ADAPTIVE MULTIGRID SOLVERS FOR LQCD ON GPUS

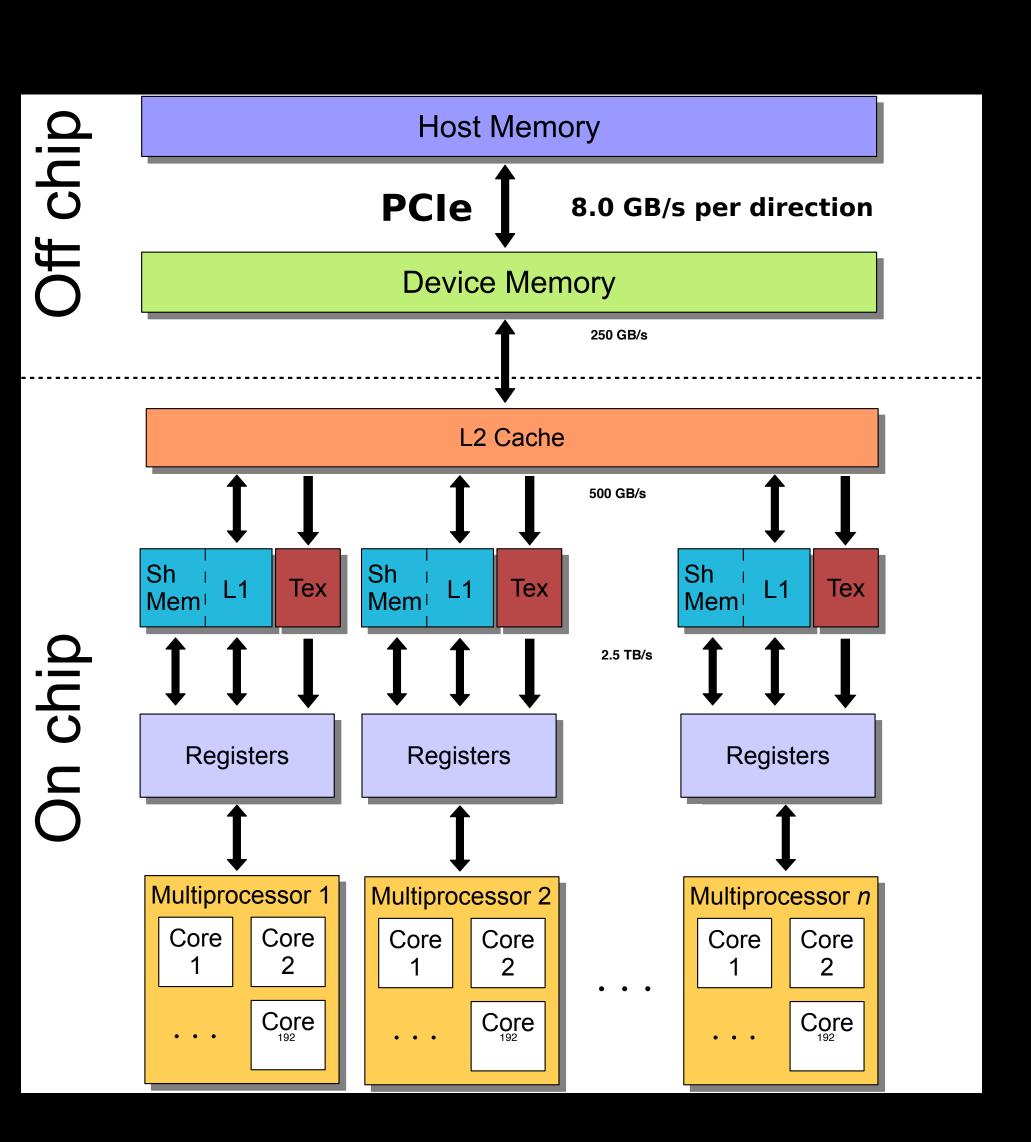
M Clark with Michael Cheng and Rich Brower (Boston University)

Contents GPU Computing + QUDA Multigrid Heterogeneous Multigrid Summary

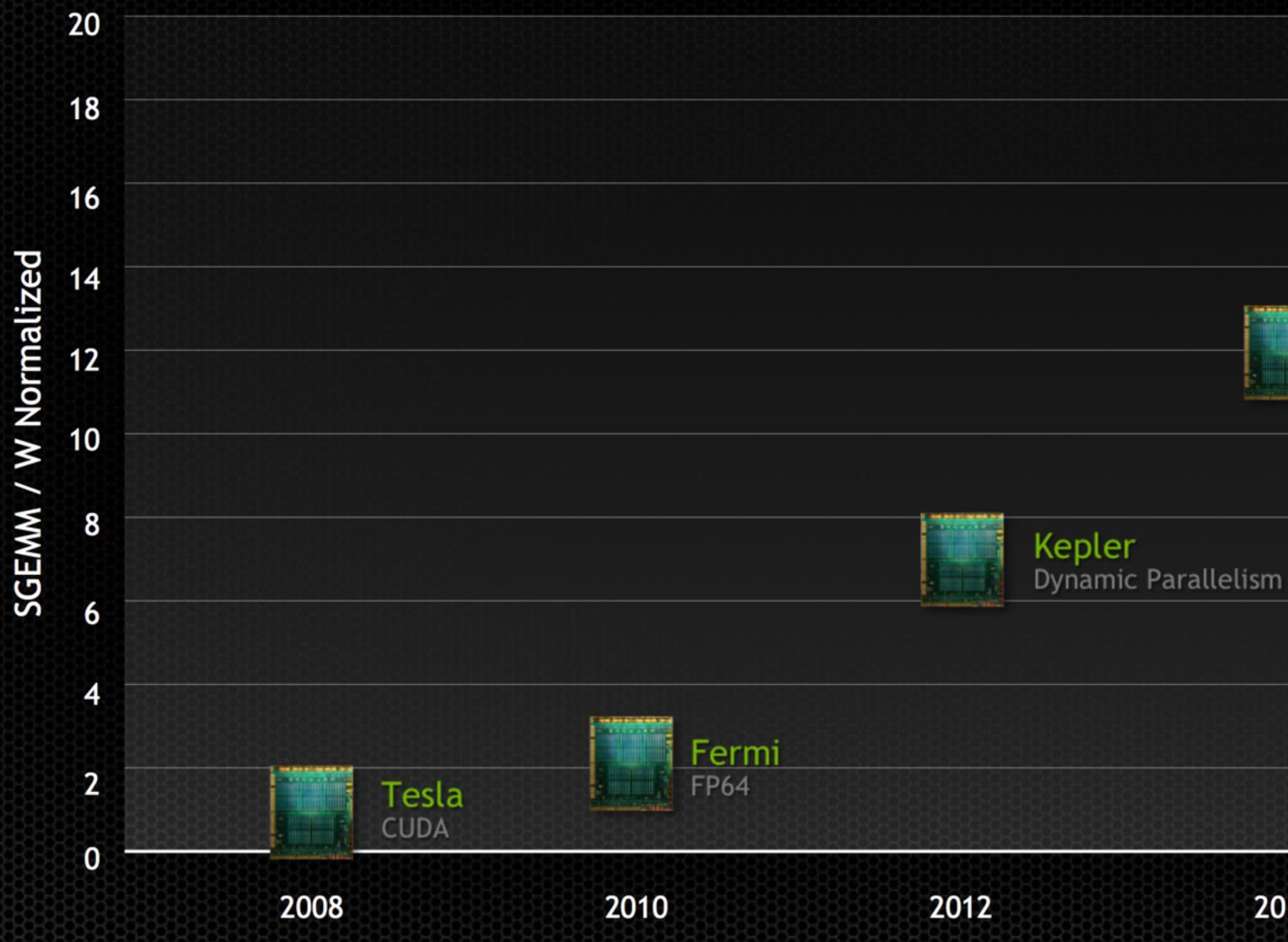
What is a GPU?

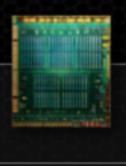
- Kepler K20X (2012)
 2688 processing cores
 3995 SP Gflops peak
- Effective SIMD width of 32 threads (warp)
- Deep memory hierarchy
- As we move away from registers

 Bandwidth decreases
 - Latency increases
- Programmed using a thread model
 Architecture abstraction is known as CUDA
 - Fine-grained parallelism required
- Diversity of programming languages
 CUDA C/C++/Fortran
 - OpenACC, OpenMP 4.0
 - -Python, etc.

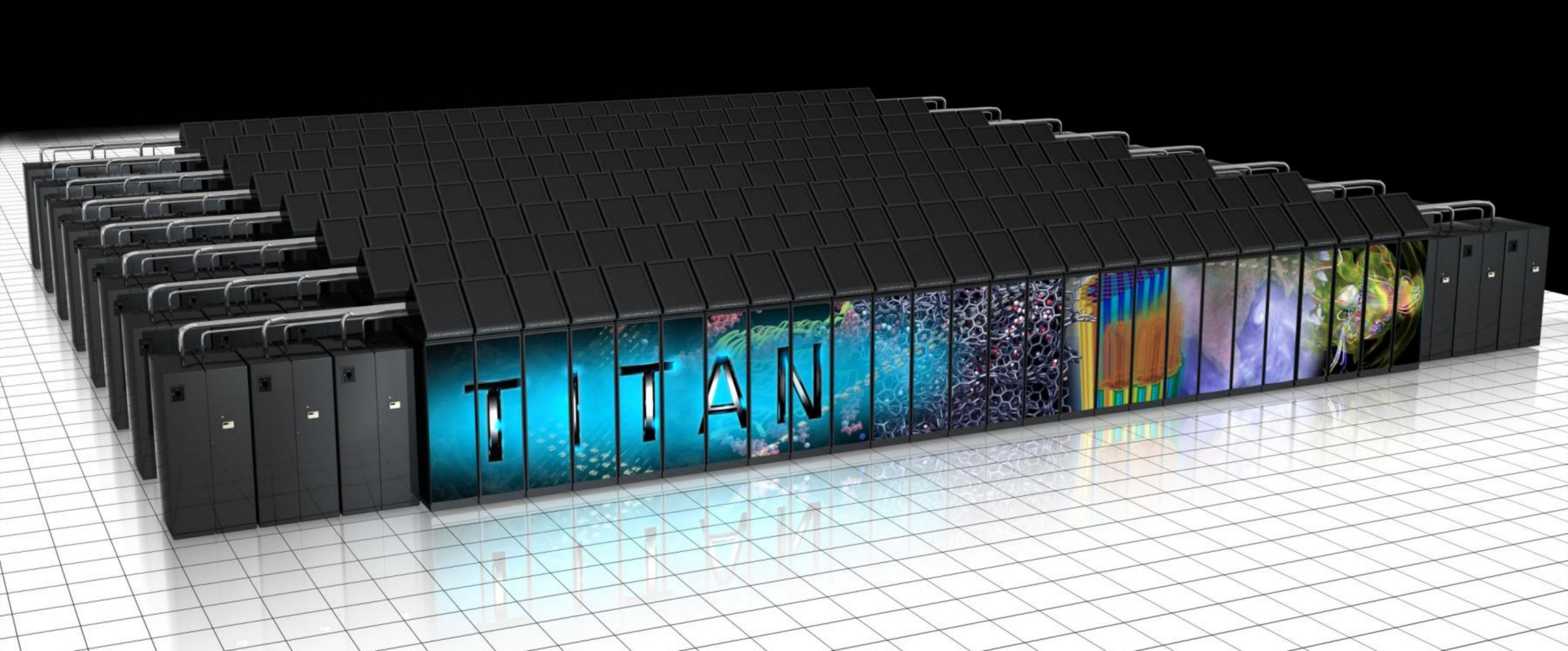


Strong CUDA GPU Roadmap





Pascal **Unified Memory 3D** Memory **NVLink**



Introducing QUDA

- Open source effort with 20+ contributors
- Provides:

2014

attice

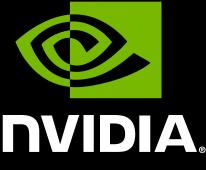
- - Exploit physical symmetries to minimize memory traffic
 - Mixed-precision methods

 - Eigenvector solvers (Lanczos and EigCG)
 - Multigrid solvers for optimal convergence new!

"QCD on CUDA" - <u>http://lattice.github.com/quda</u> • Effort started at Boston University in 2008, now in wide use as the GPU backend for BQCD, Chroma, CPS, MILC, TIFR, etc.

— Various solvers for all major fermonic discretizations, with multi-GPU support — Additional performance-critical routines needed for gauge-field generation • Maximize performance / Minimize time to science

Autotuning for high performance on all CUDA-capable architectures Domain-decomposed (Schwarz) preconditioners for strong scaling new!



Linear Solvers

- QUDA supports a wide range of linear solvers - CG, BiCGstab, GCR, Multi-shift solvers, etc.
- As well as domain decomposition preconditioners - Additive/Multiplicative Schwarz, overlapping domains
- Together with almost all fermion actions under the sun
 - Wilson, Wilson-clover

 - Twisted with a clover term
 - HISQ, ASQTAD, naive staggered
 - Domain wall, mobius
- Condition number inversely proportional to mass
 - Light (realistic) masses are highly singular

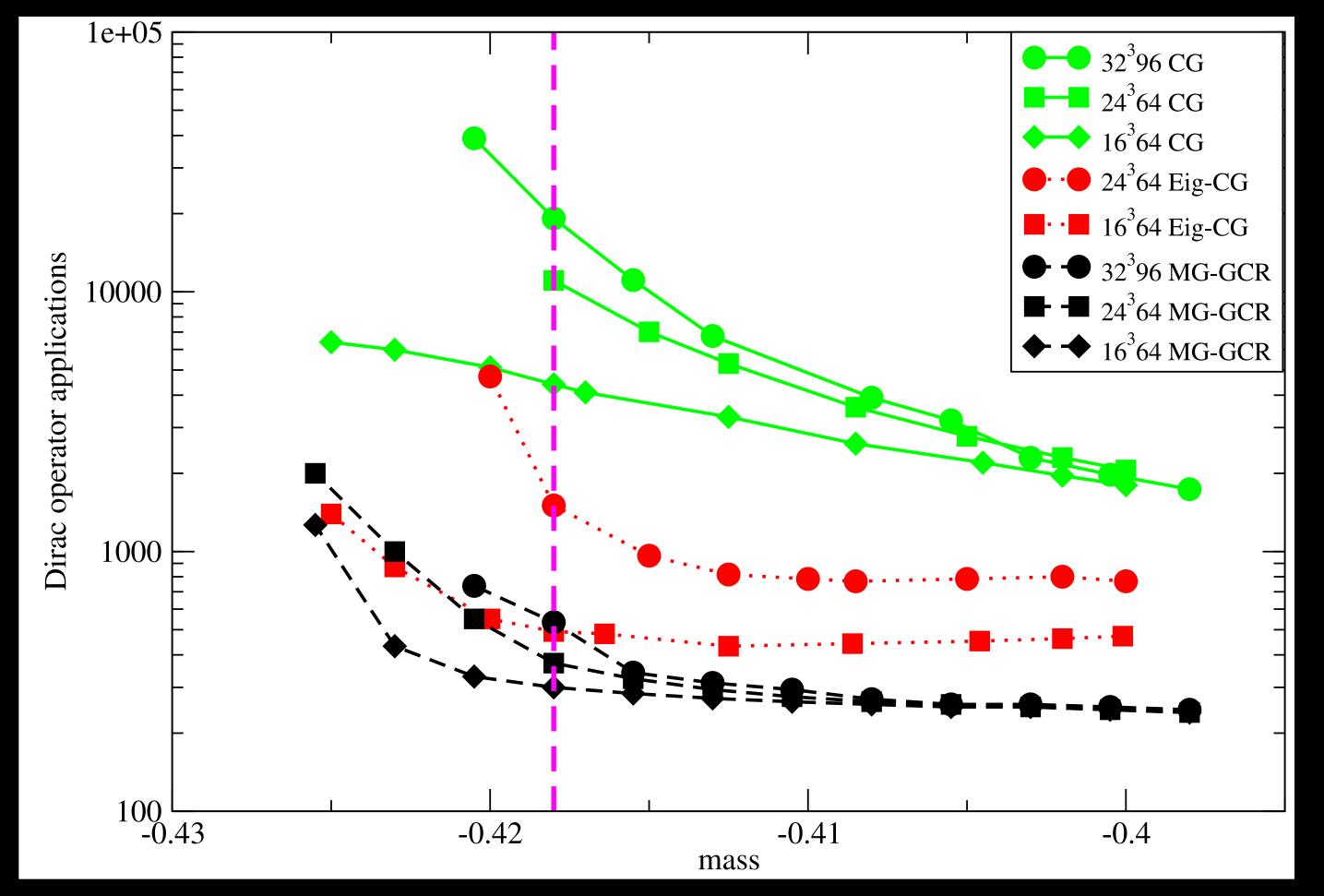
while $(|\mathbf{r}_k| > \varepsilon)$ { $\beta_k = (\mathbf{r}_k, \mathbf{r}_k)/(\mathbf{r}_{k-1}, \mathbf{r}_{k-1})$ $\mathbf{p}_{k+1} = \mathbf{r}_k - \beta_k \mathbf{p}_k$ $q_{k+1} = A p_{k+1}$ $\alpha = (\mathbf{r}_k, \mathbf{r}_k)/(\mathbf{p}_{k+1}, \mathbf{q}_{k+1})$ $\mathbf{r}_{k+1} = \mathbf{r}_k - \alpha \mathbf{q}_{k+1}$ $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha \mathbf{p}_{k+1}$ k = k+1

> conjugate gradient

- Twisted mass, degenerate and non degenerate twisted mass

- Naive Krylov solvers suffer from critical slowing down at decreasing mass

Adaptive Geometric Multigrid



240 vectors 20 vectors

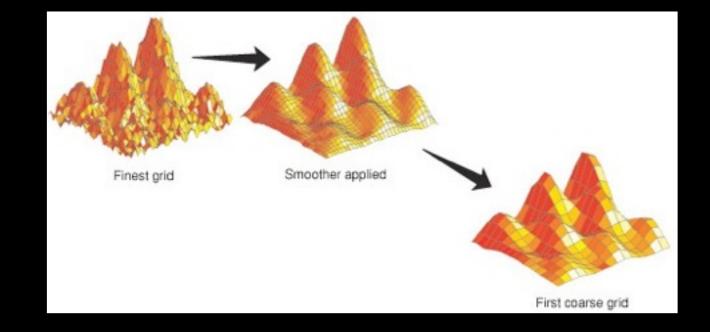
Babich et al 2010

Adaptive Geometric Multigrid

- Adaptively find candidate null-space vectors
 - Dynamically learn the null space and use this to define the prolongator
 - Algorithm is self learning

Setup

- 1. Set solver to be simple smoother
- 2. Apply current solver to random vector $v_i = P(D) \eta_i$
- 3. If convergence good enough, solver setup complete
- 4. Construct prolongator using fixed coarsening $(1 P R) v_k = 0$
- Typically use 4⁴ geometric blocks
 - Preserve chirality when coarsening $R = \gamma_5 P^{\dagger} \gamma_5 = P^{\dagger}$
- 5. Construct coarse operator $(D_c = R D P)$
- 6. Recurse on coarse problem
- 7. Set solver to be augmented V-cycle, goto 2



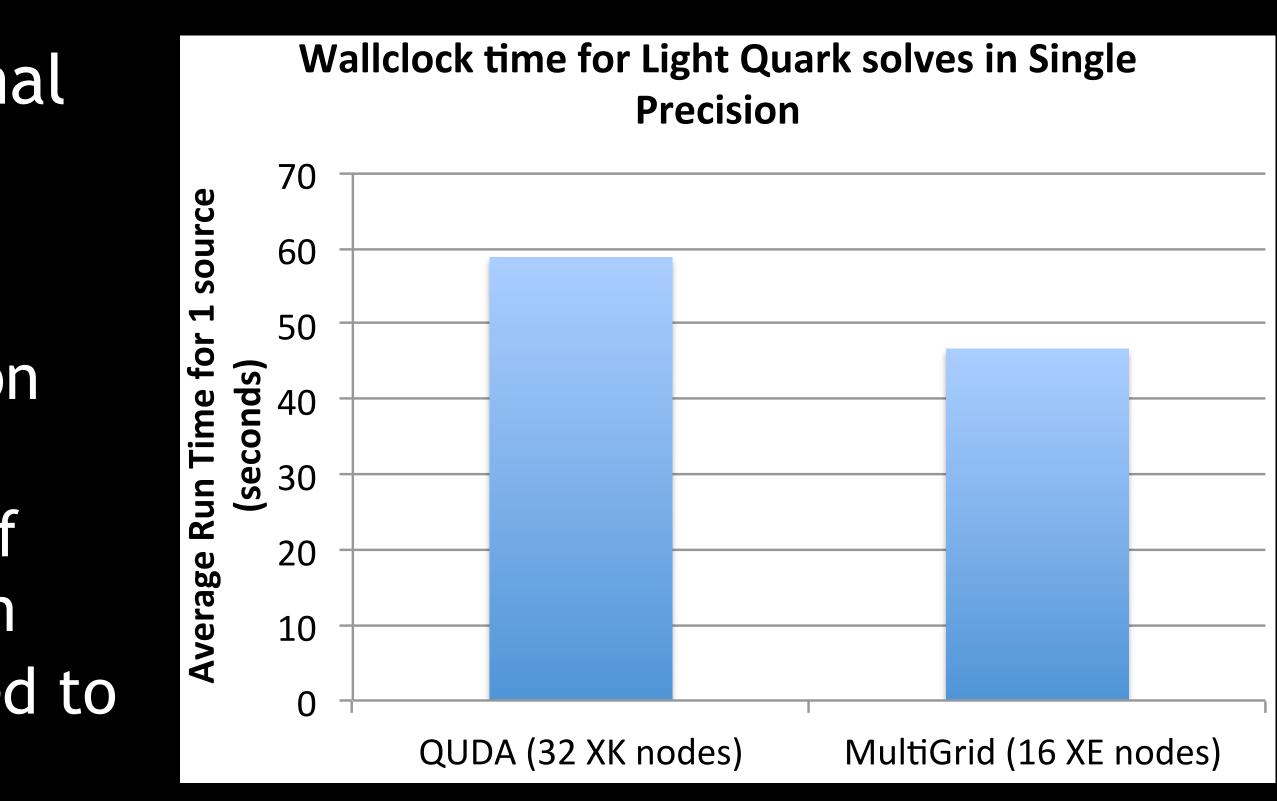
Hierarchical algorithms for LQCD

Adaptive Geometric Multigrid for LQCD Clover Multigrid (Osborn et al 2010) - Apply multigrid to the even/odd system Inexact Deflation (Lüscher 2007) - Equivalent to adaptive "unsmoothed" aggregation —Local coherence = Weak-approximation property — Apply to normal operator for positivity

- Based on adaptive smooth aggregation (Brezina et al 2004)
- Low modes have weak-approximation property => locally co-linear
- Apply fixed geometric coarsening (Brannick et al 2007, Babich et al 2010)
- Domain decomposition multigrid (Frommer et al 2012)
 - -Use Schwarz Alternating Procedure as smoother for improved scalability
 - Uses an additive correction vs. MG's multiplicative correction
- Domain-wall Multigrid / Deflation (Cohen et al 2012, Boyle 2013)

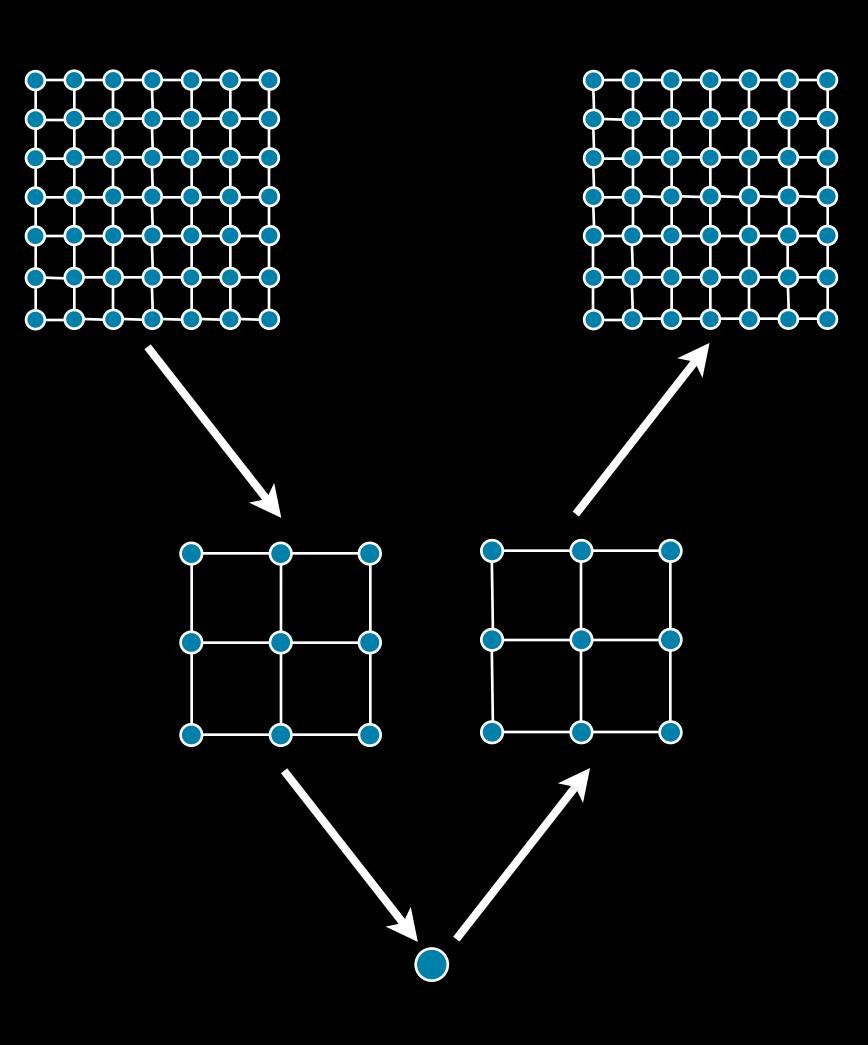
Motivation

- A CPU running the optimal algorithm can surpass a highly tuned GPU naive algorithm
- For competitiveness, MG on GPU is a must
- Seek multiplicative gain of architecture and algorithm
- Multigrid speedup expected to be > 10x

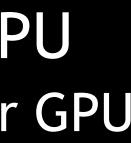


Chroma propagator benchmark Figure by Balint Joo MG Chroma integration by Saul Cohen MG Algorithm by James Osborn

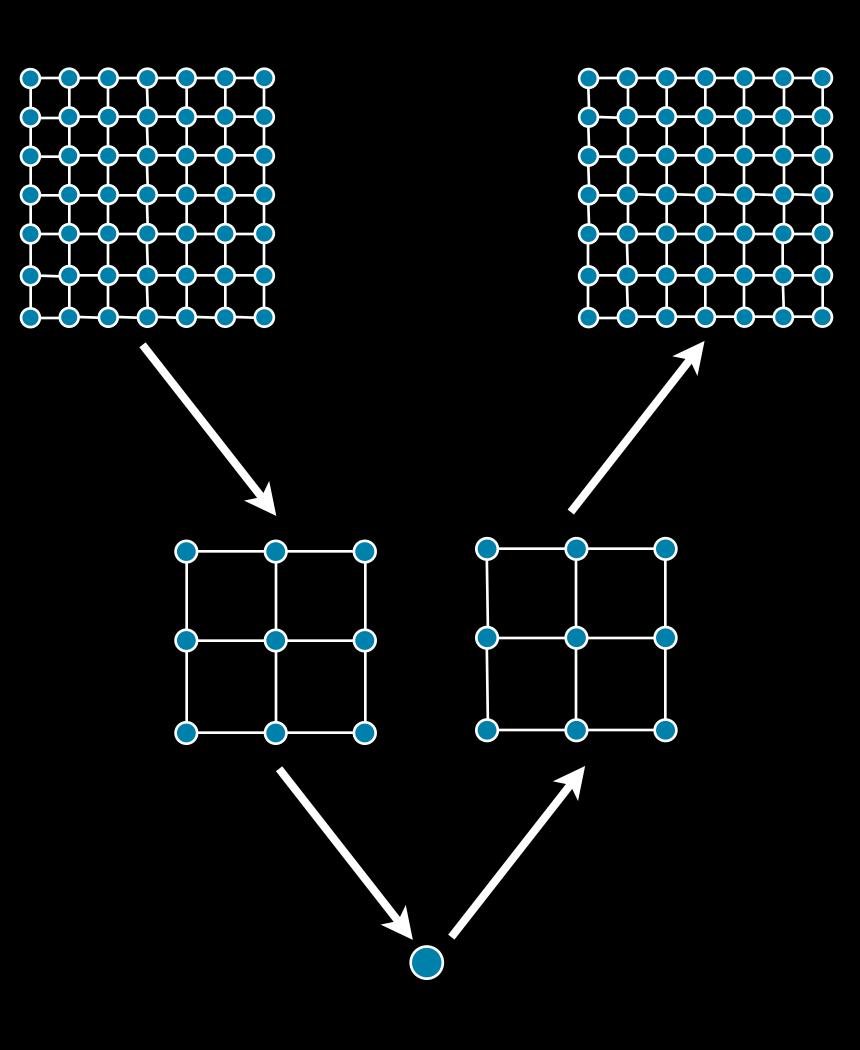
The Challenge of Multigrid on GPU

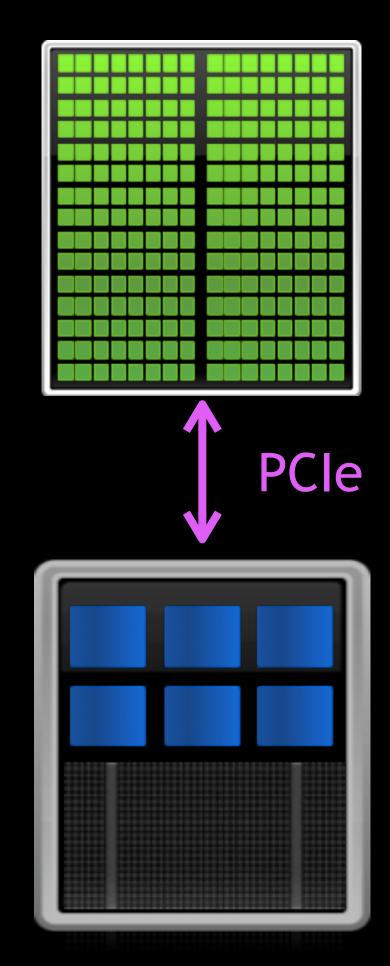


- GPU requirements very different from CPU - Each thread is slow, but O(10,000) threads per GPU
- Fine grids run very efficiently High parallel throughput problem
- Coarse grids are worst possible scenario
 - More cores than degrees of freedom
 - Increasingly serial and latency bound
 - Little's law (bytes = bandwidth * latency)
 - Amdahl's law limiter
- Multigrid decomposes problem into throughput and latency parts



Hierarchical algorithms on heterogeneous architectures





GPU

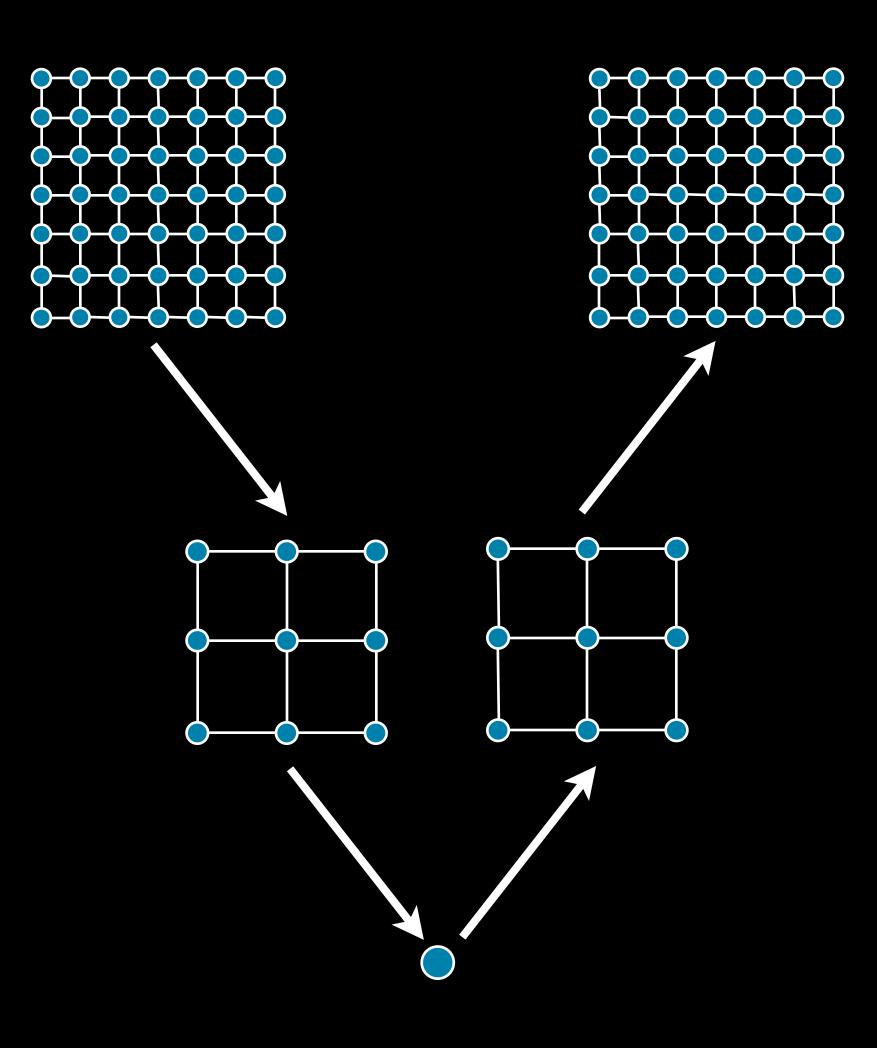
Thousands of cores for parallel processing

CPU

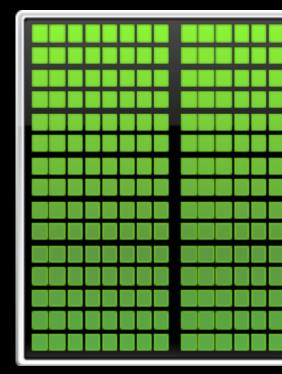
Few Cores optimized for serial work

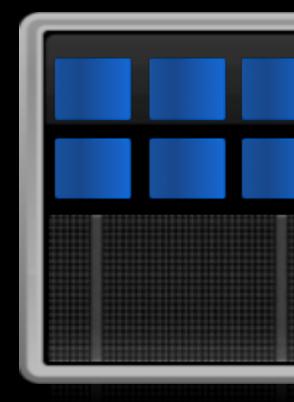
Heterogeneous Updating Scheme

ullet

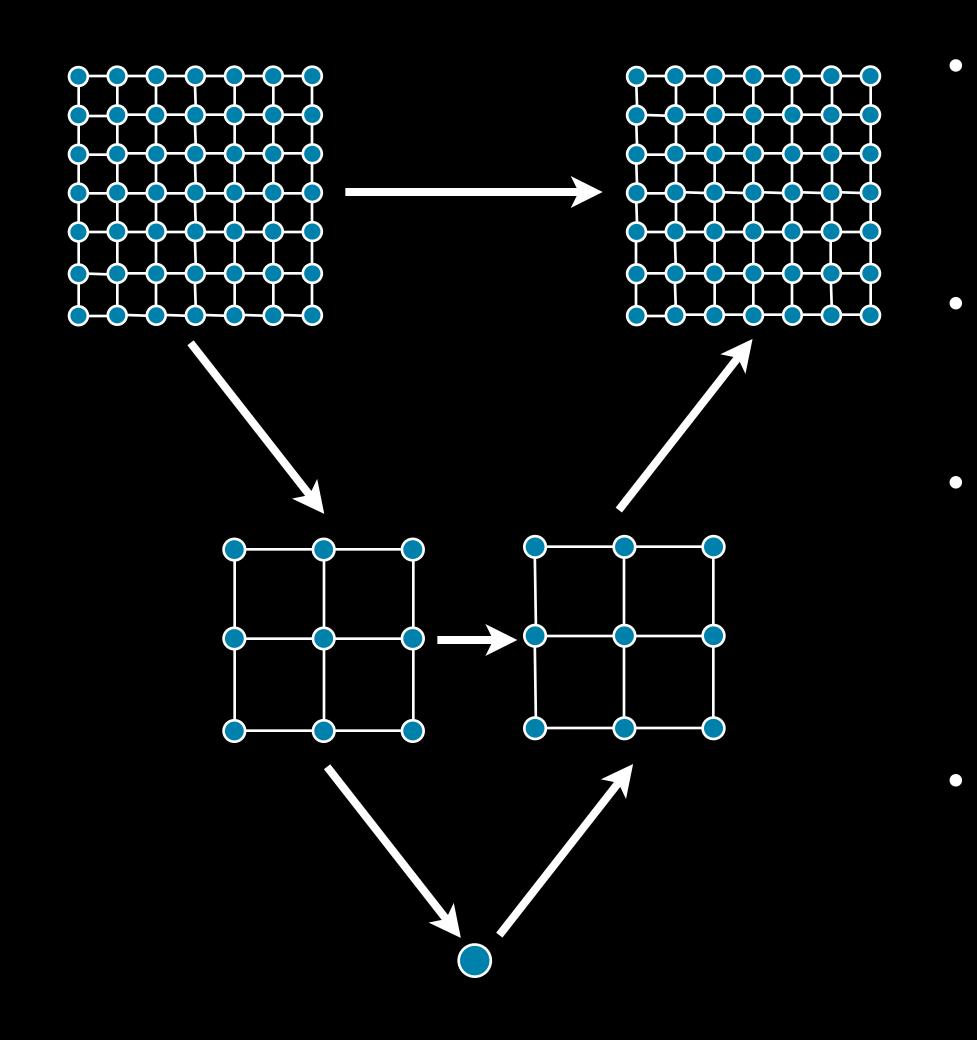


- Multiplicative MG is necessarily serial process
- Cannot utilize both GPU and CPU simultanesouly

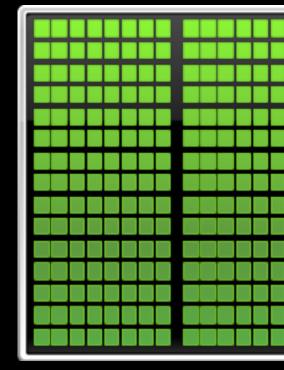


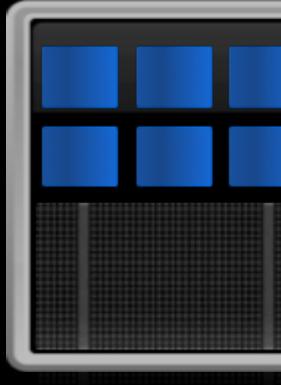


Heterogeneous Updating Scheme



- Multiplicative MG is necessarily serial process
- Cannot utilize both GPU and CPU simultanesouly
- Additive MG is parallel
 - Can utilize both GPU and CPU simultanesouly
- Additive MG requires accurate coarsegrid solution
 - Not amenable to multi-level
 - Only need additive correction at CPU<->GPU level interface
- Heterogeneous Multigrid may actually *improve* strong scaling
 - Already doing DD preconditioner
 - Coarse-grid correction is almost free





Design Goals

Performance

- LQCD typically reaches high % peak peak performance
- Brute force can beat the best algorithm
- Multigrid must be optimized to the same level

Flexibility

- Deploy level *i* on either CPU or GPU
- All algorithmic flow decisions made at runtime
- Autotune for a given *heterogeneous* architecture
- (Short term) Provide optimal solvers to legacy apps - e.g., Chroma, CPS, MILC, etc.
- (Long term) Hierarchical algorithm toolbox
 - Little to no barrier to implementing new algorithms

Ingredients for Parallel Adaptive Multigrid

Prolongation construction (setup)

- Block orthogonalization of null space vectors
- Sort null-space vectors into block order (locality)
- Batched QR decomposition
- Smoothing (relaxation on a given grid)
 - Repurpose the domain-decomposition preconditioner

Prolongation

- interpolation from coarse grid to fine grid
- one-to-many mapping

Restriction

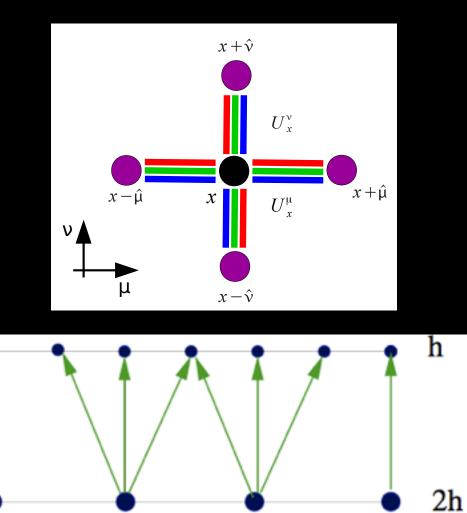
- restriction from fine grid to coarse grid
- many-to-one mapping

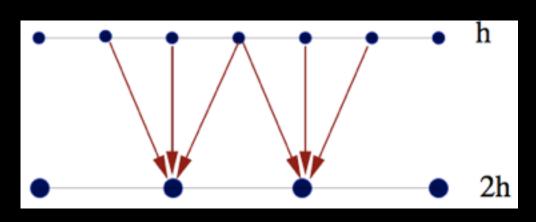
Coarse Operator construction (setup)

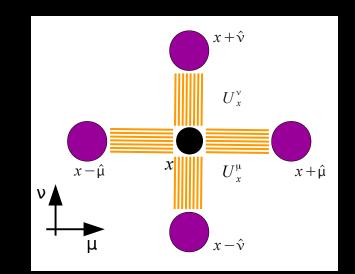
- Evaluate *R A P* locally
- Batched (small) dense matrix multiplication

Coarse grid solver

- direct solve on coarse grid
- (near) serial algorithm







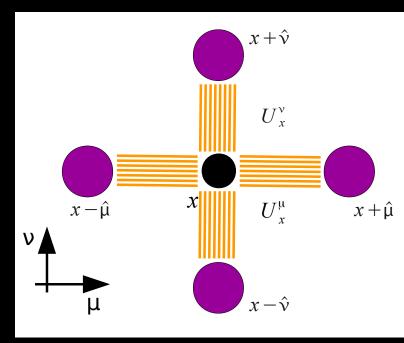
Parallel Implementation

Coarse operator looks like a Dirac operator - Link matrices have dimension $N_v \times N_v$ (e.g., 24 x 24)

$$\hat{D}_{\mathbf{i}\hat{s}\hat{c},\mathbf{j}\hat{s}'\hat{c}'} = -\sum_{\mu} \left[Y_{\mathbf{i}\hat{s}\hat{c},\mathbf{j}\hat{s}'\hat{c}'}^{-\mu} \delta_{\mathbf{i}+\mu,\mathbf{j}} + Y_{\mathbf{i}\hat{s}\hat{c},\mathbf{j}\hat{s}'\hat{c}'}^{+\mu\dagger} \delta_{\mathbf{i}-\mu,\mathbf{j}} \right] + \left(M - X_{\mathbf{i}\hat{s}\hat{c},\mathbf{j}\hat{s}'\hat{c}'} \right) \delta_{\mathbf{i}\hat{s}\hat{c},\mathbf{j}\hat{s}'\hat{c}'}$$

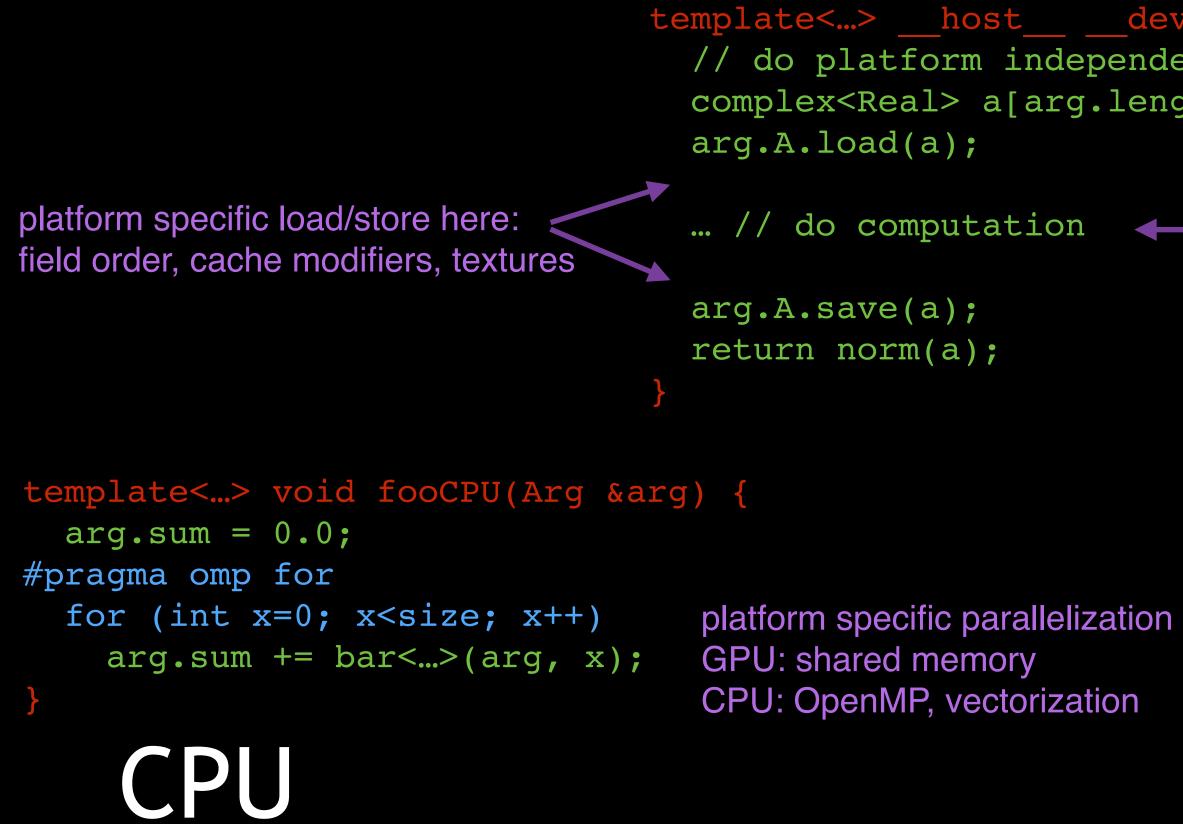
Fine vs. Coarse grid parallelization - Coarse grid points have limited thread-level parallelism - Highly desirable to parallelize over fine grid points where possible Parallelization of internal degrees of freedom? - Color / Spin degrees of freedom are tightly coupled (dense matrix) - Each thread loops over color / spin dimensions - Rely on instruction-level parallelism for latency hiding Parallel multigrid uses common parallel primitives

- - Reduce, sort, etc.
 - Use CUB parallel primitives for high performance



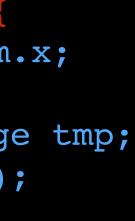
Writing the same code for two architectures

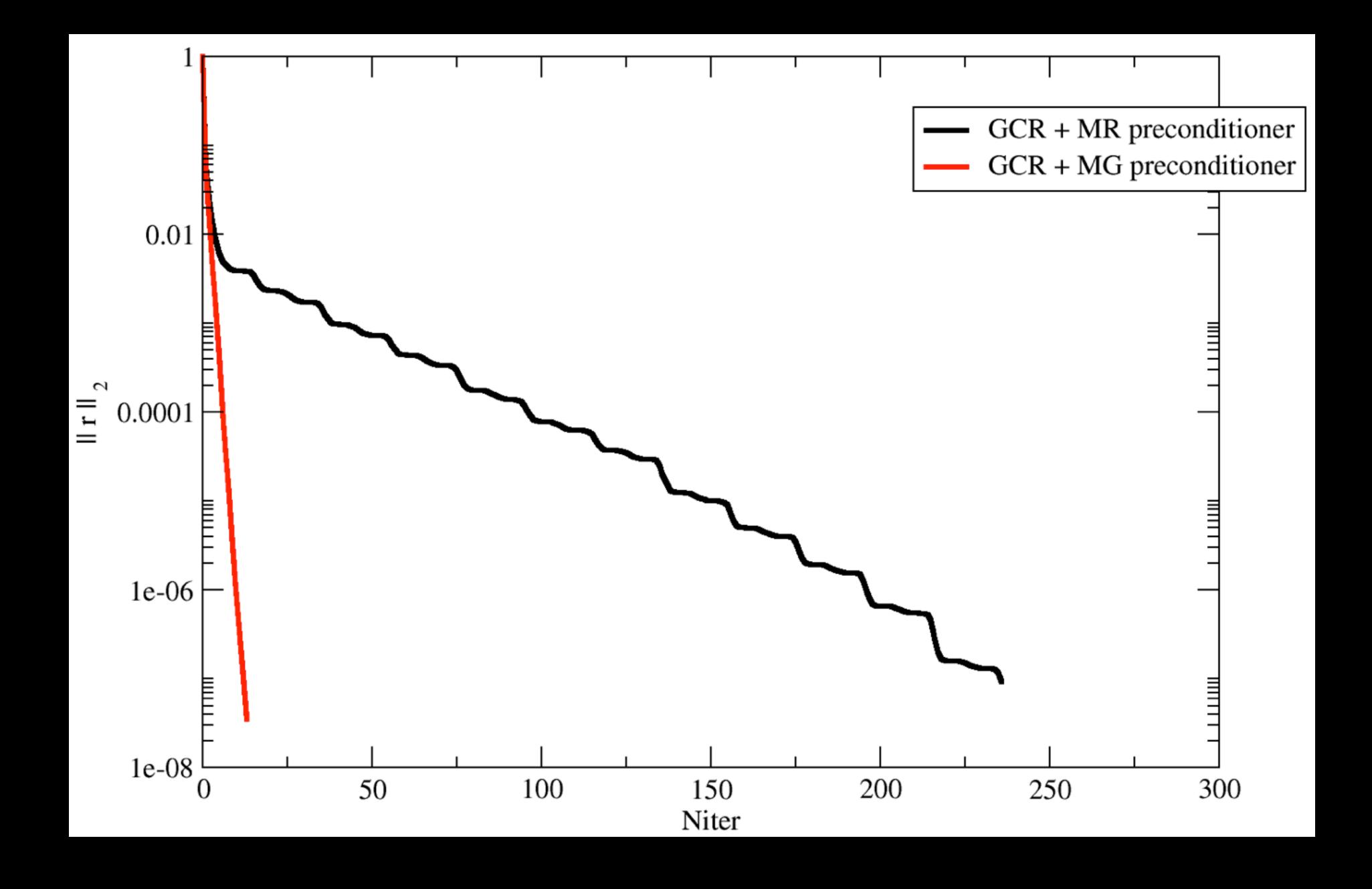
• Use C++ templates to abstract arch specifics Load/store order, caching modifiers, precision, intrinsics



```
template<...> host device Real bar(Arg & arg, int x) {
  // do platform independent stuff here
  complex<Real> a[arg.length];
                                   platform independent stuff goes here
                                   99% of computation goes here
                            template<...> global void fooGPU(Arg arg) {
                              int tid = threadIdx.x + blockIdx.x*blockDim.x;
                              real sum = bar<...>(arg, tid);
                                shared typename BlockReduce::TempStorage tmp;
                              arg.sum = cub::BlockReduce<...>(tmp).Sum(sum);
```

GPU





Current Status

- Wilson multigrid fully numerically verified
- Framework still slow
 - Host code not optimized at all GPU <-> CPU transfers not optimal Optimal code requires heavy degree of templating (compilation and link time is increasingly a problem)
- Early observations
 - Using 16-bit precision for smoothing does not affect convergence
 - Coarse-grid solve can be poorly conditioned thus requiring single precision

Consistent with results from QCDMG (Babich et al 2010)

Next Steps

- Optimize

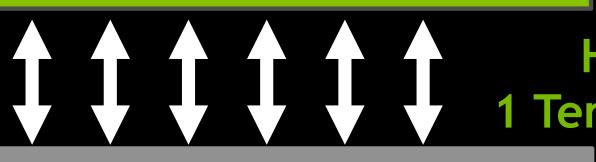
 - read/write directly to/from CPU memory
- Strong scaling
- Algorithm research
 - Precision investigation

 - Spin coarsening strategies and use of Laplace modes - Coarse-grid solvers (direct vs. indirect)
 - Staggered multigrid
 - heterogeneous architectures
- Comparison of traditional versus heterogeneous update Real goal is developing asynchronous solvers for future

- E.g., kernel fusion, CPU OpenMP/vectorization • Add support for clover coarsening and put into production asap

Heterogeneous Computing in 2016

TESLA GPU



Stacked Memory

NVLink 80 GB/s

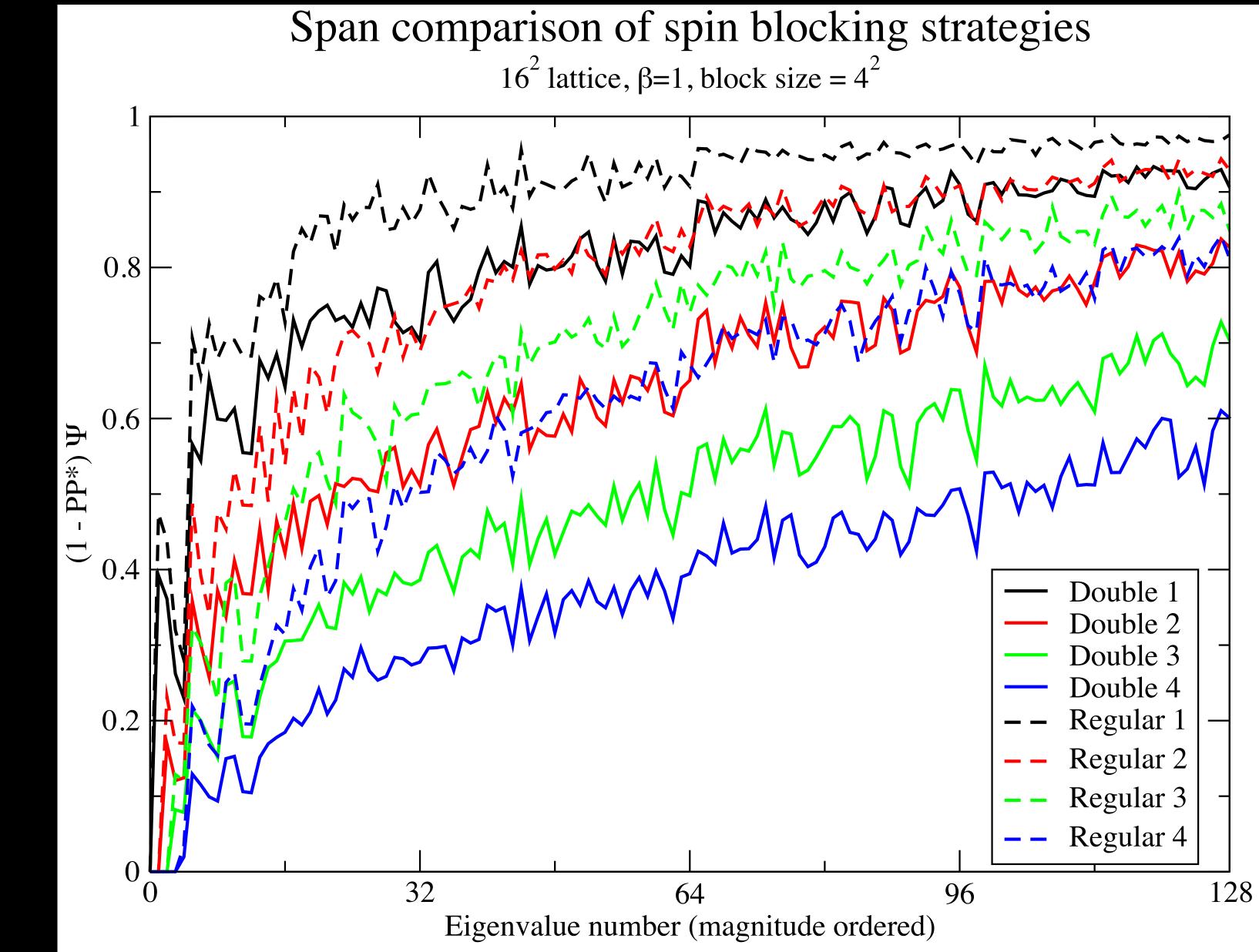
CPU

HBM 1 Terabyte/s

DDR Memory

Summary

- Overview of Multigrid in QUDA project
- Framework essentially complete (barring clover)
- Efforts now focussed on optimization
- Then can *finally* return to numerics
- Hierarchical and heterogeneous algorithm research toolbox
 Aim for scalability and optimality
- Lessons today are relevant for future architecture preparation



Hierarchical Algorithm Toolbox

- Real goal is to produce scalable and optimal solvers Exploit closer coupling of precision and algorithm
- - QUDA designed for complete run-time specification of precision at any point in the algorithm
 - Currently supports 64-bit, 32-bit, 16-bit
 - Is 128-bit or 8-bit useful at all for hierarchical algorithms?
- Domain-decomposition (DD) and multigrid - DD solvers are effective for high-frequency dampening
 - Overlapping domains likely more important at coarser scales?

The compilation problem...

- global memory (L1 / L2 / DRAM)

template <typename ProlongateArg> int x = blockIdx.x*blockDim.x + threadIdx.x; for (int s=0; s<Nspin; s++) {</pre> for (int c=0; c<Ncolor; c++) {</pre>

 Tightly-coupled variables should be at the register level • Dynamic indexing cannot be resolved in register variables - Array values with indices not known at compile time spill out into

```
_global___ void prolongate(ProlongateArg arg, int Ncolor, int Nspin) {
```

The compilation problem...

 Tensor product between different parameters - O(10,000 combinations) per kernel Only compile necessary kernel at runtime

```
template <typename Arg, int Ncolor, int Nspin>
             global void prolongate(Arg arg) {
              int x = blockIdx.x*blockDim.x + threadIdx.x;
              for (int s=0; s<Nspin; s++) {</pre>
                for (int c=0; c<Ncolor; c++) {</pre>
• JIT compilation will fix this
```

• All *internal* parameters must be known at *compile* time - Template over every possible combination O(10,000) combinations

Mapping the Dirac operator to CUDA

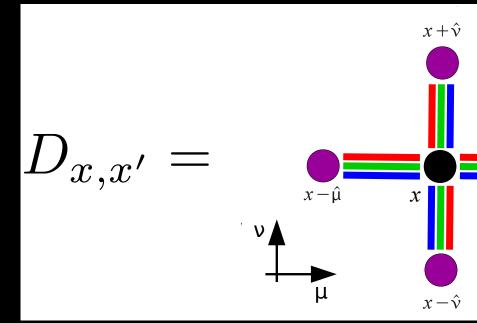
- V = XYZT threads, e.g., V = 24^4 => 3.3×10^6 threads

- Finite difference operator in LQCD is known as Dslash • Assign a single space-time point to each thread • Looping over direction each thread must
 - Load the neighboring spinor (24 numbers x8)
 - Load the color matrix connecting the sites (18 numbers x8)
 - Do the computation

2014

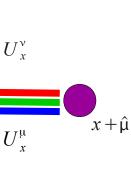
attice

- Save the result (24 numbers)
- QUDA reduces memory traffic
- Each thread has (Wilson Dslash) 0.92 naive arithmetic intensity
 - Exact SU(3) matrix compression (18 => 12 or 8 real numbers)
 - Similarity transforms to increase operator sparsity
 - Use 16-bit fixed-point representation
 - No loss in precision with mixed-precision solver ightarrow
 - Almost a free lunch (small increase in iteration count)

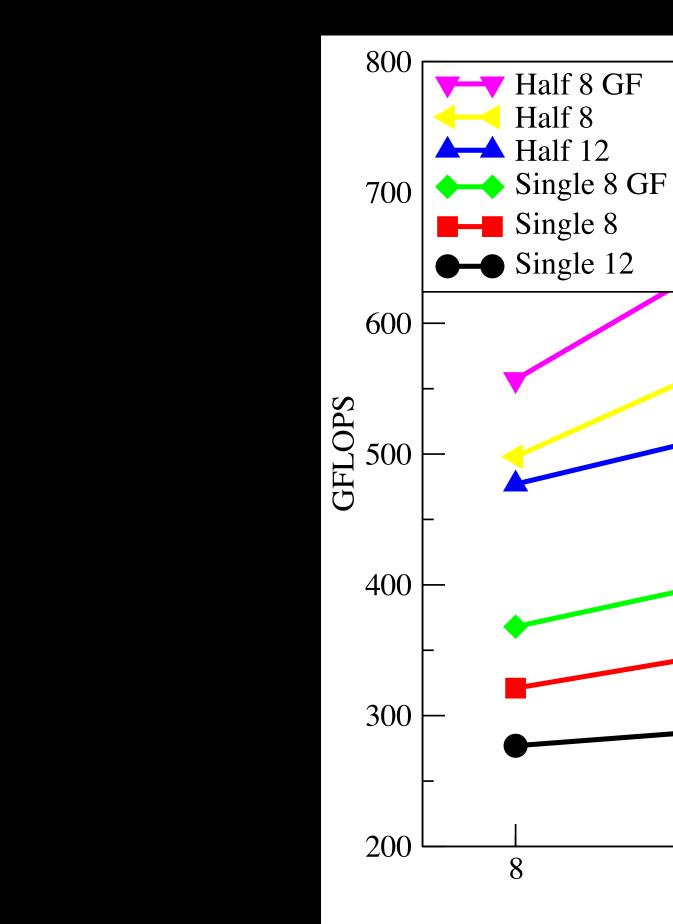


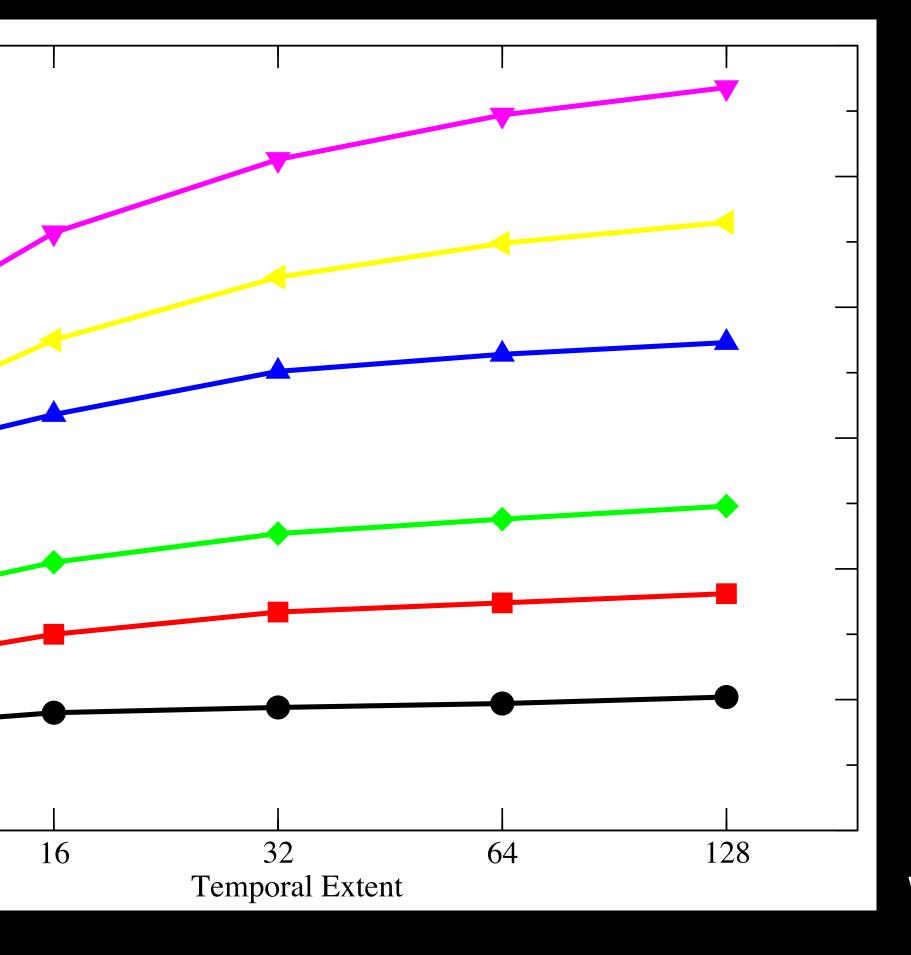
Tesla K20X

Gflops	3995
GB/s	250
AI	16



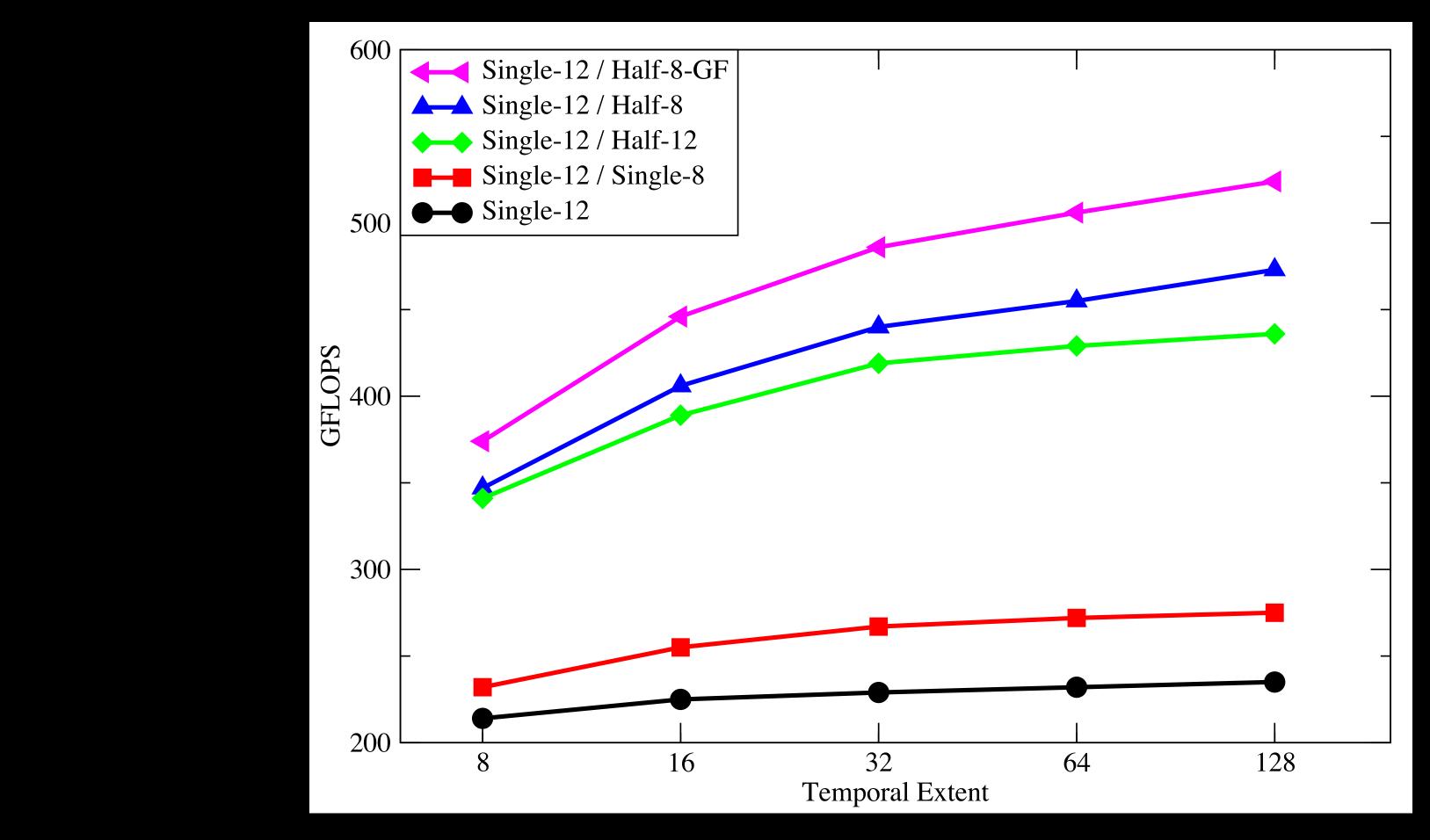
Kepler Wilson-Dslash Performance





Wilson Dslash K20X performance $V = 24^3 x T$

Kepler Wilson-Solver Performance



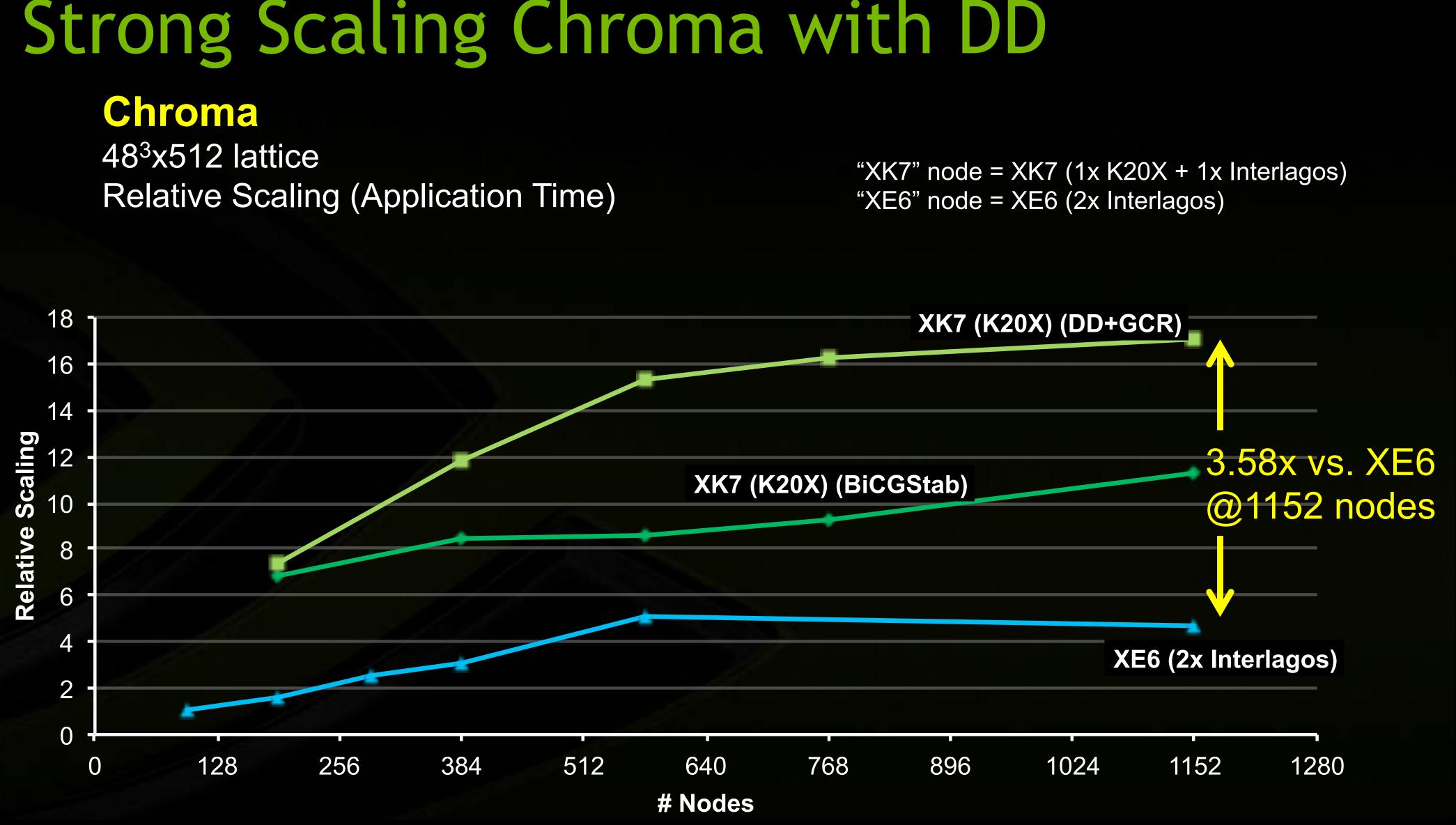
Wilson CG K20X performance $V = 24^{3}xT$

Communication-Reducing Algorithms

- Non-overlapping blocks simply switch off inter-node comms Preconditioner is a gross approximation - Use an iterative solver to solve each domain
- - system
 - Only block-local sums required Require only ~10 iterations of domain solver
 - \Rightarrow 16-bit precision
- Need to use a flexible solver \implies GCR
- Block-diagonal preconditioner impose λ cutoff

 - Limits scalability of algorithm In practice, non-preconditioned part becomes source of Amdahl

Strong Scaling Chroma with DD

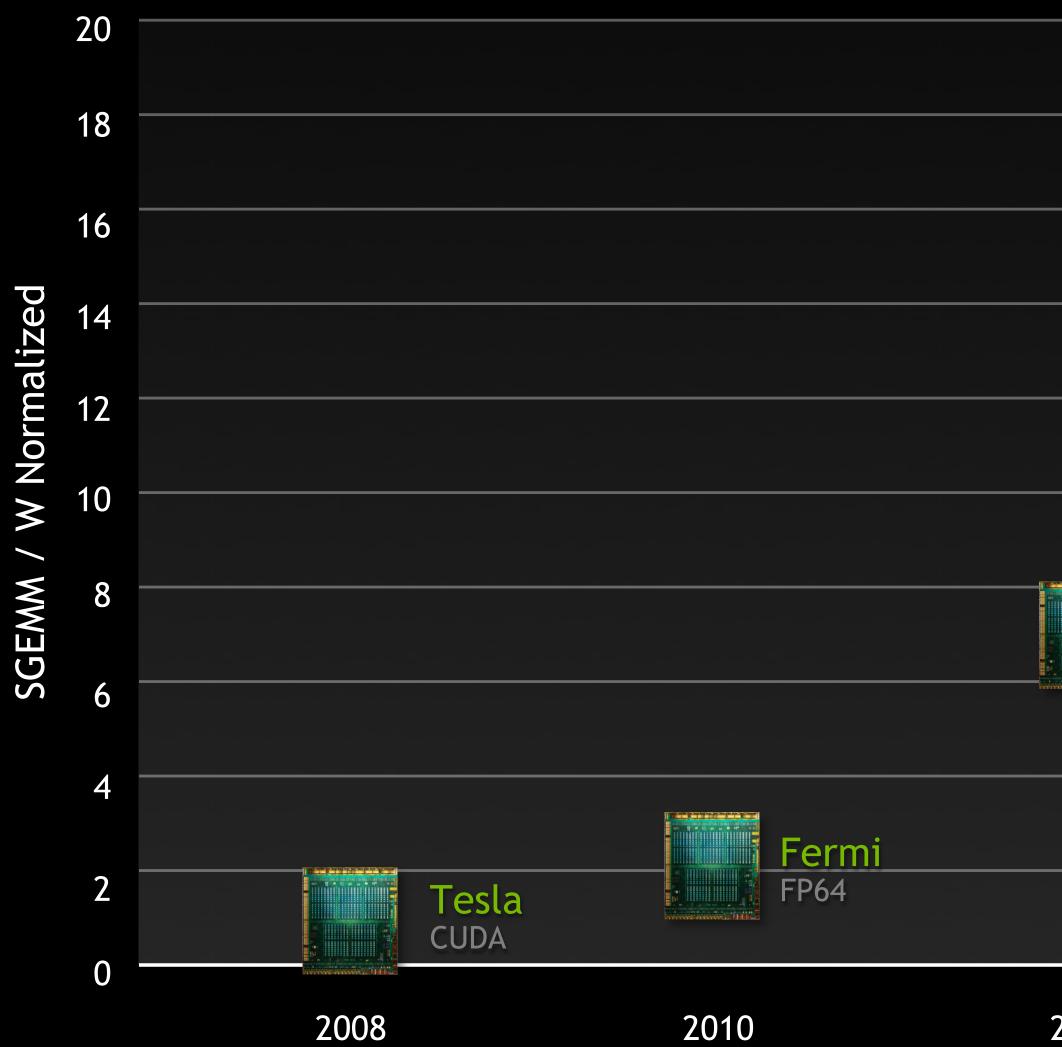


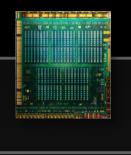
Deflation Algorithms in QUDA EigCG implemented in QUDA (Alexei Strelchenko)

1 U = [], H = []for $s = 1, ..., s_1$: 2 $x_0 = UH^{-1}U^H b_s$ 3 $[x_i, V, H] = eigCG(nev, m, A, x_0, b_i)$ //eigCG part 4 5 $[U,H] = \mathsf{RayleighRitz}[U,\bar{V}]$ 6 end for

//accum. Ritz vectors $//for s_1 RHS$ //Galerkin proj. $\bar{V} =$ orthogonalize V against U = //(not strictly needed)

Strong GPU Roadmap





Pascal

Unified Memory 3D Memory -NVLink-

