

23-28 June 2014 Columbia University, NY, USA Friday (Parallel Session 6) 16:50-17:10

The $B \rightarrow \pi l v$ and $B_s \rightarrow K l v$ form factors from 2+1 flavors of domain-wall fermions and relativistic *b*-quarks

Taichi Kawanai (RBC-UKQCD collaboration)

Motivation

A precise determination of $|V_{ub}|$ allows a strong test of the standard model.

The constraint on the apex $(\bar{\rho}, \bar{\eta})$ of the CKM triangle from $|V_{ub}|$ will strengthen tests of the Standard-Model CKM framework.

$$\frac{|V_{ub}|}{|V_{cb}|} = \frac{\lambda}{1 - \lambda^2/2} \sqrt{\bar{\rho}^2 + \bar{\eta}^2}$$

•
$$\lambda = |V_{ud}|$$
 known to ~ 1 %

• $|V_{cb}|$ known to ~2 %

Dominant error (yellow ring) comes from the uncertainty of $|V_{ub}|$ (~6%).

There has been a long standing puzzle in the determination of $|V_{ub}|$.

 $\sim 3\sigma$ discrepancy between exclusive $(B \rightarrow \pi l v)$ and inclusive $(B \rightarrow X_u l v)$ determination.

2

FLA

Exclusive determination of $|V_{ub}|$

 $f_+(q^2)$ is crucial for the determination of the CKM matrix element $|V_{ub}|$.

•The exclusive $B \rightarrow \pi l v$ semileptonic decay allows the determination of $|V_{ub}|$ via:

Experiment can only measure the CKM matrix element times hadronic form factor.
The hadronic form factor must be computed nonperturbatively via lattice QCD.

Form-factor definitions

• Non-perturbative form factors $f_+(q^2)$ and $f_0(q^2)$ parametrize the hadronic matrix element of the $b \to u$ quark flavor-changing vector current V_{μ} .

$$\langle P|V_{\mu}|B_{(s)}\rangle = f_{+}(q^{2})\left(p_{B_{(s)}}^{\mu} + p_{P}^{\mu} - \frac{m_{B_{(s)}}^{2} - p_{P}^{2}}{q^{2}}q^{\mu}\right) + f_{0}(q^{2})\frac{m_{B_{(s)}}^{2} - p_{P}^{2}}{q^{2}}q^{\mu}$$

- On the lattice, we calculate the form factors $f_{||}$ and f_{\perp} .
 - ▶ Proportional to vector current matrix elements in the $B_{(s)}$ meson rest frame:

$$f_{\parallel}(E_P) = \langle P|V_0|B_{(s)}\rangle/\sqrt{2m_{B_{(s)}}}$$
$$f_{\perp}(E_P)p_i = \langle P|V_i|B_{(s)}\rangle/\sqrt{2m_{B_{(s)}}}$$

► Easy to relate to the desired form factor $f_+(q^2)$ and $f_0(q^2)$.

$$f_0(q^2) = \frac{\sqrt{2m_{B_{(s)}}}}{m_{B_{(s)}}^2 - m_P^2} \left[(m_{B_{(s)}} - E_P) f_{\parallel}(E_P) + (E_P^2 - m_P^2) f_{\perp}(E_P) \right]$$

$$f_+(q^2) = \frac{1}{\sqrt{2m_{B_{(s)}}}} \left[f_{\parallel}(E_P) + (m_{B_{(s)}} - E_P) f_{\perp}(E_P) \right]$$

Lattice actions and parameters

•We use the 2+1 flavor dynamical domain-wall fermion gauge field configurations generated by the RBC/UKQCD Collaborations.

	L×T	<i>a</i> [fm]	mud	ms	<i>m</i> π [MeV]	# of configs.	# of sources
Fine Lattice	32 × 64	pprox 0.08	0.004	0.03	289	628	2
	32 × 64	pprox 0.08	0.006	0.03	345	445	2
	32 × 64	pprox 0.08	0.008	0.03	394	544	2
Coarse	24 × 64	≈ 0.11	0.005	0.04	329	1636	I
Lattice	24 × 64	≈ 0.11	0.01	0.04	422	4 9	I

C. Allton et al. (RBC/UKQCD Collaboration), Phys. Rev. D78, 114509 (2008) Y. Aoki et al. (RBC/UKQCD Collaboration), Phys.Rev. D83, 074508 (2011)

- For the b-quark we use the relativistic heavy quark (RHQ) action developed by Li, Lin, and Christ in Refs. N. H. Christ, M. Li, and H.-W. Lin, Phys.Rev. D76, 074505 (2007) H.-W. Lin and N. Christ, Phys.Rev. D76, 074506 (2007)
- We use the nonperturbative determinations of the parameters of the RHQ action obtained in Y.Aoki et. al Phys. Rev. D 86, 116003 (2012).
- Provides important cross-check of existing $N_f = 2+1$ calculations using the MILC staggered ensembles.

Calculation of lattice form factors

• Extract the lattice form factor from the ratio of the 3pt function to 2pt functions: J. A. Bailey et al. (Fermilab Lattice and MILC), Phys. Rev. D79, 054507 (2009).

$$\begin{aligned} R_{3,\mu}^{B_{(s)} \to P}(t,T) &= \frac{C_{3,\mu}^{B_{(s)} \to P}(t,T)}{\sqrt{C_{2}^{P}(t)C_{2}^{B_{(s)}}(T-t)}} \sqrt{\frac{2E_{P}}{e^{-E_{P}t}e^{-m_{B_{(s)}}(T-t)}}} \\ f_{\parallel}^{\text{lat}} &= \lim_{t,T \to \infty} R_{0}^{B_{(s)} \to P}(t,T) \\ f_{\perp}^{\text{lat}} &= \lim_{t,T \to \infty} \frac{1}{p_{P}^{i}} R_{i}^{B_{(s)} \to P}(t,T) \end{aligned}$$

Three-point correlator fits

- We use the lattice data up to (1,1,1) for $B \rightarrow \pi$ and (2,0,0) for $B_s \rightarrow K$.
- After a careful study, we fix source-sink separations $T = t_B t_{\pi}$
- We fit the ratio to a plateau in the region $0 \ll t \ll T$.

Renormalization of lattice form factors

• The continuum form factors are given by

$$f_{\parallel}(E_P) = Z_{V_0}^{bl} \lim_{t,T\to\infty} R_0^{B_{(s)}\to P}(E_P, t, T)$$
$$f_{\perp}(E_P) = Z_{V_i}^{bl} \lim_{t,T\to\infty} \frac{1}{p_P^i} R_i^{B_{(s)}\to P}(E_P, t, T)$$

• We calculate the heavy-light current renormalization factor Z_V^{bl} using the mostly nonperturbative method. A. X. El-Khadra et al. Phys.Rev. D64, 014502 (2001)

$$Z_{V_{\mu}}^{bl} = \rho_{V_{\mu}}^{bl} \sqrt{Z_V^{bb} Z_V^{ll}}$$

compute nonperturbatively

compute with 1-loop mean-field improved lattice perturbation theory

• ρ-factor calculated in PhySyHCAI (framework for automated lattice perturbation theory).

C. Lehner arXiv:1211.4013

- Z_V^{II} obtained by the RBC/UKQCD collaborations by exploiting the fact $Z_A = Z_V$ for domain-wall fermions. Y. Aoki et al. (RBC/UKQCD Collaboration), Phys.Rev. D83, 074508 (2011)
- ► Z_V^{bb} obtained from the matrix element of the $b \rightarrow b$ vector current between two *Bs* mesons. N. H.Christ et al. (RBC/UKQCD Collaboration), arXiv:1404.4670

Chiral-continuum extrapolations of $f_{||}$ and f_{\perp}

- Correlated simultaneous chiral-continuum fit $(m_{\pi} \rightarrow m_{\pi}^{\text{phys}}, a \rightarrow 0)$ to f_{\perp} and f_{\parallel} data using Hard-pion NLO SU(2) χ PT.
 - Strange quark integrated out
 - Applies to regime where $E_P >> m_{\pi}$

$$f_{\parallel}(m_{\pi}, E_{P}, a^{2}) = c_{\parallel}^{(1)} \left(1 + (\delta f_{\parallel})^{\text{Hard-pion}} + c_{\parallel}^{(2)} \frac{m_{\pi}^{2}}{\Lambda^{2}} + c_{\parallel}^{(3)} \frac{E_{P}}{\Lambda} + c_{\parallel}^{(4)} \frac{E_{P}^{2}}{\Lambda^{2}} + c_{\parallel}^{(5)} \frac{a^{2}}{\Lambda^{2} a_{32}^{4}} \right)$$

$$f_{\perp}(m_{\pi}, E_{P}, a^{2}) = \frac{1}{E + m_{B}^{*} - m_{B}} c_{\perp}^{(1)} \left(1 + (\delta f_{\perp})^{\text{Hard-pion}} + c_{\perp}^{(2)} \frac{m_{\pi}^{2}}{\Lambda^{2}} + c_{\perp}^{(3)} \frac{E_{P}}{\Lambda} + c_{\perp}^{(4)} \frac{E_{P}^{2}}{\Lambda^{2}} + c_{\perp}^{(5)} \frac{a^{2}}{\Lambda^{2}} \right)$$

The function δf indicate non-analytic "log" functions of the pion mass.

J. Bijnens and I. Jemos, Nucl. Phys. B 840, 54 (2010)

• The hard-pion SU(2) logarithms are given by simply taking the limit $m_{\pi}/E_P \rightarrow 0$.

$$(4\pi f_{\pi})^{2} (\delta f_{\parallel,\perp}^{B\to\pi})^{\text{Hard-pion}} = -\frac{3}{4} \left(3g^{2}+1\right) m_{\pi}^{2} \log\left(\frac{m_{\pi}^{2}}{\Lambda^{2}}\right)$$
$$(4\pi f_{\pi})^{2} (\delta f_{\perp,\parallel}^{B_{s}\to K})^{\text{Hard-pion}} = -\frac{3}{4} m_{\pi}^{2} \log\left(\frac{m_{\pi}^{2}}{\Lambda^{2}}\right)$$

Chiral-continuum extrapolations of $f_{||}$ and f_{\perp}

Black curves show chiral-continuum extrapolated $f_{||}$ and f_{\perp} with statistical errors.

Preliminary error budgets

- Show error budgets for three q^2 points within the range of simulated lattice momenta.
- Dominant uncertainties from statistics and chiral extrapolation.
- Estimate error from chiral extrapolation from difference between SU(2) χ PT and analytic fits.

total statistics

chiral-continuum extrapolation

Synthetic data for f_+ and f_0

Using the output of the chiral-continuum fit, we generate 3 synthetic data points for f_+ and f_0 (black) evenly spaced in the range of simulated z values to use in the extrapolation to $q^2=0$

z-expansion of
$$f_+$$
 and f_0

Boyd, Grinstein, Lebed, Phys.Rev.Lett. 74 (1995) 4603

We employ the model-independent *z*-expansion fit to extrapolate lattice results to full kinematic range.

• Consider mapping the variable q^2 onto a new variable z.

semileptonic region

 $0 < q^2 < t_- \rightarrow -0.34 < z < 0.22$ (when we choose $t_0 = 0.65t_+$)

$$z = \frac{\sqrt{t_+ - q^2} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0}}$$
$$t_{\pm} = (m_B \pm m_{\pi})^2$$

• The form factor $f(q^2)$ is analytic in the semileptonic region except at B^* pole. $\rightarrow f(q^2)$ can be expressed as convergent power series.

$$f(q^2) = \frac{1}{P(q^2)\phi(q^2, t_0)} \sum_{k=0}^{\infty} a^{(k)}(t_0) z(q^2, t_0)^k$$

contains subthreshold poles

Arbitrary analytic function which affects the numerical values of the series coefficients

• The sum of the series coefficients is bounded by unitarity.

• Therefore this bound combined with the small |z| ensures that only a small number of terms is needed to accurately describe the shape of the form factor.

z-expansion of f_+ and f_0

Our data determines normalization and slope, but only loosely constrains curvature.

	ninary										
Preli	# of par.	$a^{(0)}_+$	$a_{+}^{(1)}/a_{+}^{(0)}$	$a_{+}^{(2)}/a_{+}^{(0)}$	$\chi^2/d.o.f$	<i>p</i> -value	$a_0^{(0)}$	$a_0^{(1)}/a_0^{(0)}$	$a_0^{(2)}/a_0^{(0)}$	$\chi^2/d.o.f$	<i>p</i> -value
\checkmark	2	0.0231(28)	-0.97(50)		0.40	53%	0.077(12)	-3.02(55)		0.91	34%
	3	0.0223(31)	-2.5(2.5)	-8(13)		-%	0.071(13)	-4.9(1.9)	-4.7(5.0)		-%

Determination of $|V_{ub}|$

Now add experimental data to z-fit to obtain $|V_{ub}|$.

art

BaBar Collaboration, Phys. Rev. D 86, 092004 (2012) [arXiv:1208.1253 [hep-ex]] Belle Collaboration, Phys. Rev. D 88, no. 3, 032005 (2013) [arXiv:1306.2781 [hep-ex]]

- q^2 dependence of lattice form factor agrees well with experiment.
- Experimental measurements determine both slope and curvature well.
- Error on normalization (and hence $|V_{ub}|$) saturates with 3-parameter z-fit.

Prelim	# of par.	$a_{+}^{(1)}/a_{+}^{(0)}$	$a_{+}^{(2)}/a_{+}^{(0)}$	$a_{+}^{(3)}/a_{+}^{(0)}$	$ V_{ub} \times 10^3$	$\chi^2/d.o.f$	<i>p</i> -value
	2 + 1	-1.76(22)			4.20(37)	1.42	6%
	3 + 1	-1.22(19)	-3.6(1.2)		3.54(36)	1.03	42%
	4+1	-1.32(30)	-4.0(1.5)	4(8)	3.53(36)	1.06	38%

Conclusions and future prospects

- We have calculated the $B \rightarrow \pi$ and $B_s \rightarrow K$ form factors using 2+1 flavor dynamical domain-wall fermion gauge field configurations with relativistic heavy quark action.
- Provide important independent check on existing calculations using staggered light quarks.
- Will present final results for $B \rightarrow \pi$ and $B_s \rightarrow K$ lattice form factors as coefficients of the *z*-expansion and their correlations.
- $|V_{ub}|$ is determined by combined z-fit with experimental data from Babar and Belle to about 10% precision.

Still to do:

- Implement unitarity and heavy-quark constraints on sum of coefficients.
- Compare with result using BCL parameterization.

Backup slides

O(a) improved vector current operator

The heavy-light current operator at tree level is

$$V_{\mu,0}(x) = \bar{q}(x)\mathcal{O}_{\mu,0}Q(x), \quad \mathcal{O}_{\mu,0} = \gamma_{\mu}$$

Four single derivative operators are needed for O(a) improvement.

$$\left[\begin{array}{cccc} \mathcal{O}_{1,\mu} &=& 2\overrightarrow{D}_{\mu} \\ \mathcal{O}_{2,\mu} &=& 2\overleftarrow{D}_{\mu} \\ \mathcal{O}_{3,\mu} &=& 2\gamma_{\mu}\gamma_{i}\overrightarrow{D}_{i} \\ \mathcal{O}_{4,\mu} &=& 2\gamma_{\mu}\gamma_{i}\overleftarrow{D}_{i} \end{array} \right]$$

The O(a) improved vector current operator is given by

temporal (
$$\mu = 0$$
): $\mathcal{O}_0^{imp} = \mathcal{O}_{0,0} + c_3^{V_0}\mathcal{O}_{0,3} + c_4^{V_0}\mathcal{O}_{0,4}$
spatial ($\mu = i$): $\mathcal{O}_i^{imp} = \mathcal{O}_{i,0} + c_1^{V_i}\mathcal{O}_{i,1} + c_2^{V_i}\mathcal{O}_{i,2} + c_3^{V_i}\mathcal{O}_{i,3} + c_4^{V_i}\mathcal{O}_{i,4}$

Coefficients are determined by 1-loop lattice perturbation theory.

Relativistic heavy quark action for b-quarks

Heavy quark mass introduces discretization errors of $O((ma)^n)$.

- At bottom quark mass, it becomes severe: $m_b \sim 4 \text{ GeV}$ and $1/a \sim 2 \text{ GeV}$, then $m_b a > O(1)$.

$$\int \mathbf{R} = \sum_{n,n'} \bar{\psi}_n \left\{ \mathbf{m}_{\mathbf{0}} + \gamma_0 D_0 - \frac{a D_0^2}{2} + \zeta \left[\vec{\gamma} \cdot \vec{D} - \frac{a \vec{D}^2}{2} \right] - a \sum_{\mu\nu} \frac{i \mathbf{C} \mathbf{P}}{4} \sigma_{\mu\nu} F_{\mu\nu} \right\}_{n,n'} \psi'_n$$

- The Fermilab group showed that you can remove all errors of O((ma)ⁿ) by appropriately tuning the parameters of the anisotropic clover action
 A. X. El-Khadra, A. S. Kronfeld and P. B. Mackenzie, Phys. Rev. D55, 3933 (1997)
- Errors are of $O(a^2p^2)$.
- Li, Lin, and Christ showed that the parameters {m₀, ζ, c_P} can be tuned nonperturbatively.
 N. H. Christ, M. Li, and H.-W. Lin, Phys.Rev. D76, 074505 (2007) H.-W. Lin and N. Christ, Phys.Rev. D76, 074506 (2007)
- We use the results for the parameters of the RHQ action obtained for b-quarks in Y.Aoki et. al Phys. Rev. D 86, 116003 (2012)

At tree level, the expression of Z_V^{bb} is given by $Z_V^{bb} = u_0 \exp(M_1), \quad M_1 = \log[1 + \tilde{m}_0], \quad \tilde{m}_0 = \frac{m_0}{u_0} - (1 + 3\zeta)(1 - \frac{1}{u_0})$

Here $m_0 = 7.80$, $\zeta = 3.20$, $u_0 = 0.8757$.