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Beam Energy Scan
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Sketch of the freezeout curve in the (T, µB)-plane, where a knowledge
of the EoS is needed. Calculated according to the HRG
parametrization of Cleymans et al. (2006).



Equation of State

• Accurate determination one of the major goals of
finite-temperature lattice QCD.

• Necessary input in hydrodynamic modeling of heavy-ion
collisions.

• Continuum results at physical and nearly physical pion masses
now available with staggered fermions at O(µ0

B) [Wupp.-Bud.
(2010), HotQCD (see talk by A. Bazavov)] as well as for O(µ2

B)
[Wupp.-Bud. (2012)].

• Here we will present our results for the O(µ4
B) corrections to the

Equation of State, calculated on Nτ = 6 and 8 lattices.



Quark Number Susceptibilities

• Sign problem at µB > 0. One approach [R. Gavai and S. Gupta
(2001), Swansea-Bielefeld (2001)] is to expand the pressure in a
Taylor series:

P

T 4
=

∞∑
i,j,k=0

χijk
i! j! k!

(µB
T

)i (µQ
T

)j (µS
T

)k
.

• QNS also yield information about the quantum numbers of the
QGP degrees of freedom [V. Koch and S. Jeon (1999)]. They
also satisfy scaling relations near the chiral phase transition
[Y. Hatta and T. Ikeda (2002)].



Calculating the Equation of State

• Our calculations were performed with the HISQ action
[C. Davies, E. Follana et al.(2006)]. The ensembles were the
same as the ones used to calculate the µB = 0 EoS (see the talk
by A. Bazavov at this conference).

• We calculated all the susceptibilities upto sixth order in the
temperature range 140 MeV . T . 330 MeV.

• mπ ≈ 160 MeV while the strange quark mass was set to its
physical value.

• O(5, 000− 15, 000) statistics at two lattice spacings a = 1/6T
and a = 1/8T .

• Operator traces needed for the susceptibilities evaluated
stochastically using ∼1,500 random vectors per configuration.



Pressure Corrections
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.

Sixth-order corrections noisy,
but around 1-5% of second-
order corrections.



Other Observables

The energy density (ε), entropy density (s) and baryon density (nB)
were obtained from spline fits to the susceptibilities:

ε

T 4
=

∞∑
n=0

(µB
T

)n{
T
dcn
dT

+ 3cn

}
,

s

T 3
=

∞∑
n=0

(µB
T

)n{
T
dcn
dT

+ (4− n)cn
}
,

µBnB
T 3

=

∞∑
n=0

(µB
T

)n
n · cn (µQ = µS = 0).



Correction Coefficients
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Putting Everything Together
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Energy Density to O
(
µ4
B

)
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Constraints in Heavy-Ion Collisions

• Net strangeness zero, charge-to-baryon number ratio fixed
(0.4 for Pb, 0.5 for Cu). Thus,

NS = 0 and NQ = rNB

where r = Np/(Np +Nn) = 0.4 - 0.5 in most cases.

• These determine the electric and strangeness chemical potentials
as functions of µB and T :

µQ
T

= q1
µB
T

+ q3
µ3
B

T 3
+ . . . ,

µS
T

= s1
µB
T

+ s3
µ3
B

T 3
+ . . .

• Necessary to take these constraints into account for a more
accurate phenomenology of heavy-ion collisions.



Pressure Corrections
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In general, coefficients smaller
in magnitude than for the µQ =
µS = 0 case.



Correction Coefficients: Constrained Case
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Energy Density to O
(
µ4
B
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Observables on the Freezeout Curve

We will use the values of (T, µB) from the parametrization by
Cleymans et al.:

T (µB) = a− bµ2
B − cµ4

B , µB =
d

1 + e
√
sNN

,

with

a 0.154 ± 0.009 GeV
d 1.308 ± 0.028
b 0.139 ± 0.016 GeV−1
e 0.273 ± 0.008
c 0.053 ± 0.021 GeV−3

to calculate the values of p, ε, nB , etc. at freezeout.



Baryon Density at Freezeout
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By comparing different orders, we find that O(µ4
B)-corrections become

important around
√
sNN ∼ 20 GeV. Similarly, O(µ6

B)-corrections are
expected to become significant around

√
sNN ∼ 12 GeV.



Energy, Entropy and Baryon Density
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Conclusions

• Calculating the equation of state beyond second order is
necessary to extend its applicability for a broader beam energy
range. Using our lattice results for the quark number
susceptibilities, we calculated the pressure to sixth order and the
energy density to fourth order.

• O(µ4
B)-corrections contribute ∼10% to the total energy density

for T . 160 MeV, and this contribution increases when the
constraints from heavy-ion collisions are taken into account.



Conclusions

• Baryon number density is especially sensitive to finite-µB
corrections since its expansion begins at O(µB). By looking at
the contribution of various orders, we estimated that fourth
order becomes important around

√
sNN ∼ 20 GeV, whereas sixth

order starts to become important at
√
sNN ∼ 12 GeV.

• It is possible that the energy density ε/T 4 remains constant
along the freezeout curve. O(µ4

B) corrections are required for√
sNN . 32 GeV to see this, however.

• What remains to be done: second-order quantities i.e.specific
heat Cv, speed of sound c2s and the compressibility K, as well as
calculating P , ε, etc. on isentropic trajectories i.e. at constant
entropy per baryon.


