# Matrix elements for D-meson mixing from 2+1 lattice QCD

Jason Chia Cheng Chang [Fermilab Lattice and MILC Collaboration] University of Illinois at Urbana-Champaign Claude Bernard, Chris Bouchard, Aida El-Khadra, Elizabeth Freeland, Elvira Gamiz, Andreas Kronfeld, John Laiho, Ruth Van de Water Lattice 2014, Columbia University

## D-meson mixing phenomenology

### Short distance



- Strange and down are GIM suppressed.
- Bottom is  $|V_{ub}V_{cb}^*|^2$  suppressed.
- Described by two flavors in the SM.
   This implies that D mixing has no CP violation in the SM.
- HFAG 2013: CLEO, Belle, BaBar  $x = (0.419 \pm 0.211)\%$  $y = (0.465 \pm 0.186)\%$
- SM short distance estimate:

 $x \sim y \sim 10^{-4}\%$ 

[Golowich & Petrov, hep-ph/0506185v1] w/ quenched lattice Jason Chia Cheng Chang

### Long distance



- Effects not well understood
- Possibly the dominant contribution in the Standard Model.
- Lattice vs. long distance diagrams:
  - Disconnected diagrams
  - Many contributions from different intermediate states
  - Multi-particle intermediate states

## Motivation

- **New physics** enhancements enter with short distance contributions.
- Charm community interested in unquenched matrix elements for model discrimination. [Golowich et al., 0705.3650]
- Strong effort from many **experiments**, with work coming from LHCb, Belle II, BES III.
- Gold plated process.

### D-meson mixing overview

**Effective mixing Hamiltonian** 

$$M_{12} - \frac{i}{2}\Gamma_{12} = \sum_{i} C_{i}^{(2)} \left\langle \bar{D}^{0} \left| \mathcal{O}_{i}^{\Delta_{c}=2} \right| D^{0} \right\rangle$$
$$+ \sum_{f;jk} \frac{C_{j}^{(1)}C_{k}^{(1)} \left\langle \bar{D}^{0} \left| \mathcal{O}_{j}^{\Delta_{c}=1} \right| f \right\rangle \left\langle f \left| \mathcal{O}_{k}^{\Delta_{c}=1} \right| D^{0} \right\rangle}{E_{f} - M_{D^{0}} + i\epsilon}$$

#### **4-quark operators**

 $\mathcal{O}_{1} = \bar{c}^{\alpha} \gamma^{\mu} L u^{\alpha} \bar{c}^{\beta} \gamma^{\mu} L u^{\beta}$  $\mathcal{O}_{2} = \bar{c}^{\alpha} L u^{\alpha} \bar{c}^{\beta} L u^{\beta}$  $\mathcal{O}_{3} = \bar{c}^{\alpha} L u^{\beta} \bar{c}^{\beta} L u^{\alpha}$  $\mathcal{O}_{4} = \bar{c}^{\alpha} L u^{\alpha} \bar{c}^{\beta} R u^{\beta}$  $\mathcal{O}_{5} = \bar{c}^{\alpha} L u^{\beta} \bar{c}^{\beta} R u^{\alpha}$ 

 $D^{0} \qquad W \qquad \qquad W \qquad \qquad D^{0} \qquad \qquad W \qquad \qquad D^{0} \qquad \qquad U \qquad \qquad U \qquad \qquad D^{0} \qquad \qquad U \qquad$ 

Jason Chia Cheng Chang

## MILC 2+1 asqtad ensembles

#### Lattice actions: Staggered light sea & valence, Fermilab clover charm

| a(fm) | $\left(\frac{L}{a}\right)^3 \times \frac{T}{a}$ | $m_l/m_s$ | $m_{\pi}(\text{MeV})$ | $am_q$                                                         |
|-------|-------------------------------------------------|-----------|-----------------------|----------------------------------------------------------------|
| 0.12  | $24^3 \times 64$                                | 0.1       | 269                   | 0.0050, 0.0070, 0.0100, 0.0200, 0.0300, 0.0349, 0.0415, 0.0500 |
| 0.12  | $20^3 \times 64$                                | 0.14      | 326                   | 0.0050, 0.0070, 0.0100, 0.0200, 0.0300, 0.0349, 0.0415, 0.0500 |
| 0.12  | $20^3 \times 64$                                | 0.2       | 390                   | 0.0050, 0.0070, 0.0100, 0.0200, 0.0300, 0.0349, 0.0415, 0.0500 |
| 0.12  | $20^3 \times 64$                                | 0.4       | 559                   | 0.0050, 0.0070, 0.0100, 0.0200, 0.0300, 0.0349, 0.0415, 0.0500 |
| 0.09  | $64^3 \times 96$                                | 0.05      | 177                   | 0.00155, 0.0031, 0.0062, 0.0093, 0.0124, 0.0261, 0.0310        |
| 0.09  | $40^3 \times 96$                                | 0.1       | 246                   | 0.0031, 0.0047, 0.0062, 0.0093, 0.0124, 0.0261, 0.0310         |
| 0.09  | $32^3 \times 96$                                | 0.14      | 307                   | 0.0031, 0.0047, 0.0062, 0.0093, 0.0124, 0.0261, 0.0310         |
| 0.09  | $28^3 \times 96$                                | 0.2       | 356                   | 0.0031, 0.0047, 0.0062, 0.0093, 0.0124, 0.0261, 0.0310         |
| 0.09  | $28^3 \times 96$                                | 0.4       | 508                   | 0.0031, 0.0047, 0.0062, 0.0093, 0.0124, 0.0261, 0.0310         |
| 0.06  | $64^3 \times 144$                               | 0.1       | 224                   | 0.0018, 0.0025, 0.0036, 0.0054, 0.0072, 0.0160, 0.0188         |
| 0.06  | $56^3 \times 144$                               | 0.14      | 265                   | 0.0018, 0.0025, 0.0036, 0.0054, 0.0072, 0.0160, 0.0188         |
| 0.06  | $48^{3} \times 144$                             | 0.2       | 318                   | 0.0018, 0.0025, 0.0036, 0.0054, 0.0072, 0.0160, 0.0188         |
| 0.06  | $48^3 \times 144$                               | 0.4       | 452                   | 0.0018, 0.0025, 0.0036, 0.0054, 0.0072, 0.0160, 0.0188         |
| 0.045 | $64^3 \times 192$                               | 0.2       | 324                   | 0.0018, 0.0028, 0.0040, 0.0056, 0.0084, 0.0130, 0.0160         |

• Four lattice spacings  $a \leftarrow$  continuum extrapolation

• Lattice size  $m_{\pi}L \sim 4 \leftarrow$  negligible finite volume effects

Several light sea-quarks  $am_l \leftarrow$  sea quark chiral extrapolation

Multiple light valence-quarks  $am_q \leftarrow$  valence chiral extrapolation Jason Chia Cheng Chang

## Two- and three-point correlators

D-meson lattice operators  $\chi_{D^0}(x) = \bar{u}\gamma_5 c(x)$  $\chi_{\bar{D}^0}(x) = \bar{c}\gamma_5 u(x)$ 

#### Correlators

$$C^{2pt}(x,0) = \left\langle T\left\{ \bar{\chi}^{0}(x) \,\chi^{0}(0) \right\} \right\rangle \underbrace{t = t_{1}}_{V_{1}}$$
$$C^{3pt}_{N}(x_{1},x_{2},0) = \left\langle T\left\{ \chi^{0}(x_{2}) \,\mathcal{O}_{N}(0) \,\chi^{0}(x_{1}) \right\} \right\rangle$$

### **Fit functions**

$$C^{2pt}(t) = \sum_{n} (-1)^{n(t+1)} \frac{|Z_n|^2}{2E_n} \left( e^{-E_n t} + e^{-E_n(T-t)} \right)$$

$$C^{3pt}(t_2, t_1) = \sum_{m,n} (-1)^{n(t_2+1)} (-1)^{m(|t_1|+1)} \frac{\langle n | \mathcal{O}_i | m \rangle Z_n^{\dagger} Z_m}{4E_n E_m} e^{-E_n t_2} e^{-E_m |t_1|}$$

$$+ \mathcal{O}\left( e^{-ET} \right)$$

Jason Chia Cheng Chang

 $\bar{D}^0$ 

 $l \mathfrak{I} \mathfrak{I}$ 

 $\mathcal{O}_N$ 

## Fit regions

### D-meson three-point relative error (%)



- Data reduction
- Keep important correlations
- Large ground state contribution
- Use  $|t_1| = t_2(\pm 1)$

## **Bidiagonal correlator fits**



## **Renormalization and matching**

- One-loop matching from lattice to continuum with 1-loop tadpole-improved action. [Lepage & Mackenzie, hep-lat/9209022]
- Match lattice regularization to dimensional regularization with the MS scheme at the charm quark scale.
   Example for O1:

$$\left\langle \mathcal{O}_{1} \right\rangle^{\overline{\mathrm{MS}}} = \left(1 + \alpha_{s} \rho_{11}\right) \left\langle \mathcal{O}_{1} \right\rangle^{\mathrm{lat}} + \alpha_{s} \rho_{12} \left\langle \mathcal{O}_{2} \right\rangle^{\mathrm{lat}} + \mathcal{O}\left(\alpha_{s}^{2}, \alpha_{s} \frac{\Lambda_{\mathrm{QCD}}}{M}\right)$$

 Match lattice charm-quark action to continuum HQET through O(a).

Wilson action improved by Clover term.

Operator improved by heavy quark rotation.

### Heavy quark discretization errors

Heavy quark effective theory describes

$$\mathcal{L}_{\text{QCD}} \doteq \mathcal{L}_{\text{HQET}} = \sum_{i} C_{i}^{\text{cont}}(m_{Q})\mathcal{O}_{i}$$
$$\mathcal{L}_{\text{lat}} \doteq \mathcal{L}_{\text{HQET}(m_{0}a)} = \sum_{i} C_{i}^{\text{lat}}(m_{Q}, m_{0}a)\mathcal{O}_{i}$$
$$\text{error}_{i} = \left| \left[ C_{i}^{\text{lat}}(m_{Q}, m_{0}a) - C_{i}^{\text{cont}}(m_{Q}) \right] \mathcal{O}_{i} \right|$$

HQ discretization errors start at  $\mathcal{O}(a^2, \alpha_s a)$ .

Include  $\mathcal{O}(a^2, \alpha_s a)$  errors with functions as given above with unknown coefficients that are determined in the chiral fit.

# SU(3) PQrSHM $\chi$ PT simultaneous fits

Chiral and continuum extrapolation achieved through: SU(3) partially quenched rooted staggered heavy meson  $\chi$ PT  $\langle \overline{D}^0 | \mathcal{O}_N | D^0 \rangle = \beta_N (1 + \log s + W.S. \log (\beta_M / \beta_N)) + analytic terms$ 

NLO wrong spin, taste mixing effects.  $\rightarrow$  Leading order LECs mix at NLO.  $\rightarrow$  Simultaneous fits: { $\mathcal{O}_1, \mathcal{O}_2, \mathcal{O}_3$ } and { $\mathcal{O}_4, \mathcal{O}_5$ }

Fits with NLO chiral logs + (N)NLO analytic terms.

Benefits of simultaneous fits:

- Correlations between data sets preserved.
- Consistent values for all (Bayesian) fit parameters across SM/BSM fits.
   Jason Chia Cheng Chang

## **Chiral-continuum extrapolation**



## **Chiral-continuum fit variations**



## **Complete error estimation**

| Statistical                                             |                     |
|---------------------------------------------------------|---------------------|
| $\chi$ PT contribution                                  |                     |
| <ul> <li>Chiral logs (LO LECs, input errors)</li> </ul> |                     |
| <ul> <li>Light quark discretization</li> </ul>          |                     |
| <ul> <li>Analytic LECs</li> </ul>                       |                     |
| Heavy quark discretization error                        |                     |
| Charm-quark mass tuning error                           |                     |
| Renormalization and matching error                      | Chiral fit function |
| Light quark mass uncertainties                          |                     |
| Finite volume effects                                   | + in quadrature     |
|                                                         |                     |

Covariance matrix includes statistical and systematic errors.

## Error breakdown



## **Preliminary results**

#### **Preliminary** error budget

| Percent errors $(\%)$ | $ \mathcal{O}_1 $ | $\mathcal{O}_2$ | $\mathcal{O}_3$ | $\mathcal{O}_4$ | $\mathcal{O}_5$ |
|-----------------------|-------------------|-----------------|-----------------|-----------------|-----------------|
| Statistical           | 2.1               | 2.5             | 2.2             | 1.5             | 2.8             |
| Chiral logs           | 0.6               | 1.0             | 0.7             | 0.5             | 1.2             |
| Analytic LECs         | 1.8               | 1.3             | 1.0             | 1.2             | 1.7             |
| LQ disc.              | 0.5               | 0.3             | 0.1             | 0.3             | 0.8             |
| HQ disc.              | 2.8               | 1.9             | 2.0             | 2.2             | 2.9             |
| LQ mass               | 0.5               | 0.7             | 0.4             | 1.3             | 0.6             |
| HQ tuning             | 1.2               | 1.4             | 0.7             | 1.2             | 0.9             |

Combined (missing renorm & F.V.)  $| 4.2 \ 4.9 \ 3.3 \ 3.4 \ 4.8$ 

Remaining tasks:

Account for renormalization and matching error.

Account for finite-volume corrections.

Report bag parameters.



### 3pt exploratory correlator fits

•

1 1 1

Jason Chia Cheng Chang

## **Correlator fits**



#### Expected tmax stability plot

Surprising systematic trend

Large time slices → dominantly ground state signal Ground state parameters expected to be insensitive to tmax \*tmax fits vary both data size and fit region Jason Chia Cheng Chang

## Random sampling procedure



#### Procedure

- 1) Take fixed triangle region
- 2) Randomly sample *m* points
- 3) Repeat O(100) times to average out statistical variations.\*
- 4) Plot stability plot vs m
- \*Observed that the standard deviation of repeated samples are much smaller than statistical error.

#### <sup>1</sup> Goal

Produce fits with varying data size but fixed fit region.

## Random sampling result

