Matrix elements for D-meson mixing from 2+1 lattice QCD

Jason Chia Cheng Chang [Fermilab Lattice and MILC Collaboration]
University of Illinois at Urbana-Champaign
Claude Bernard, Chris Bouchard, Aida El-Khadra, Elizabeth Freeland,
Elvira Gamiz, Andreas Kronfeld, John Laiho, Ruth Van de Water
Lattice 2014, Columbia University
D-meson mixing phenomenology

Short distance

- Strange and down are **GIM suppressed**.
- Bottom is $|V_{ub}V_{cb}^*|^2$ suppressed.
- Described by two flavors in the SM. This implies that D mixing has no CP violation in the SM.

HFAG 2013: CLEO, Belle, BaBar

\[
\begin{align*}
x &= (0.419 \pm 0.211)\% \\
y &= (0.465 \pm 0.186)\%
\end{align*}
\]

SM short distance estimate:

\[
x \sim y \sim 10^{-4}\%
\]

Long distance

- Effects not well understood
- Possibly the dominant contribution in the Standard Model.

Lattice vs. long distance diagrams:

- Disconnected diagrams
- Many contributions from different intermediate states
- Multi-particle intermediate states

Jason Chia Cheng Chang
Motivation

• **New physics** enhancements enter with short distance contributions.

• Charm community interested in unquenched matrix elements for **model discrimination**. [Golowich et al., 0705.3650]

• Strong effort from many **experiments**, with work coming from LHCb, Belle II, BES III.

• **Gold plated** process.
D-meson mixing overview

Effective mixing Hamiltonian

\[
M_{12} - \frac{i}{2} \Gamma_{12} = \sum_i C_i^{(2)} \left< \bar{D}^0 \left| O_i^{\Delta c = 2} \right| D^0 \right>
\]

\[
+ \sum_{f; jk} \frac{C_j^{(1)} C_k^{(1)} \left< \bar{D}^0 \left| O_j^{\Delta c = 1} \right| f \right> \left< f \left| O_k^{\Delta c = 1} \right| D^0 \right>}{E_f - M_{D^0} + i\epsilon}
\]

4-quark operators

\(O_1 = \bar{c}^\alpha \gamma^\mu Lu^\alpha \bar{c}^\beta \gamma^\mu L u^\beta\)

\(O_2 = \bar{c}^\alpha Lu^\alpha \bar{c}^\beta L u^\beta\)

\(O_3 = \bar{c}^\alpha Lu^\beta \bar{c}^\beta L u^\alpha\)

\(O_4 = \bar{c}^\alpha Lu^\alpha \bar{c}^\beta Ru^\beta\)

\(O_5 = \bar{c}^\alpha Lu^\beta \bar{c}^\beta Ru^\alpha\)

Jason Chia Cheng Chang
MILC 2+1 asqtad ensembles

Lattice actions: Staggered light sea & valence, Fermilab clover charm

<table>
<thead>
<tr>
<th>$a(fm)$</th>
<th>$(\frac{L}{a})^3 \times \frac{T}{a}$</th>
<th>m_l/m_s</th>
<th>m_π(MeV)</th>
<th>am_q</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.12</td>
<td>$24^3 \times 64$</td>
<td>0.1</td>
<td>269</td>
<td>0.0050, 0.0070, 0.0100, 0.0200, 0.0300, 0.0349, 0.0415, 0.0500</td>
</tr>
<tr>
<td>0.12</td>
<td>$20^3 \times 64$</td>
<td>0.14</td>
<td>326</td>
<td>0.0050, 0.0070, 0.0100, 0.0200, 0.0300, 0.0349, 0.0415, 0.0500</td>
</tr>
<tr>
<td>0.12</td>
<td>$20^3 \times 64$</td>
<td>0.2</td>
<td>390</td>
<td>0.0050, 0.0070, 0.0100, 0.0200, 0.0300, 0.0349, 0.0415, 0.0500</td>
</tr>
<tr>
<td>0.12</td>
<td>$20^3 \times 64$</td>
<td>0.4</td>
<td>559</td>
<td>0.0050, 0.0070, 0.0100, 0.0200, 0.0300, 0.0349, 0.0415, 0.0500</td>
</tr>
<tr>
<td>0.09</td>
<td>$64^3 \times 96$</td>
<td>0.05</td>
<td>177</td>
<td>0.00155, 0.0031, 0.0062, 0.0093, 0.0124, 0.0261, 0.0310</td>
</tr>
<tr>
<td>0.09</td>
<td>$40^3 \times 96$</td>
<td>0.1</td>
<td>246</td>
<td>0.0031, 0.0047, 0.0062, 0.0093, 0.0124, 0.0261, 0.0310</td>
</tr>
<tr>
<td>0.09</td>
<td>$32^3 \times 96$</td>
<td>0.14</td>
<td>307</td>
<td>0.0031, 0.0047, 0.0062, 0.0093, 0.0124, 0.0261, 0.0310</td>
</tr>
<tr>
<td>0.09</td>
<td>$28^3 \times 96$</td>
<td>0.2</td>
<td>356</td>
<td>0.0031, 0.0047, 0.0062, 0.0093, 0.0124, 0.0261, 0.0310</td>
</tr>
<tr>
<td>0.09</td>
<td>$28^3 \times 96$</td>
<td>0.4</td>
<td>508</td>
<td>0.0031, 0.0047, 0.0062, 0.0093, 0.0124, 0.0261, 0.0310</td>
</tr>
<tr>
<td>0.06</td>
<td>$64^3 \times 144$</td>
<td>0.1</td>
<td>224</td>
<td>0.0018, 0.0025, 0.0036, 0.0054, 0.0072, 0.0160, 0.0188</td>
</tr>
<tr>
<td>0.06</td>
<td>$56^3 \times 144$</td>
<td>0.14</td>
<td>265</td>
<td>0.0018, 0.0025, 0.0036, 0.0054, 0.0072, 0.0160, 0.0188</td>
</tr>
<tr>
<td>0.06</td>
<td>$48^3 \times 144$</td>
<td>0.2</td>
<td>318</td>
<td>0.0018, 0.0025, 0.0036, 0.0054, 0.0072, 0.0160, 0.0188</td>
</tr>
<tr>
<td>0.06</td>
<td>$48^3 \times 144$</td>
<td>0.4</td>
<td>452</td>
<td>0.0018, 0.0025, 0.0036, 0.0054, 0.0072, 0.0160, 0.0188</td>
</tr>
<tr>
<td>0.045</td>
<td>$64^3 \times 192$</td>
<td>0.2</td>
<td>324</td>
<td>0.0018, 0.0028, 0.0040, 0.0056, 0.0084, 0.0130, 0.0160</td>
</tr>
</tbody>
</table>

- **Four lattice spacings** $a \leftarrow$ continuum extrapolation
- **Lattice size** $m_\pi L \sim 4 \leftarrow$ negligible finite volume effects
- **Several light sea-quarks** $am_l \leftarrow$ sea quark chiral extrapolation
- **Multiple light valence-quarks** $am_q \leftarrow$ valence chiral extrapolation
Two- and three-point correlators

D-meson lattice operators

\[\chi_{D^0}(x) = \bar{u}\gamma_5 c(x) \]
\[\chi_{\bar{D}^0}(x) = \bar{c}\gamma_5 u(x) \]

Correlators

\[C_{2pt}^{2pt}(x, 0) = \left\langle T \left\{ \chi^0(x) \chi^0(0) \right\} \right\rangle \]
\[C_{3pt}^{3pt}(x_1, x_2, 0) = \left\langle T \left\{ \chi^0(x_2) \mathcal{O}_N(0) \chi^0(x_1) \right\} \right\rangle \]

Fit functions

\[C_{2pt}^{2pt}(t) = \sum_n (-1)^{n(t+1)} \frac{|Z_n|^2}{2E_n} \left(e^{-E_n t} + e^{-E_n (T-t)} \right) \]
\[C_{3pt}^{3pt}(t_2, t_1) = \sum_{m,n} (-1)^{n(t_2+1)} (-1)^{m(|t_1|+1)} \langle n | \mathcal{O}_i | m \rangle \frac{Z_n^\dagger Z_m}{4E_n E_m} e^{-E_n t_2} e^{-E_m |t_1|} + \mathcal{O}(e^{-ET}) \]
Fit regions

- Data reduction
- Keep important correlations
- Large ground state contribution
- Use $|t_1| = t_2(\pm 1)$
Bidiagonal correlator fits

- Stable.
- Data reduction minimizes systematic errors.
- \(\sim 1\% \) precision
Renormalization and matching

- One-loop matching from lattice to continuum with 1-loop tadpole-improved action. [Lepage & Mackenzie, hep-lat/9209022]
- Match lattice regularization to dimensional regularization with the \overline{MS} scheme at the charm quark scale.

Example for O1:

$$\langle O_1 \rangle_{\overline{MS}} = (1 + \alpha_s \rho_{11}) \langle O_1 \rangle_{\text{lat}} + \alpha_s \rho_{12} \langle O_2 \rangle_{\text{lat}} + \mathcal{O} \left(\alpha_s^2, \alpha_s \frac{\Lambda_{\text{QCD}}}{M} \right)$$

- Match lattice charm-quark action to continuum HQET through $O(\alpha)$.
 Wilson action improved by Clover term.
 Operator improved by heavy quark rotation.
Heavy quark discretization errors

Heavy quark effective theory describes

$$\mathcal{L}_{\text{QCD}} = \mathcal{L}_{\text{HQET}} = \sum_i C_i^{\text{cont}}(m_Q) \mathcal{O}_i$$

$$\mathcal{L}_{\text{lat}} = \mathcal{L}_{\text{HQET}(m_0 a)} = \sum_i C_i^{\text{lat}}(m_Q, m_0 a) \mathcal{O}_i$$

$$\text{error}_i = \left| \left[C_i^{\text{lat}}(m_Q, m_0 a) - C_i^{\text{cont}}(m_Q) \right] \mathcal{O}_i \right|$$

HQ discretization errors start at $O(a^2, \alpha_s a)$.

Include $O(a^2, \alpha_s a)$ errors with functions as given above with unknown coefficients that are determined in the chiral fit.
SU(3) PQrSHMχPT simultaneous fits

Chiral and continuum extrapolation achieved through:
SU(3) partially quenched rooted staggered heavy meson χPT

\[\langle \bar{D}^0 | \mathcal{O}_N | D^0 \rangle = \beta_N \left(1 + \text{logs} + \text{W.S. logs} \left(\beta_M / \beta_N \right) \right) + \text{analytic terms} \]

NLO wrong spin, taste mixing effects.

\[\rightarrow \text{Leading order LECs mix at NLO.} \]

\[\rightarrow \text{Simultaneous fits: } \{\mathcal{O}_1, \mathcal{O}_2, \mathcal{O}_3\} \text{ and } \{\mathcal{O}_4, \mathcal{O}_5\} \]

Fits with NLO chiral logs + (N)NLO analytic terms.

Benefits of simultaneous fits:
- Correlations between data sets preserved.
- Consistent values for all (Bayesian) fit parameters across SM/BSM fits.
Chiral-continuum extrapolation

O4 chiral-continuum extrapolation

O4 matrix element (r1 units)

valence mass (r1 units)

Preliminary

Jason Chia Cheng Chang
Chiral-continuum fit variations

O4 chiral-continuum stability plot

- no 0.045fm
- no 0.12fm
- fpi -> fk
- No hf split
- min. NNLO
- NNNLO
- ind. fit
- preferred fit

O4 matrix element at physical point (r1 units)
Complete error estimation

- Statistical
- χPT contribution
 - Chiral logs (LO LECs, input errors)
 - Light quark discretization
 - Analytic LECs
- Heavy quark discretization error
- Charm-quark mass tuning error
- Renormalization and matching error
- Light quark mass uncertainties
- Finite volume effects

Covariance matrix includes statistical and systematic errors.

Chiral fit function + in quadrature
Error breakdown

O4 error breakdown

Preliminary
Preliminary results

Preliminary error budget

<table>
<thead>
<tr>
<th>Percent errors (%)</th>
<th>O_1</th>
<th>O_2</th>
<th>O_3</th>
<th>O_4</th>
<th>O_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical</td>
<td>2.1</td>
<td>2.5</td>
<td>2.2</td>
<td>1.5</td>
<td>2.8</td>
</tr>
<tr>
<td>Chiral logs</td>
<td>0.6</td>
<td>1.0</td>
<td>0.7</td>
<td>0.5</td>
<td>1.2</td>
</tr>
<tr>
<td>Analytic LECs</td>
<td>1.8</td>
<td>1.3</td>
<td>1.0</td>
<td>1.2</td>
<td>1.7</td>
</tr>
<tr>
<td>LQ disc.</td>
<td>0.5</td>
<td>0.3</td>
<td>0.1</td>
<td>0.3</td>
<td>0.8</td>
</tr>
<tr>
<td>HQ disc.</td>
<td>2.8</td>
<td>1.9</td>
<td>2.0</td>
<td>2.2</td>
<td>2.9</td>
</tr>
<tr>
<td>LQ mass</td>
<td>0.5</td>
<td>0.7</td>
<td>0.4</td>
<td>1.3</td>
<td>0.6</td>
</tr>
<tr>
<td>HQ tuning</td>
<td>1.2</td>
<td>1.4</td>
<td>0.7</td>
<td>1.2</td>
<td>0.9</td>
</tr>
<tr>
<td>Combined (missing renorm & F.V.)</td>
<td>4.2</td>
<td>4.9</td>
<td>3.3</td>
<td>3.4</td>
<td>4.8</td>
</tr>
</tbody>
</table>

Remaining tasks:

- Account for renormalization and matching error.
- Account for finite-volume corrections.
- Report bag parameters.
Thank you
3pt exploratory correlator fits
Correlator fits

Large time slices → dominantly ground state signal
Ground state parameters expected to be insensitive to tmax
*tmax fits vary both data size and fit region

Expected tmax stability plot

Surprising systematic trend

Show bidiagonal fits
Random sampling procedure

Procedure

1) Take fixed triangle region
2) Randomly sample m points
3) Repeat $O(100)$ times to average out statistical variations.*
4) Plot stability plot vs m

*Observed that the standard deviation of repeated samples are much smaller than statistical error.

Goal

Produce fits with varying data size but fixed fit region.
Random sampling result

Insights
Clear trend at large values of m. Suggests data reduction.

→ bidiagonal fits

Advantages of bidiagonal fits:
- Data reduction into stable region.
- Keeps important correlations.
 (Signal from both parity states).