

State 0, connected

State 1, connected

State 2, connected

State 3, connected

A. Abdel-Rehim (The Cyprus Institute)
Tetra-quark \(a_0(980)\): Preliminary Results
Two-Exponential Fits, 3x3 connected + disconnected

$M_{\pi}=300$ MeV, 3x3 correlation matrix, total

State 1, total

State 2, total

State 3, total

A. Abdel-Rehim (The Cyprus Institute)

Tetra-quark $a_0(980)$: Preliminary Results
Two-Exponential Fits, 4x4 connected + disconnected

$M_{\pi}=300$ MeV, 4x4 correlation matrix, total

Two exponential fit
State 0, total

Two exponential fit
State 1, total

Two exponential fit
State 2, total

A. Abdel-Rehim (The Cyprus Institute) Tetra-quark $a_0(980)$: Preliminary Results
Extracted Energy Levels at $m_\pi \approx 300$ MeV

- States not shown were either undetermined by the fit or the data was too noisy.
- Only scattering states can be resolved unambiguously at this level of statistics.
- Currently adding the 2-particle operators to the correlation matrix and also using one-end trick to improve the $q\bar{q}$ correlator. This will hopefully allow us to resolve the $a_0(980)$.
Results for $m_\pi \approx 150$ MeV, 198 measurements
Effective Mass, Connected Only

$M_{\pi}=150$ MeV, 3×3 GEVP, connected only

State 1
State 2
State 3

$M_{\pi}=150$ MeV, 4×4 GEVP, connected only

State 0
State 1
State 2
State 3

A. Abdel-Rehim (The Cyprus Institute) Tetra-quark $a_0(980)$: Preliminary Results
Eigenvector Components, 3x3 connected

$M_{\pi}=150$ MeV, 3x3 GEVP, connected only

- **Ground State**
 - KKbar
 - $\eta_{ss}\pi$
 - QQbar

- **First Excited State**
 - KKbar
 - $\eta_{ss}\pi$
 - QQbar

- **Second Excited State**
 - KKbar
 - $\eta_{ss}\pi$
 - QQbar

A. Abdel-Rehim (The Cyprus Institute)
Tetra-quark $a_0(980)$: Preliminary Results
Eigenvector Components, 4x4 connected

$M_{pi}=150$ MeV, 4x4 GEVP, connected only

ground state

$M_{pi}=150$ MeV, 4x4 GEVP, connected only
1st excited state

$M_{pi}=150$ MeV, 4x4 GEVP, connected only
2nd excited state

$M_{pi}=150$ MeV, 4x4 GEVP, connected only
3rd excited state

A. Abdel-Rehim (The Cyprus Institute) Tetra-quark $a_0(980)$: Preliminary Results
Effective Mass, Connected+disconnected

$M_{\pi}=150$ MeV, 3x3 GEVP, connected+disconnected

State 1
State 2
State 3

$M_{\pi}=150$ MeV, 4x4 GEVP, connected+disconnected

State 0
State 1
State 2
State 3

A. Abdel-Rehim (The Cyprus Institute)

Tetra-quark $a_0(980)$: Preliminary Results
Eigenvector Components, 3x3 connected+disconnected

M_{\pi}=150 \text{ MeV}, 3x3 GEVP, connected+disconnected

|vj|² vs. t/a

Ground state:
- KK\bar{b}ar
- \eta_{\Delta\tau}\pi
- QQ\bar{b}ar

First excited state:
- KK\bar{b}ar
- \eta_{\Delta\tau}\pi
- QQ\bar{b}ar

Second excited state:
- KK\bar{b}ar
- \eta_{\Delta\tau}\pi
- QQ\bar{b}ar

A. Abdel-Rehim (The Cyprus Institute)

Tetra-quark a₀(980): Preliminary Results
Eigenvector Components, 4x4 connected+disconnected

$M_{pi}=150$ MeV, 4x4 GEVP, connected+disconnected

- **Ground state**
 - qqbar
 - KKbar
 - etass-pi
 - QQbar

- **1st excited state**
 - qqbar
 - KKbar
 - etass-pi
 - QQbar

- **2nd excited state**
 - qqbar
 - KKbar
 - etass-pi
 - QQbar

- **3rd excited state**
 - qqbar
 - KKbar
 - etass-pi
 - QQbar

A. Abdel-Rehim (The Cyprus Institute) Tetra-quark $a_0(980)$: Preliminary Results
We reported on ongoing study of the scalar $a_0(980)$ using interpolating operators with two and four quarks. Both connected and disconnected contributions are included. The goal is to isolate this state and understand its quark sub-structure. Initial results show that including quark-antiquark operators as well as disconnected diagram will have an important effect on the spectrum. quark-antiquark operator seems to be noisy.

Outlook: currently using the one-end trick to compute the 2-particle operators as well as improve the statistics of the $q\bar{q}$ correlation functions.

Outlook: perform more elaborate fit including 2-particle states with opposite momenta.