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D-meson mixing phenomenology 
Short distance Long distance 

• Strange and down are GIM suppressed. 

• Bottom is 𝑉𝑢𝑏𝑉𝑐𝑏
∗ 2 suppressed. 

• Described by two flavors in the SM. 
This implies that D mixing has no CP 
violation in the SM. 

• HFAG 2013: 
 

 

 

 

• SM short distance estimate:  

𝑥 = 0.419 ± 0.211 % 
𝑦 = 0.465 ± 0.186 % 

CLEO, Belle, BaBar 

[Golowich & Petrov, hep-ph/0506185v1] w/ 
quenched lattice 

• Effects not well understood 

• Possibly the dominant contribution 
in the Standard Model. 

• Lattice vs. long distance diagrams: 

– Disconnected diagrams 

– Many contributions from 
different intermediate states 

– Multi-particle intermediate 
states 
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Motivation 

• New physics enhancements enter with short distance 
contributions. 

• Charm community interested in unquenched matrix 
elements for model discrimination. [Golowich et al., 0705.3650] 

• Strong effort from many experiments, with work coming 
from LHCb, Belle II, BES III. 

 

• Gold plated process. 
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D-meson mixing overview 

Effective mixing Hamiltonian 

4-quark operators 
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MILC 2+1 asqtad ensembles 

 Four lattice spacings 𝑎 ← continuum extrapolation 
 Lattice size m𝜋𝐿 ∼ 4 ← negligible finite volume effects 
 Several light sea-quarks 𝑎𝑚𝑙 ← sea quark chiral extrapolation 
 Multiple light valence-quarks 𝑎𝑚𝑞 ← valence chiral extrapolation 
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Lattice actions: Staggered light sea & valence, Fermilab clover charm 



D-meson lattice operators 

Two- and three-point correlators 

Correlators 

Fit functions 

Jason Chia Cheng Chang 6 



Fit regions 

 Data reduction 
 Keep important 

correlations 
 Large ground state 

contribution 
 Use 𝑡1 = 𝑡2 ±1  
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Bidiagonal correlator fits 

 Stable. 
 Data reduction minimizes 

systematic errors. 
 ∼ 1% precision 
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Renormalization and matching 

 One-loop matching from lattice to continuum with 1-loop 
tadpole-improved action. [Lepage & Mackenzie, hep-lat/9209022] 

 Match lattice regularization to dimensional regularization 
with the 𝑀𝑆 scheme at the charm quark scale. 

Example for O1:  
 
 
 
 
 Match lattice charm-quark action to continuum HQET 

through 𝑂 𝑎 . 
Wilson action improved by Clover term. 
Operator improved by heavy quark rotation. 
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Heavy quark discretization errors 

Heavy quark effective theory describes 
 
 
 
 
 
 
 
HQ discretization errors start at 𝒪 𝑎2, 𝛼𝑠𝑎 . 
 
 
Include 𝒪 𝑎2, 𝛼𝑠𝑎  errors with functions as given above with 
unknown coefficients that are determined in the chiral fit. 
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SU(3) PQrSHM𝜒PT simultaneous fits 
Chiral and continuum extrapolation achieved through: 
SU(3) partially quenched rooted staggered heavy meson 𝜒PT 

NLO wrong spin, taste mixing effects. 
Leading order LECs mix at NLO. 
Simultaneous fits: 𝒪1, 𝒪2, 𝒪3  and 𝒪4, 𝒪5  
 
Fits with NLO chiral logs + (N)NLO analytic terms. 
 
Benefits of simultaneous fits: 
 Correlations between data sets preserved. 
 Consistent values for all (Bayesian) fit parameters across 

SM/BSM fits. 
 

𝐷 0 𝒪𝑁 𝐷0 = 𝛽𝑁 1 + logs +W.S. logs 𝛽𝑀/𝛽𝑁 +analytic terms 
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Chiral-continuum extrapolation 

Preliminary 
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Chiral-continuum fit variations 
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Complete error estimation 

 Statistical 
 𝜒PT contribution 

 Chiral logs (LO LECs, input errors) 
 Light quark discretization 
 Analytic LECs 

 Heavy quark discretization error 
 Charm-quark mass tuning error 
 Renormalization and matching error 
 Light quark mass uncertainties 
 Finite volume effects 

 

Chiral fit function 

Covariance matrix includes statistical and systematic errors. 

+ in quadrature 
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Error breakdown 

Preliminary 
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Preliminary results 

Preliminary error budget 
 
 
 
 
 
 
 
 
 
Remaining tasks: 
Account for renormalization and matching error. 
Account for finite-volume corrections. 
Report bag parameters. 
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Thank you 
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3pt exploratory correlator fits 
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Correlator fits 

Large time slices  dominantly ground state signal 
Ground state parameters expected to be insensitive to tmax 
*tmax fits vary both data size and fit region 

Expected tmax stability plot Surprising systematic trend 

Show bidiagonal fits 
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Random sampling procedure 

Procedure 
1) Take fixed triangle region 
2) Randomly sample m points 
3) Repeat O(100) times to average 

out statistical variations.* 
4) Plot stability plot vs m 
*Observed that the standard 
deviation of repeated samples are 
much smaller than statistical error. 

 
Goal 
Produce fits with varying data size 
but fixed fit region. 
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Random sampling result 

Unstable Stable 

Insights 
Clear trend at large values of m. 
Suggests data reduction. 
 bidiagonal fits 
Advantages of bidiagonal fits: 
 Data reduction into stable region. 
 Keeps important correlations. 

(Signal from both parity states). 
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