The QCD Equation of State to $\mathcal{O}(\mu_B^4)$ from the Lattice

Prasad Hegde*

Central China Normal University, Wuhan, China.

*for the BNL-Bielefeld-CCNU collaboration.

LATTICE 2014, New York, U.S.A. June 26, 2014.

ション ふゆ マ キャット しょう くりく

Beam Energy Scan

Sketch of the freezeout curve in the (T, μ_B) -plane, where a knowledge of the EoS is needed. Calculated according to the HRG parametrization of Cleymans *et al.* (2006).

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二重

Equation of State

- Accurate determination one of the major goals of finite-temperature lattice QCD.
- Necessary input in hydrodynamic modeling of heavy-ion collisions.
- Continuum results at physical and nearly physical pion masses now available with staggered fermions at $\mathcal{O}(\mu_B^0)$ [Wupp.-Bud. (2010), HotQCD (see talk by A. Bazavov)] as well as for $\mathcal{O}(\mu_B^2)$ [Wupp.-Bud. (2012)].
- Here we will present our results for the $\mathcal{O}(\mu_B^4)$ corrections to the Equation of State, calculated on $N_{\tau} = 6$ and 8 lattices.

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Quark Number Susceptibilities

• Sign problem at $\mu_B > 0$. One approach [R. Gavai and S. Gupta (2001), Swansea-Bielefeld (2001)] is to expand the pressure in a Taylor series:

$$\frac{P}{T^4} = \sum_{i,j,k=0}^{\infty} \frac{\chi_{ijk}}{i!\,j!\,k!} \left(\frac{\mu_B}{T}\right)^i \left(\frac{\mu_Q}{T}\right)^j \left(\frac{\mu_S}{T}\right)^k.$$

• QNS also yield information about the quantum numbers of the QGP degrees of freedom [V. Koch and S. Jeon (1999)]. They also satisfy scaling relations near the chiral phase transition [Y. Hatta and T. Ikeda (2002)].

うして ふゆう ふほう ふほう ふしつ

Calculating the Equation of State

- Our calculations were performed with the HISQ action [C. Davies, E. Follana *et al.*(2006)]. The ensembles were the same as the ones used to calculate the $\mu_B = 0$ EoS (see the talk by A. Bazavov at this conference).
- We calculated all the susceptibilities upto sixth order in the temperature range 140 MeV $\lesssim T \lesssim 330$ MeV.
- $m_{\pi} \approx 160$ MeV while the strange quark mass was set to its physical value.
- $\mathcal{O}(5,000 15,000)$ statistics at two lattice spacings a = 1/6Tand a = 1/8T.
- Operator traces needed for the susceptibilities evaluated stochastically using ~1,500 random vectors per configuration.

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Pressure Corrections

$$\frac{P}{T^4} = \sum_{n=0}^{\infty} c_n(T) \left(\frac{\mu_B}{T}\right)^n.$$

Sixth-order corrections noisy, but around 1-5% of second-order corrections.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のく⊙

Other Observables

The energy density (ε) , entropy density (s) and baryon density (n_B) were obtained from spline fits to the susceptibilities:

$$\frac{\varepsilon}{T^4} = \sum_{n=0}^{\infty} \left(\frac{\mu_B}{T}\right)^n \left\{ T \frac{dc_n}{dT} + 3c_n \right\},$$
$$\frac{s}{T^3} = \sum_{n=0}^{\infty} \left(\frac{\mu_B}{T}\right)^n \left\{ T \frac{dc_n}{dT} + (4-n)c_n \right\},$$
$$\frac{\mu_B n_B}{T^3} = \sum_{n=0}^{\infty} \left(\frac{\mu_B}{T}\right)^n n \cdot c_n \ (\mu_Q = \mu_S = 0).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Correction Coefficients

- 9 Q (P

Putting Everything Together

Finite- μ_B corrections under control for $\frac{p}{T^4}$ for $\frac{\mu_B}{T} \lesssim 2.0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Energy Density to $\mathcal{O}\left(\mu_B^4\right)$

 $\mathcal{O}(\mu_B^4)$ -corrections important below $T \sim 170$ MeV and for $\mu_B/T \gtrsim 2.0$.

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

Constraints in Heavy-Ion Collisions

• Net strangeness zero, charge-to-baryon number ratio fixed (0.4 for Pb, 0.5 for Cu). Thus,

$$N_S = 0$$
 and $N_Q = rN_B$

where $r = N_p / (N_p + N_n) = 0.4 - 0.5$ in most cases.

• These determine the electric and strangeness chemical potentials as functions of μ_B and T:

$$\frac{\mu_Q}{T} = q_1 \frac{\mu_B}{T} + q_3 \frac{\mu_B^3}{T^3} + \dots, \quad \frac{\mu_S}{T} = s_1 \frac{\mu_B}{T} + s_3 \frac{\mu_B^3}{T^3} + \dots$$

うして ふゆう ふほう ふほう ふしつ

• Necessary to take these constraints into account for a more accurate phenomenology of heavy-ion collisions.

Pressure Corrections

$$\frac{P}{T^4} = \sum_{n=0}^{\infty} c_n(T) \left(\frac{\mu_B}{T}\right)^n.$$

In general, coefficients smaller in magnitude than for the $\mu_Q = \mu_S = 0$ case.

イロト 不得下 イヨト イヨト

ъ

Correction Coefficients: Constrained Case

200

Energy Density to $\mathcal{O}\left(\mu_B^4\right)$

Larger $\mathcal{O}(\mu_B^4)$ -corrections when compared to $\mathcal{O}(\mu_B^2)$ corrections in the constrained case than for the $\mu_Q = \mu_S = 0$ case.

Observables on the Freezeout Curve

We will use the values of (T, μ_B) from the parametrization by Cleymans *et al.*:

$$T(\mu_B) = a - b\mu_B^2 - c\mu_B^4, \qquad \mu_B = \frac{d}{1 + e\sqrt{s_{NN}}},$$

with

a	0.154 ± 0.009	$C \cdot V$
d	1.308 ± 0.028	Gev
b	0.139 ± 0.016	$C dV^{-1}$
e	0.273 ± 0.008	Gev
c	0.053 ± 0.021	GeV^{-3}

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

to calculate the values of p, ε , n_B , etc. at freezeout.

Baryon Density at Freezeout

By comparing different orders, we find that $O(\mu_B^4)$ -corrections become important around $\sqrt{s_{NN}} \sim 20$ GeV. Similarly, $O(\mu_B^6)$ -corrections are expected to become significant around $\sqrt{s_{NN}} \sim 12$ GeV.

・ロト ・ 西ト ・ ヨト ・ 日 ・

ъ

Energy, Entropy and Baryon Density

 ε/T^4 nearly constant on the freezeout curve up o $\sqrt{s_{NN}} \sim 32$ GeV and possibly for lower values of $\sqrt{s_{NN}}$ too.

・ロト ・雪ト ・ヨト ・ヨト

ъ

Conclusions

- Calculating the equation of state beyond second order is necessary to extend its applicability for a broader beam energy range. Using our lattice results for the quark number susceptibilities, we calculated the pressure to sixth order and the energy density to fourth order.
- $\mathcal{O}(\mu_B^4)$ -corrections contribute ~10% to the total energy density for $T \leq 160$ MeV, and this contribution increases when the constraints from heavy-ion collisions are taken into account.

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Conclusions

- Baryon number density is especially sensitive to finite- μ_B corrections since its expansion begins at $\mathcal{O}(\mu_B)$. By looking at the contribution of various orders, we estimated that fourth order becomes important around $\sqrt{s_{NN}} \sim 20$ GeV, whereas sixth order starts to become important at $\sqrt{s_{NN}} \sim 12$ GeV.
- It is possible that the energy density ε/T^4 remains constant along the freezeout curve. $\mathcal{O}(\mu_B^4)$ corrections are required for $\sqrt{s_{NN}} \lesssim 32$ GeV to see this, however.
- What remains to be done: second-order quantities *i.e.* specific heat C_v , speed of sound c_s^2 and the compressibility K, as well as calculating P, ε , etc. on isentropic trajectories *i.e.* at constant entropy per baryon.