$B \rightarrow \pi \ell v$ semileptonic form factors from unquenched lattice QCD and $\left|V_{u b}\right|$

Daping Du

On the behalf of Fermilab lattice and MILC collaborations

Syracuse University, NY

The 32nd International Symposium on Lattice Field Theory
Columbia University, New York, June 23-28, 2014

Author list

Jon A. Bailey	J. Laiho
A. Bazavov	L. Levkova
C. Bernard	Yuzhi Liu
C. M. Bouchard	P. B. Mackenzie
C. DeTar	Y. Meurice
Daping Du *	E. T. Neil
A. X. El-Khadra	Si-Wei Qiu
J. Foley	J. Simone
E. D. Freeland	R. Sugar
E. Gámiz	D. Toussaint
Steven Gottlieb	R.S. Van de Water
U. M. Heller	Ran Zhou
A. S. Kronfeld	

(Fermilab lattice and MILC collaborations)

Motivation

> A precise $\left|V_{u b}\right|$ will improve understanding on unitary triangle, CP violation and weak decay.
$>$ Exclusive semileptonic decay $B \rightarrow \pi \ell v$ to determine $\left|V_{u b}\right|:$
Theory (Lattice or LCSR) + Experiment
$>$ Rare decay $B^{ \pm} \rightarrow \pi^{ \pm} \ell^{+} \ell^{-}$ GIM, Cabibbo, loop suppressed

Exclusive decays:

BF \% from experiments:

- BaBar 2010: 6.1\% 1005.3288v2
- Belle 2011: 5.3\% 1012.0090
- BaBar 2012: 5\% 1208.1253
- Belle 2013 tagged: 7.7\% 1306.2781 HFAG PDG 2013: 3.1\%

Unquenched Lattice : at $q^{2} \sim 20 \mathrm{GeV}^{2}$

- HPQCD 2006: ~10\%
- FNAL/MILC 2008: ~9.4\%

Form factors

> The partial decay rate is related to $\left|V_{u b}\right|$ and form factor f_{+}(zero lepton mass limit) by

$$
\frac{d \Gamma}{d q^{2}}\left(B^{0} \rightarrow \pi^{+} \ell^{-} \nu\right)=\text { Phase space } \times\left|V_{u b}\right|^{2}\left|f_{+}\left(q^{2}\right)\right|^{2}
$$

> The heavy-to-light hadronic matrix element

$$
\begin{aligned}
\langle\pi| \mathcal{V}^{\mu}|B\rangle & =f_{+}\left(q^{2}\right)\left(p_{B}^{\mu}+p_{\pi}^{\mu}-\frac{M_{B}^{2}-M_{\pi}^{2}}{q^{2}} q^{\mu}\right)+f_{0}\left(q^{2}\right) \frac{M_{B}^{2}-M_{\pi}^{2}}{q^{2}} q^{\mu} \\
& =\sqrt{2 M_{B}}\left[v^{\mu} f_{\|}\left(E_{\pi}\right)+p_{\perp}^{\mu} f_{\perp}\left(E_{\pi}\right)\right]
\end{aligned}
$$

> Form factor f_{0} is also important in some BSM models (τ lepton).
$>$ We also calculate the tensor form factor f_{T}

$$
\langle\pi| \mathcal{T}^{\mu \nu}|B\rangle=-\frac{q^{2}\left(p_{B}+p_{\pi}\right)^{\mu}-\left(M_{B}^{2}-M_{\pi}^{2}\right) q^{\mu}}{M_{B}+M_{\pi}} f_{T}\left(q^{2}\right)
$$

for the rare $B^{ \pm} \rightarrow \pi^{ \pm} \ell^{+} \ell^{-}$decay $\quad(1303.6010,1312.2523)$

Simulation data

> Twelve $\left(N_{f}=2+1\right)$ asqtad MILC ensembles; Four lattice spacings
> Full-QCD asqtad staggered light quarks; Fermilab b quark.
> Improvements with respect to FNAL/MILC 20080811.3640

- Increased statistics: 2 X ensembles, $\sim 3 \mathrm{X}$ number of configurations
- Finer lattice spacings: $a_{\text {min }}=0.09 \mathrm{fm} \rightarrow 0.045 \mathrm{fm}$
- Smaller light quark masses: $\left(M_{\pi}=177 \sim 450 \mathrm{MeV}\right)$

$$
\text { Part of FNAL/MILC } 2008
$$

$a(\mathrm{fm})$	$a \hat{m}^{\prime} / a m_{\mathrm{c}}^{\prime}$				
~ 0.12	$0.01 / 0.05$	$20^{3} \times 64$	$4 \times 2259(592) 4.5$	389	
	$0.007 / 0.05$	$20^{3} \times 64$	$4 \times 2110(836) 3.8$	327	
	$0.005 / 0.05$	$24^{3} \times 64$	$4 \times 2099(529) 3.8$	277	
~ 0.09	$0.0062 / 0.031$	$28^{3} \times 96$	$4 \times 1931(557) 4.1$	354	
	$0.00465 / 0.031$	$32^{3} \times 96$	4×984	4.1	307
	$0.0031 / 0.031$	$40^{3} \times 96$	4×1015	4.2	249
	$0.00155 / 0.031$	$64^{3} \times 96$	4×791	4.8	177
~ 0.06	$0.0072 / 0.018$	$48^{3} \times 144$	4×593	6.3	450
	$0.0036 / 0.018$	$48^{3} \times 144$	4×673	4.5	316
	$0.0025 / 0.018$	$56^{3} \times 144$	4×801	4.4	264
	$0.0018 / 0.018$	$64^{3} \times 144$	4×827	4.3	224
~ 0.045	$0.0028 / 0.014$	$64^{3} \times 192$	4×801	4.6	324

Correlator fits

> Use ratios constructed from two- and three-point functions 0811.3640
> Fitting with B-meson excited state to reduce systematic effect

$$
R_{\Gamma}(t) / k_{\Gamma}=f_{\Gamma}^{l a t}\left[1+\mathcal{A}_{\Gamma} e^{-\Delta M_{B}\left(T_{a}-t\right)}\right] \quad \begin{aligned}
& k_{\|}=1 \\
& k_{\perp}=\left|p_{\pi}^{i}\right|
\end{aligned}
$$

Chiral and continuum extrapolation

> We use NLO staggered heavy-light meson $\chi \mathrm{PT}+\mathrm{NNLO}$ analytics terms

$$
\begin{aligned}
f= & f^{(0)\left(c_{0}(1+\operatorname{logs})+c_{1} m_{q, v a l}+c_{3} E_{\pi}+c_{4} E_{\pi}^{2}+\right.} \begin{array}{r}
c_{5} a^{2} \\
\\
\\
\\
\\
\\
\\
\text { Leading order form: } f_{\|}^{(0)}=1 / f_{\pi}, f_{\perp, T}^{(0)}=\left(1 / f_{\pi}\right)\left(g /\left(E_{\pi}+\Delta_{B B^{*}}\right)\right)
\end{array}
\end{aligned}
$$

> Use hard-pion approximation because the external pions are too energetic to satisfy $E_{\pi} \sim M_{\pi} . \quad 1011.6531,1006.1197$
> Use $\mathrm{SU}(2) \chi \mathrm{PT}$ in which the strange sea quark is integrated out. The NNLO SU(3) extrapolation is not stable with the data used: almost identical $m_{s, \text { sea }}$ \rightarrow not able to fit reliably with $m_{s, \text { sea }}$ dependence. A new ensemble with $a \approx 0.12 \mathrm{fm}$, $m_{l} / m_{s}=0.005 / 0.005$ is included to stablize the fit.
> The $B-B^{*}-\pi$ coupling $g_{\pi}=0.45 \pm 0.08$ is from lattice determinations. 1109.2480
> Incorporate HQ discretization effects in the chiral fit 1112.3051

$$
f=f^{(0)}\left[c_{0}\left(1+\operatorname{logs}_{\text {hard }}^{N L O}\right)+\delta f_{\text {analytic }}^{N L O}+\delta f_{\text {analytic }}^{N N L O}\right]\left(1+\delta f^{\mathrm{HQ} \text { disc. }}\right)
$$

Chiral-continuum fit results

chi2/[dof] $=1.1[48]$,pvalue $=0.34$

$\mathrm{a} \approx 0.12 \mathrm{fm} 0.10 \mathrm{~ms}$	
$\mathrm{a} \approx 0.12 \mathrm{fm} 0.14 \mathrm{~ms}$	-
$\mathrm{a} \approx 0.12 \mathrm{fm} 0.20 \mathrm{~ms}$	
$\mathrm{a} \approx 0.09 \mathrm{fm} 0.05 \mathrm{~ms}$	
$\mathrm{a} \approx 0.09 \mathrm{fm} 0.10 \mathrm{~ms}$	
$\mathrm{a} \approx 0.09 \mathrm{fm} 0.15 \mathrm{~ms}$	-
$\mathrm{a} \approx 0.09 \mathrm{fm} 0.20 \mathrm{~ms}$	\checkmark
$\mathrm{a} \approx 0.06 \mathrm{fm} 0.10 \mathrm{~ms}$	-
$\mathrm{a} \approx 0.06 \mathrm{fm} 0.14 \mathrm{~ms}$	-
$\mathrm{a} \approx 0.06 \mathrm{fm} 0.20 \mathrm{~ms}$	\checkmark
$\mathrm{a} \approx 0.06 \mathrm{fm} 0.40 \mathrm{~ms}$	$\stackrel{1}{\square}$
$a \approx 0.045 \mathrm{fm} 0.20 \mathrm{~ms}$	\checkmark
: cont. phys. limit	

Systematic errors

> The NNLO statistical error covers different variations in the chiral and continuum extrapolation. Quote no additional systematic for χ PT.
> All other errors are sub percent and are largely independent of q^{2}.

Error budget at $q^{2}=20 \mathrm{GeV}^{2}$

> The kinematic point $q^{2}=20 \mathrm{GeV}^{2}$ represents the region where the lattice uncertainty and experimental uncertainty are comparable.
Decisive to determine $\left|V_{u b}\right|$.
> The errors in " $\left(\right.$)" are already included in "Statistical $+\chi \mathrm{PT}+\mathrm{HQ}+g_{\pi}$ "

Uncertainty $(\%)$	$\delta f_{+}\left(q^{2}=20\right)$	$\delta f_{0}\left(q^{2}=20\right)$	$\delta f_{T}\left(q^{2}=20\right)$
Statistical $+\chi \mathrm{PT}+\mathrm{HQ}+g_{\pi}$	2.7	3.2	3.2
(NLO $\chi \mathrm{PT})$	(1.1)	(0.6)	(0.8)
(Heavy quark discretization)	(<1.5)	(<1.5)	(<1.5)
(Coupling $\left.g_{B B^{*} \pi}\right)$	(0.5)	(0.7)	(0.5)
Scale r_{1}	0.6	0.7	0.7
Non-perturbative $Z_{V}^{b b}$	0.4	0.5	0.5
Non-perturbative $Z_{V}^{q q}$	0.2	0.2	0.2
Perturbative ρ	1.0	1.0	1.0
Heavy b quark mass mistuning	0.5	0.7	0.6
Light quark mass tuning	0.1	0.2	0.2
Total	3.0	3.4	3.5

Error budget for f_{+}

Extrapolation in $q^{2}:$ z-expansion

> Use model-independent expansion in parameter z to extrapolate to full kinematic range. hep-ph/9702300
> Use Bourrely-Caprini-Lellouch (BCL) formulae, which have the right asymptotic at high q^{2} and threshold) 0807.2722

$$
\begin{aligned}
f_{+, T}(z) & =\frac{1}{1-t(z) / t_{*}} \sum_{n=0}^{N_{z}-1} b_{n}\left[z^{n}-(-1)^{n-N_{z}} \frac{n}{N_{z}} z^{N_{z}}\right] \\
f_{0}(z) & =\sum_{n=0}^{N_{z}} b_{n} z^{n}
\end{aligned}
$$

$$
\begin{array}{r}
t=q^{2}, \\
t_{*}=M_{B^{*}}^{2}
\end{array}
$$

> Functional z-expansion:
Advantage over synthetic data point method: d.o.f $\approx \#$ of independent functions in $f^{\chi P T}$ instead of arbitrary \# of synthetic points \rightarrow correct correlation.
Covariance function $K_{f}\left(z, z^{\prime}\right)=\left\langle\delta f^{\chi P T}(z) \delta f^{\chi P T}\left(z^{\prime}\right)\right\rangle$ can be uniquely diagonalized in a basis $\left\{\psi_{i}(z)\right\}$.

$$
\begin{array}{rlrl}
\chi^{2} & =\int_{z_{1}}^{z_{2}} d z \int_{z_{1}}^{z_{2}} d z^{\prime}\left[f^{\chi^{P T}}(z)-f^{B C L}(z)\right] K_{f}^{-1}\left(z, z^{\prime}\right)\left[f^{\chi P T}\left(z^{\prime}\right)-f^{B C L}\left(z^{\prime}\right)\right], \\
& =\sum_{i}\left(1 / \lambda_{i}\right)\left[\int_{z_{1}}^{z_{2}}\left[f^{\chi P T}(z)-f^{B C L}(z)\right] \psi_{i}(z)\right]^{2} & K_{f}\left(z, z^{\prime}\right)=\sum_{i} \lambda_{i} \psi_{i}(z) \psi_{i}\left(z^{\prime}\right)
\end{array}
$$

Minimizing χ^{2} to find expansion coefficients b_{n}.

Extrapolation in $q^{2}: z$-fit results

> Fit to $N_{z}=4$ order
$>$ Constraints with log normal distribution on $\sum_{i j} B_{i j} b_{i} b_{j}$
> Kinematic constraint on $f_{0,+}$:

$$
f_{0}\left(q^{2}=0\right)=f_{+}\left(q^{2}=0\right)
$$

Extrapolation in q^{2} : compared to previous results

Determination of $\left|V_{u b}\right|$

Summary and outlook

$>$ We are updating our previous result (from 2008) for the $B \rightarrow \pi \ell v$ semileptonic form factors. We also calculate the tensor form factor which is needed to predict the rare decay $B^{ \pm} \rightarrow \pi^{ \pm} \ell^{+} \ell^{-}$(in progress).
> We use a new functional method to implement the z-expansion.
> We combine the lattice result (normalization blinded) for the form factors with experimental measurements to determine $\left|V_{u b}\right|$.

Fit	$\overline{\chi^{2}}[\mathrm{dof}]$	p -value	b_{0}	b_{1}	b_{2}	b_{3}	$\left\|V_{u b}\right\|$ error
Lattice only	$0.62[3]$	0.6	$0.410(12)$	$-0.69(12)$	$-0.54(94)$	$0.33(150)$	-
Exp. only(BaBar 10,12+Belle 11,13)	$1.1[51]$	0.32	$0.397(12)$	$-0.42(14)$	$-0.72(52)$	-	-
All (exp. + lattice)	$1.1[53]$	0.27	$0.417(11)$	$-0.580(53)$	$-0.30(12)$	$0.58(29)$	4.1%

> The error for $\left|V_{u b}\right|$ is 4.1\%, compared to the result of using FNAL/MILC 2008 analysis: $\left|V_{u b}\right|=(3.28 \pm 0.29) \times 10^{-3}(8.8 \%)$.
$>$ We are also working on the $B_{S} \rightarrow K \ell v$ semileptonic form factors (Y. Liu, 1312.3197) which provides an another exclusive determination of $\left|V_{u b}\right|$. The work is in progress.

Thank you

Backup: Experimental results

> Experimental observable is the differential branching fraction

$$
\begin{aligned}
& \quad \frac{\Delta \mathcal{B}}{\Delta q^{2}} \sim \frac{d \mathcal{B}}{d q^{2}}=\tau_{B} \frac{d \Gamma}{d q^{2}}=\frac{\tau_{B} G_{F}^{2}}{192 \pi^{3} M_{B}^{3}}\left|V_{u b}\right|^{2}\left|\vec{p}\left(q^{2}\right)\right|^{3}\left|f_{+}\left(q^{2}\right)\right|^{2} \\
& \quad \text { Define an intermediate variable } \equiv \boldsymbol{C}_{\boldsymbol{\tau}_{\boldsymbol{B}}}^{2}
\end{aligned}
$$

$$
\mathcal{D}=\frac{1}{C_{\tau}} \sqrt{\frac{\Delta \mathcal{B}}{\Delta q^{2}}} \sim\left|V_{u b} \| \vec{p}\left(q^{2}\right)\right|^{3 / 2} f_{+}\left(q^{2}\right)
$$

BaBar 2010 (1208.1253)
Untagged
Belle 2011 (1208.1253)
Untagged
BaBar 2012 (1208.1253)
untagged
Belle 2013 (1306.2781)
Hadronic tagged
Sys. correlation between B^{0} and B^{-}
final state radiation removed

Backup: Combining lattice and experiments

> Adding the experimental data to the fit
> Combine lattice and experiments

$$
\chi^{2}=\chi_{\text {Lat }}^{2}+\chi_{B a B a r}^{2}+\chi_{\text {Belle }}^{2}
$$

