Multigrid for Lattice QCD

– Solvers –

Andreas Frommer

Bergische Universität Wuppertal

June 24, 2014

Outline

Geometric and Algebraic MG

Algebraic Multigrid for Lattice QCD

Challenges and opportunities

Geometric and Algebraic MG

Algebraic Multigrid for Lattice QCD

Challenges and opportunities

Challenges

Multigrid in a Nutshell

Geometric Multigrid: Fedorenko 1961, Brandt, Hackbusch 1970s, ...

Ingredients

- elliptic PDE $\mathcal{L}(u) = b$
- discretization scheme (finite elements)
 - \longrightarrow hierarchy of systems $D_\ell x_\ell = b_\ell$
 - \longrightarrow intergrid operators $P_{\ell}^{\ell+1}, R_{\ell+1}^{\ell}$
- iterative methods S_ℓ a.k.a. smoothers

Operations

smoothing:

$$x_{\ell} \leftarrow x_{\ell} - M_{\ell}^{-1}(D_{\ell}x_{\ell} - b_{\ell})$$

coarse grid correction:

$$x_{\ell} \leftarrow x_{\ell} - P_{\ell}^{\ell+1} D_{\ell+1}^{-1} R_{\ell+1}^{\ell} (D_{\ell} x_{\ell} - b_{\ell})$$

The multigrid promise

optimal complexity with F-cycles:

 $\mathcal{O}(n)$ operations for solution accuracy \sim discretization error

Challenges

Appendix

Multigrid: the better way to deflate

Smoother: I - MD

- ► Effective on "large" eigenvectors
- "small" eigenvectors remain

 $Dv_i = \lambda_i v_i$ with $|\lambda_1| \leq \ldots \leq |\lambda_{3072}|$

Challenges

Multigrid: the better way to deflate

Coarse-grid correction: $I - PD_c^{-1}RD$

- ▶ small eigenvectors built into interpolation P
 - \Rightarrow Effective on small eigenvectors

 $Dv_i = \lambda_i v_i$ with $|\lambda_1| \leq \ldots \leq |\lambda_{3072}|$

Multigrid: the better way to deflate

Two-grid method: $E_{2g} = (I - MD)(I - PD_c^{-1}P^{\dagger}D)$

- Complementarity of smoother and coarse-grid correction
- Effective on all eigenvectors!

 $Dv_i = \lambda_i v_i$ with $|\lambda_1| \leq \ldots \leq |\lambda_{3072}|$

In lattice QCD: smoothed vectors are not smooth

Algebraic Multigrid (AMG): Brandt, McCormick, Ruge 1982

Given: \blacktriangleright Dx = b

- Iterative method S a.k.a. smoother
- Wanted: Hierarchy of spaces (grids) \mathcal{V}_{ℓ} , $\ell = 0, ..., L$ Intergrid transfer operators $P_{\ell+1}^{\ell} : \mathcal{V}_{\ell+1} \longrightarrow \mathcal{V}_{\ell}$, $R_{\ell}^{\ell+1} : \mathcal{V}_{\ell} \longrightarrow \mathcal{V}_{\ell+1}$
 - **Result:** Hierarchy of systems $D_{\ell}x_{\ell} = b_{\ell} \text{ with } D_{\ell+1} = R_{\ell+1}^{\ell} D_{\ell} P_{\ell}^{\ell+1} \text{ (Petrov-Galerkin)}$ smoothers S_{ℓ}
- **Guidelines:** \blacktriangleright smooth vectors: $||Dv|| \ll ||v||$
 - complementarity of smoother and coarse grid correction:
 - $v \text{ smooth} \Rightarrow v \text{ well approximated in } \operatorname{range}(P)$

AMG: Hierarchy of spaces and intergrid operators I

Hermitian case: $D = D^{\dagger}$. Take $R = P^{\dagger}$

C-F-splitting: Identify coarse variables as a subset C of all variables $\mathcal{C} \cup \mathcal{F}$

- Geometric coarsening
- Strength of connection (Ruge-Stüben '85, Chow '03, Brannick et al. '06, ...)
- Compatible relaxation (Brandt '00, Brannick-Falgout '10, ...)

Interpolation for C-F-splitting:

- For each $i \in \mathcal{F}$ determine set \mathcal{C}_i from which *i* interpolates.
- Preserve smooth vectors: $Dv \approx 0 \Leftrightarrow P(v_f) \approx v$.

AMG: Hierarchy of spaces and intergrid operators II

Aggregation:

 Group several variables into one coarse aggregate A (Braess '95, Vanek, Mandel, Brezina, '94, '96, ...)

Interpolation for aggregation:

- piecewise constant, $P = \sum_{A} \mathbf{1}_{A}$ (!)
- smoothed aggregation, $P = \sum_{A} D \mathbf{1}_{A}$

AMG: Building interpolation using test vectors

Recall: smooth vectors are to be well approximated in range(P).

Given: test vectors $v^{(1)}, \ldots, v^{(k)} \in \mathbb{C}^n$ representing low modes **Wanted:** interpolation P accurate for test vectors $v^{(s)}$

C-F-splittings: Least Squares Interpolation (Kahl '09)

$$\mathcal{L}_{\mathcal{C}_i}(p_i) = \sum_{s=1}^k \omega_s \left(v_i^{(s)} - \sum_{j \in \mathcal{C}_i} (p_i)_j v_j^{(s)} \right)^2 \to \min_{p_i}$$

Aggregates: Distribute test vecs over aggregates (Brezina et al '04)

$$(v^{(1)},\ldots,v^{(k)}) = \begin{bmatrix} \boxed{A_1} \\ A_2 \\ \vdots \\ A_s \end{bmatrix} \rightarrow P = \begin{pmatrix} \boxed{A_1} \\ A_2 \\ \vdots \\ A_s \end{pmatrix}$$

Geom. & Alg. MG			
AMG: Adaptive setu	ps I		

How to get test vectors?

- ▶ Known from the problem: rigid body modes in mechanics, e.g.
- Adaptively:

 α SA (Brezina, Falgout, MacLachlan, Manteuffel, McCormick, Ruge '04)

Bootstrap AMG (Brandt, Brannick, Kahl, Livshitz '10)

Challenges

Appendix

Adaptivity in α SA

Adaptive Algebraic Multigrid (α SA)

"Iteratively test and improve the current method until good enough"

```
Initialize \mathcal{M} to be the smoothing iteration
Initialize random test vector x
Apply \mathcal{M} to Dx = 0
\rightarrow smoothed vector \widetilde{x}, convergence speed \theta
while \theta > tol do
   Update set of test vectors \mathcal{U} = \mathcal{U} \cup \widetilde{x}
   Construct multigrid method M based on \mathcal{U}
   \mathcal{M} = M
   Choose new random x
   Apply \mathcal{M} to Dx = 0
   \rightarrow smoothed vector \widetilde{x}, convergence speed \theta
end while
```


[Brezina et. al. 04]

AMG: Adaptive setups III

Bootstrap Algebraic Multigrid

"Continuous updating components of the MG hierarchy using practical tools and measures built from the evolving MG solver"

smoother action known, initial test vectors

 $u^{(s)} = S^{\eta} \widetilde{u}^{(s)}, \quad \widetilde{u}^{(s)} \text{ random}$

► observation
$$(P_{\ell} = P_1^0 \cdots P_{\ell}^{\ell-1}, D_{\ell} = P_{\ell}^{\dagger} D_0 P_{\ell}, T_{\ell} = P_{\ell}^{\dagger} P_{\ell})$$

$$\frac{\langle v_{\ell}, v_{\ell} \rangle_{D_{\ell}}}{\langle v_{\ell}, v_{\ell} \rangle_{T_{\ell}}} = \frac{\langle P_{\ell} v_{\ell}, P_{\ell} v_{\ell} \rangle_{D}}{\langle P_{\ell} v_{\ell}, P_{\ell} v_{\ell} \rangle_{2}}$$

Bootstrap Idea

Eigenpairs $\begin{array}{ccc} \text{Eigenpairs} & \longrightarrow & (P_{\ell}v_{\ell},\lambda_{\ell}) \text{ of } D \\ (v_{\ell},\lambda_{\ell}) \text{ of } (D_{\ell},T_{\ell}) & & + \text{ interpolation error} \end{array}$

Eigenpairs

[Brandt, Brannick, Kahl, Livshits '10, Manteuffel, McCormick, Park, Ruge '10]

Geometric and Algebraic MG

Algebraic Multigrid for Lattice QCD

Challenges and opportunities

A. Frommer, Multigrid for Lattice QCD

	AMG for LQCD	
Multigrid for lattice G)CD	

From now on: $D\psi = \eta$, D (clover improved) Wilson-Dirac operator, periodic, anti-periodic or open bc

SAP: Schwarz Alternating Procedure, aka Multiplicative Schwarz

in: ψ , η , ν - out: ψ for k = 1 to ν do $r \leftarrow \eta - D\psi$ for all green \mathcal{L}_i do $\psi \leftarrow \psi + B_{\mathcal{L}_i}r$ end for $r \leftarrow \eta - D\psi$ for all white \mathcal{L}_i do $\psi \leftarrow \psi + B_{\mathcal{L}_i}r$ end for end for end for

- $B_{\mathcal{L}_i}$ inverted approximately
- Preconditioner to GCR or FGMRES
- (Schwarz 1870, Lüscher '03)

Local coherence and the inexact deflation method

Local coherence of low quark modes (Lüscher '07):

- Locally, all low quark modes are well approximated by just a few (experimental result).
- Approximations to low quark modes can be obtained via inverse iteration for D
- \blacktriangleright \longrightarrow "Inexact deflation" method (Lüscher '07)

Inexact deflation method

- subdivide lattice into "subdomains" (= aggregates)
- setup: compute test vectors via bootstrap approach
- interpolation P : defined as in aggregation based AMG
- ► coarse system D_c = P[†]DP ("little Dirac"): solved with SAP + standard deflation
- solve $D\pi_R\psi = \eta$ with $\pi_R = I PD_c^{-1}P^{\dagger}D$

	AMG for LQCD	
Transfer of αSA	to Lattice QCD	

Babich, Brannick, Brower, Clark, Manteuffel, McCormick, Osborn, Rebbi '10, ...:

- 4d Wilson-Dirac system $D\psi = \eta$
- ▶ 2 aggregates per 4^4 -lattice × colors × spins to preserve γ_5 -symmetry¹⁾
- GMRES as smoother
- ► 3 levels, W-cycles
- ► αSA setup

or

modified α SA setup: Works with several vectors a time

used as preconditioner for GCR

 $^{1)}$ see appendix

Current AMG solvers for D_W

	QOPQDP	OpenQCD	$DD-\alpha AMG$
clover term	included	included	included
mixed precision	yes	yes	yes
smoother	GMRES	SAP	SAP
aggregation	γ_5 -comp.	arbitrary	γ_5 -comp.
setup	1)	2)	3)
typ. $\#$ test vecs (N)	20	30	20
# vars $/$ coarse site	2N	N	2N
cycling	K-cycle	n.a.	K-cycle

- 1) inverse iterations with GMRES on sequence of test vecs
- 2) repeated inverse iteration with emerging solver on all test vecs at once
- 3) modification of 2)

DD- α AMG: Frommer, Kahl, Krieg, Leder, Rottmann '13

AMG for LQCD	

|--|--|--|--|--|--|

AMG for LQCD

Challenges

Appendix

Snapshots on performance: configurations

id	lattice size	pion mass	CGNR	shift	clover	provided by
	$N_t imes N_s^3$	$m_\pi~[{ m MeV}]$	iterations	m_0	term c_{sw}	
1	48×16^3	250	7,055	-0.095300	1.00000	BMW-c
2	48×24^3	250	$11,\!664$	-0.095300	1.00000	BMW-c
3	48×32^3	250	$15,\!872$	-0.095300	1.00000	BMW-c
4	48×48^3	135	$53,\!932$	-0.099330	1.00000	BMW-c
5	64×64^3	135	84,207	-0.052940	1.00000	BMW-c
6	128×64^3	270	$45,\!804$	-0.342623	1.75150	CLS

Table : Ensembles used.

Geom. & Alg. MG AMG for I		AMG for LQCD	
с I.	c		

Snapshots on performance: setup time vs solve time

number of setup steps n_{inv}	average setup timing	average iteration count	lowest iteration count	highest iteration count	average solver timing	average total timing
1	2.08	149	144	154	6.42	8.50
2	3.06	59.5	58	61	3.42	6.48
3	4.69	34.5	33	36	2.37	7.06
4	7.39	27.2	27	28	1.95	9.34
5	10.8	24.1	24	25	1.82	12.6
6	14.1	23.0	23	23	1.89	16.0
8	19.5	22.0	22	22	2.02	21.5
10	24.3	22.5	22	23	2.31	26.6

Table : Evaluation of DD- α AMG-setup(n_{inv} , 2), 48⁴ lattice, configuration id 4), 2,592 cores, averaged over 20 runs.

Snapshots on performance: oe-BiCGStab vs DD- α AMG

	BiCGStab	$DD-\alpha AMG$	speed-up factor	coarse grid
setup time		22.9s		
solve iter	$13,\!450$	21		$3,716^{(*)}$
solve time	91.2s	3.15s	29.0	2.43s
total time	91.2s	26.1s	3.50	

Table : BiCGStab vs. DD- α AMG with default parameters, configuration id 5, 8,192 cores, (*): coarse grid iterations summed up over all iterations on the fine grid.

Snapshots on performance: mass scaling and levels

Figure : Mass scaling of 2, 3 and 4 level DD- α AMG, 64⁴ lattice, configuration id 5, restart length $n_{kv} = 10$, 128 cores

Geometric and Algebraic MG

Algebraic Multigrid for Lattice QCD

Challenges and opportunities

A. Frommer, Multigrid for Lattice QCD

Challenge I: Improving the setup

Robustness: A "default" setup should work well on all configurations

Role of heuristics: Setup should be more supported by mathematical theory \longrightarrow AMG for non-symmetric systems (Brezina, Manteuffel, McCormick, Ruge, Sanders '10)

Investigate:

- R and P from singular vecs rather than eigenvecs $Dv_i = \sigma_i u_i, v_i$ orthogonal, u_i orthogonal, $\sigma_i > 0$
- deviation from normality:
 - continuum operator is normal, $\mathcal{D}\mathcal{D}^{\dagger} = \mathcal{D}^{\dagger}\mathcal{D}$
 - smearing makes D more normal,
 - D more normal towards the continuum limit or with other discretization

Recent work by Brannick and Kahl for Schwinger model ('13):

- Singular vecs for D are related to eigenvecs of $\gamma_5 D$
- ► Smoothing with Kaczmarz for D → only right sing. vecs of D matter
- ▶ justification for $R = P^{\dagger}$ in terms of sing. vecs approximation
- \blacktriangleright Bootstrap setup for $\gamma_5 D$ gives approx. left and right singular vecs for D
- geometric C-F splittings, least squares interpolation
- W-cycle
- all for oe-reduced system

Results for Schwinger model

Challenge II: Deviation from normality

Field of values: $\mathcal{F}(D) = \{\psi^{\dagger} D\psi : \psi^{\dagger} \psi = 1\}$

Property: $\mathcal{F}(P^{\dagger}DP) \subset \mathcal{F}(D)$

If D were normal

- Eigenvecs and singular vecs coincide
- $\mathcal{F}(D) = \text{convex hull of spectrum}$
- Spectrum of coarse grid operator falls 'inside" spectrum of fine grid operator

Challenge III: System hierarchy from modelling

Idea: move towards "geometric" multigrid

- ▶ find coupled hierarchy of discretized Dirac equations → finite elements?
- This fixes the coarse grid system and the prolongations
- obtain smoother geometrically rather than algebraically
- Example: MG for Maxwell's equations

Opportunities

"One setup, many solves"

strategies:

- ▶ Wilson-Dirac preconditioner for the overlap operator (→ M. Rottmann, Mo 15:15)
- Updating of P, R in HMC (OpenQCD, M Lin M: 14.25)
 - \rightarrow M. Lin, Mo 14:35)

Similar idea, other operators:

- Domain wall: aggregate 5th dimension (Cohen et al '10)
- Domain wall: recursive "inexact deflation" (Boyle '14)

Implementations:

- ▶ in QUDA for GPUs
 (→ M. Clark, Mo 16:50)¹⁾
- ▶ QPACE 2 (→ T. Wettig, Sa 09:00)
- $^{1)}\ {\rm heterogeneous}\ /\ {\rm additive}\ {\rm AMG}$

Preconditioning the overlap operator

Brannick, Frommer, Kahl, Rottmann, Strebel: work in progress

Geom. & Alg. MG

AMG for LQCD

Challenges

Appendix

Thick Restarts and Explicit Deflation

- ▶ 32^4 lat, 3HEX smeared BMW-c cnfg, 1,024 cores
- ► GMRESR := FGMRES-64bit + GMRES-32bit
- ► GMRESR+DD-αAMG := FGMRES-64bit + FGMRES-32bit + DD-αAMG

	Challenges	
Conclusions		
state-of-the-art		

- adaptive AMG works for lattice QCD
- fairly robust
- best for multiple r.h.s.
- parallel efficiency depends on no. of levels
- software is available

To do

- further improve setup
- singular vecs instead of eigenvecs, normality
- ► HMC
- ▶ ...

Thanks to: James Brannick, Karsten Kahl, Stefan Krieg, Björn Leder, Matthias Rottmann, Marcel Schweitzer, Artur Strebel, Regensburg and Wuppertal

Complementarity of smoother and coarse grid correction revisited

 $D_W \neq D_W^{\dagger}$, but $\gamma_5 D_W = (\gamma_5 D_W)^{\dagger}$

- ► coarse grid correction I P(RDP)⁻¹RD projects onto range(RD)[⊥] along range(P)
- ▶ range(P) should well approximate smooth vectors
- ▶ $range(RD)^{\perp}$ should well approximate non-smooth-vectors

Consequence:

- P built from approximate right evs
- R built from approximate left evs
- Suggestion: take $R = (\gamma_5 P)^{\dagger}$

Additional feature

aggregate positive and negative spin components separately

$$\rightarrow$$
 range $(P) =$ range $(\gamma_5 P)$

$$\rightarrow$$
 take $R = P^{\uparrow}$

(Babich et al. '10)

