
Lattice 2014

ADAPTIVE MULTIGRID SOLVERS
FOR LQCD ON GPUS

M Clark
with
Michael Cheng and Rich Brower
(Boston University)

La
tt

ic
e

20
14 Contents

▪GPU Computing + QUDA
▪Multigrid
▪Heterogeneous Multigrid
▪Summary

La
tt

ic
e

20
14 What is a GPU?

• Kepler K20X (2012)
– 2688 processing cores
– 3995 SP Gflops peak

• Effective SIMD width of 32 threads (warp)
• Deep memory hierarchy
• As we move away from registers

– Bandwidth decreases
– Latency increases

• Programmed using a thread model
– Architecture abstraction is known as CUDA
– Fine-grained parallelism required

• Diversity of programming languages
– CUDA C/C++/Fortran
– OpenACC, OpenMP 4.0
– Python, etc.

Device MemoryDevice Memory

Multiprocessor 1

Core
1

Core
2

Core
32

 . . .

Multiprocessor 2

Core
1

Core
2

Core
32

 . . .

Multiprocessor n

Core
1

Core
2

Core
32

 . . .

 . . .

RegistersRegisters RegistersRegisters RegistersRegisters

177 GB/s

 1.345 TB/s

L2 CacheL2 Cache

Sh
Mem

Sh
Mem

 10.76 TB/s

TexTex Sh
Mem

Sh
Mem TexTex Sh

Mem

Sh
Mem TexTexL1 L1 L1

Host MemoryHost Memory

8.0 GB/s per directionPCIe

 280 GB/s

O
n

 c
h

ip
O

ff
 c

h
ip

250 GB/s

500 GB/s

2.5 TB/s

2.5 TB/s

192 192 192192 192 192

La
tt

ic
e

20
14 Introducing QUDA

• “QCD on CUDA” – http://lattice.github.com/quda
– Open source effort with 20+ contributors

• Effort started at Boston University in 2008, now in wide use as
the GPU backend for BQCD, Chroma, CPS, MILC, TIFR, etc.

• Provides:
— Various solvers for all major fermonic discretizations, with multi-GPU support
— Additional performance-critical routines needed for gauge-field generation

• Maximize performance / Minimize time to science
– Exploit physical symmetries to minimize memory traffic
– Mixed-precision methods
– Autotuning for high performance on all CUDA-capable architectures
– Domain-decomposed (Schwarz) preconditioners for strong scaling
– Eigenvector solvers (Lanczos and EigCG) new!
– Multigrid solvers for optimal convergence new!

http://lattice.github.com/quda

La
tt

ic
e

20
14 Linear Solvers

▪ QUDA supports a wide range of linear solvers
– CG, BiCGstab, GCR, Multi-shift solvers, etc.

▪ As well as domain decomposition preconditioners
– Additive/Multiplicative Schwarz, overlapping domains

▪ Together with almost all fermion actions under the sun
– Wilson, Wilson-clover
– Twisted mass, degenerate and non degenerate twisted mass
– Twisted with a clover term
– HISQ, ASQTAD, naive staggered
– Domain wall, mobius

▪ Condition number inversely proportional to mass
– Light (realistic) masses are highly singular
– Naive Krylov solvers suffer from critical slowing down at decreasing mass

while (|rk|> ε) {
•βk = (rk,rk)/(rk-1,rk-1)
•pk+1 = rk - βkpk

 qk+1 = A pk+1
•α = (rk,rk)/(pk+1, qk+1)
•rk+1 = rk - αqk+1
•xk+1 = xk + αpk+1

•k = k+1
}

conjugate
gradient

La
tt

ic
e

20
14 Adaptive Geometric Multigrid

-0.43 -0.42 -0.41 -0.4
mass

100

1000

10000

1e+05

D
ir

ac
 o

p
er

at
o
r

ap
p
li

ca
ti

o
n
s

32
3
96 CG

24
3
64 CG

16
3
64 CG

24
3
64 Eig-CG

16
3
64 Eig-CG

32
3
96 MG-GCR

24
3
64 MG-GCR

16
3
64 MG-GCR

20 vectors

240 vectors

Babich et al 2010

La
tt

ic
e

20
14 Adaptive Geometric Multigrid

• Adaptively find candidate null-space vectors
– Dynamically learn the null space and use this to  

define the prolongator
– Algorithm is self learning

• Setup
1. Set solver to be simple smoother
2. Apply current solver to random vector vi = P(D) ηi
3. If convergence good enough, solver setup complete
4. Construct prolongator using fixed coarsening (1 - P R) vk = 0
➡ Typically use 44 geometric blocks
➡ Preserve chirality when coarsening R = γ5 P† γ5 = P†

5. Construct coarse operator (Dc = R D P)
6. Recurse on coarse problem
7. Set solver to be augmented V-cycle, goto 2

La
tt

ic
e

20
14 Hierarchical algorithms for LQCD

▪ Adaptive Geometric Multigrid for LQCD
—Based on adaptive smooth aggregation (Brezina et al 2004)
—Low modes have weak-approximation property => locally co-linear
—Apply fixed geometric coarsening (Brannick et al 2007, Babich et al 2010)
▪Clover Multigrid (Osborn et al 2010)
—Apply multigrid to the even/odd system
▪ Domain decomposition multigrid (Frommer et al 2012)
—Use Schwarz Alternating Procedure as smoother for improved scalability
▪ Inexact Deflation (Lüscher 2007)
—Equivalent to adaptive “unsmoothed” aggregation
—Local coherence = Weak-approximation property
—Uses an additive correction vs. MG’s multiplicative correction
▪Domain-wall Multigrid / Deflation (Cohen et al 2012, Boyle 2013)
—Apply to normal operator for positivity

La
tt

ic
e

20
14 Motivation

▪ A CPU running the optimal
algorithm can surpass a
highly tuned GPU naive
algorithm

▪ For competitiveness, MG on
GPU is a must

▪ Seek multiplicative gain of
architecture and algorithm

▪ Multigrid speedup expected to
be > 10x

0"

10"

20"

30"

40"

50"

60"

70"

QUDA"(32"XK"nodes)" Mul:Grid"(16"XE"nodes)""

Av
er
ag
e'
Ru

n'
Ti
m
e'
fo
r'1

'so
ur
ce
''

(s
ec
on

ds
)'

Wallclock'9me'for'Light'Quark'solves'in'Single'
Precision''

0"

5"

10"

15"

20"

25"

30"

35"

QUDA"(16"XK"Nodes)" Mul:"Grid(16"XE"Nodes)"

Av
er
ag
e'
Ti
m
e'
fo
r'1

'so
ur
ce
'

(s
ec
on

ds
)'

Wallclock'9me'for'Strange'Quark'solves'in'Single'
Precision'

Chroma propagator benchmark  
Figure by Balint Joo 
MG Chroma integration by Saul Cohen 
MG Algorithm by James Osborn

La
tt

ic
e

20
14 The Challenge of Multigrid on GPU

• GPU requirements very different from CPU
– Each thread is slow, but O(10,000) threads per GPU

• Fine grids run very efficiently
– High parallel throughput problem

• Coarse grids are worst possible scenario
– More cores than degrees of freedom
– Increasingly serial and latency bound
– Little’s law (bytes = bandwidth * latency)
– Amdahl’s law limiter

• Multigrid decomposes problem into
throughput and latency parts

La
tt

ic
e

20
14

Hierarchical algorithms on
heterogeneous architectures

Thousands of cores
for parallel processing

Few Cores optimized
for serial work

CPU

GPU

PCIe

La
tt

ic
e

20
14 Heterogeneous Updating Scheme

• Multiplicative MG is necessarily serial
process
– Cannot utilize both GPU and CPU

simultanesouly
• Additive MG is parallel

– Can utilize both GPU and CPU
simultanesouly

• Additive MG requires accurate
coarse-grid solution
– Not amenable to multi-level
– Only need additive correction at

CPU<->GPU level interface
• Accurate coarse grid solution

maybe cheaper than
serialization / synchronization

La
tt

ic
e

20
14 Heterogeneous Updating Scheme

• Multiplicative MG is necessarily serial
process
– Cannot utilize both GPU and CPU

simultanesouly
• Additive MG is parallel

– Can utilize both GPU and CPU
simultanesouly

• Additive MG requires accurate coarse-
grid solution
– Not amenable to multi-level
– Only need additive correction at  

CPU<->GPU level interface
• Heterogeneous Multigrid may actually

improve strong scaling
– Already doing DD preconditioner
– Coarse-grid correction is almost free

La
tt

ic
e

20
14 Design Goals

• Performance
– LQCD typically reaches high % peak peak performance
– Brute force can beat the best algorithm
– Multigrid must be optimized to the same level

• Flexibility
– Deploy level i on either CPU or GPU
– All algorithmic flow decisions made at runtime
– Autotune for a given heterogeneous architecture

• (Short term) Provide optimal solvers to legacy apps
– e.g., Chroma, CPS, MILC, etc.

• (Long term) Hierarchical algorithm toolbox
– Little to no barrier to implementing new algorithms

La
tt

ic
e

20
14 Ingredients for Parallel Adaptive Multigrid

▪ Prolongation construction (setup)
– Block orthogonalization of null space vectors
– Sort null-space vectors into block order (locality)
– Batched QR decomposition

▪ Smoothing (relaxation on a given grid)
– Repurpose the domain-decomposition preconditioner

▪ Prolongation
– interpolation from coarse grid to fine grid
– one-to-many mapping

▪ Restriction
– restriction from fine grid to coarse grid
– many-to-one mapping

▪ Coarse Operator construction (setup)
– Evaluate R A P locally
– Batched (small) dense matrix multiplication

▪ Coarse grid solver
– direct solve on coarse grid
– (near) serial algorithm x

x

x

x−

x−

U x

U
x

μ

μ

ν

x x

x

x−

x−

U x

U
x

μ

μ

ν

La
tt

ic
e

20
14

▪ Coarse operator looks like a Dirac operator
– Link matrices have dimension Nv x Nv (e.g., 24 x 24)

!

!

!

▪ Fine vs. Coarse grid parallelization
– Coarse grid points have limited thread-level parallelism
– Highly desirable to parallelize over fine grid points where possible
▪ Parallelization of internal degrees of freedom?
– Color / Spin degrees of freedom are tightly coupled (dense matrix)
– Each thread loops over color / spin dimensions
– Rely on instruction-level parallelism for latency hiding
▪ Parallel multigrid uses common parallel primitives
– Reduce, sort, etc.
– Use CUB parallel primitives for high performance

Parallel Implementation

dofs (geometry). We start by defining the fields

W±µ
ksĉ,ls�ĉ� = V †

ksc,ksĉP
±µ
s,s�U(k+µ)c,lc��k+µ,lVls�c�,lŝ�ĉ�

note that here we are defining di�erent links for forward and backwards,
they are not simply the conjugate of each other (because of the di�erent spin
projection between the two). Also note that these e�ective link matrices have
also a spin index, this is because the vectors used to define the V rotation
matrices have spin dependence now. In this form we can now write down the
coarse Dirac operator as

D̂iŝĉ,jŝ�ĉ� = �
�
�i,k/B�ŝ,s/Bs

⇥ ⇤

µ

⌅
W�µ

ksĉ,ls�ĉ��k+µ,l + W+µ†
ksĉ,ls�ĉ��k�µ,l

⇧ �
�l/B,j�s�/Bs,ŝ�

⇥

+M �iŝĉ,jŝ�ĉ� .

We now finish up by blocking the geometry and spin onto the coarse lattice,
defining the e�ective link matrices Y ±µ that connect sites on the coarse
lattice:

Y ±µ
iŝĉ,jŝ�ĉ� =

�
�i,k/B�ŝ,s/Bs

⇥
W±µ

ksĉ,ls�ĉ�

�
�l/B,j�s�/Bs,ŝ�

⇥
�i⇤µ,j (2)

Xiŝĉ,jŝ�ĉ� =
�
�i,k/B�ŝ,s/Bs

⇥ ⇤

µ

⌅
W�µ

iŝĉ,kŝ�ĉ� + W+µ†
iŝĉ,kŝ�ĉ�

⇧ �
�l/B,j�s�/Bs,ŝ�

⇥
�i,j,

where we note now that the matrix X is not Hermitian. Thus the coarse
operator is written

D̂iŝĉ,jŝ�ĉ� = �
⇤

µ

⌅
Y �µ

iŝĉ,jŝ�ĉ��i+µ,j + Y +µ†
isĉ,js�ĉ��i�µ,j

⇧
+ (M �Xiŝĉ,jŝ�ĉ�) �iŝĉ,jŝ�ĉ� . (3)

For the explicit form of these matrices we refer the reader to Appendix A.
After the first blocking, subsequent blockings require that Bs = 1, i.e., we

cannot block the spin dimension again since we cannot remove the chirality.
Apart from this observation, the next coarse operator will have a similar form
to the current one: it will be a nearest neighbour non-Hermitian operator
connecting sites with ds = 2 spin dimension (in 2d and 4d anyway).

We note here in passing that because of the definition of the matrix field V
include explicit spin dependence, this destroys the tensor product structure
of the spin and colour on the coarse operator, i.e., we have to define an
e�ective link matrix that rotates in spin and colour space. If this were not
the case, i.e., if V were to be spin independent, then this structure would be

8

x
x

x

x−

x−

U x

U
x

μ

μ

ν

La
tt

ic
e

20
14 Writing the same code for two architectures

template<…> void fooCPU(Arg &arg) {!
 arg.sum = 0.0;!
#pragma omp for!
 for (int x=0; x<size; x++) !
 arg.sum += bar<…>(arg, x);!
}

template<…> __global__ void fooGPU(Arg arg) {!
 int tid = threadIdx.x + blockIdx.x*blockDim.x;!
 real sum = bar<…>(arg, tid);!
 __shared__ typename BlockReduce::TempStorage tmp;!
 arg.sum = cub::BlockReduce<…>(tmp).Sum(sum);!
}

CPU GPU

template<…> __host__ __device__ Real bar(Arg &arg, int x) {!
 // do platform independent stuff here !
 complex<Real> a[arg.length];!
 arg.A.load(a);!
!
 … // do computation!
 !
 arg.A.save(a);!
 return norm(a);!
}

platform specific parallelization  
GPU: shared memory!
CPU: OpenMP, vectorization

platform specific load/store here:!
field order, cache modifiers, textures

platform independent stuff goes here  
99% of computation goes here

• Use C++ templates to abstract arch specifics
– Load/store order, caching modifiers, precision, intrinsics

La
tt

ic
e

20
14

La
tt

ic
e

20
14 Current Status

▪Wilson multigrid fully numerically verified
▪ Consistent with results from QCDMG (Babich et al 2010)
▪ Framework still slow
▪ Host code not optimized at all
▪ GPU <-> CPU transfers not optimal
▪ Optimal code requires heavy degree of templating

(compilation and link time is increasingly a problem)
▪ Early observations
▪ Using 16-bit precision for smoothing does not affect

convergence
▪ Coarse-grid solve can be poorly conditioned thus requiring

single precision

La
tt

ic
e

20
14 Next Steps

▪ Optimize
– E.g., kernel fusion, CPU OpenMP/vectorization
– read/write directly to/from CPU memory
▪ Add support for clover coarsening and put into production asap
▪ Strong scaling
▪ Algorithm research

– Precision investigation
– Spin coarsening strategies and use of Laplace modes
– Coarse-grid solvers (direct vs. indirect)
– Staggered multigrid
– Comparison of traditional versus heterogeneous update
▪ Real goal is developing asynchronous solvers for future

heterogeneous architectures

La
tt

ic
e

20
14

NVLink Enables Data Transfer At
Speed of CPU Memory

TESLA
GPU

CPU

DDR Memory Stacked Memory

NVLink
80 GB/s

DDR4
50-75 GB/s

HBM
1 Terabyte/s

Heterogeneous Computing in 2016

La
tt

ic
e

20
14 Summary

• Overview of Multigrid in QUDA project
• Framework essentially complete (barring clover)
• Efforts now focussed on optimization
• Then can finally return to numerics
• Hierarchical and heterogeneous algorithm research toolbox

– Aim for scalability and optimality
• Lessons today are relevant for future architecture preparation

La
tt

ic
e

20
14

0 32 64 96 128
Eigenvalue number (magnitude ordered)

0

0.2

0.4

0.6

0.8

1

(1
 -

PP
*)

 Ψ

Double 1
Double 2
Double 3
Double 4
Regular 1
Regular 2
Regular 3
Regular 4

Span comparison of spin blocking strategies
162 lattice, β=1, block size = 42

La
tt

ic
e

20
14 Hierarchical Algorithm Toolbox

• Real goal is to produce scalable and optimal solvers
• Exploit closer coupling of precision and algorithm

– QUDA designed for complete run-time specification of
precision at any point in the algorithm

– Currently supports 64-bit, 32-bit, 16-bit
– Is 128-bit or 8-bit useful at all for hierarchical algorithms?

• Domain-decomposition (DD) and multigrid
– DD solvers are effective for high-frequency dampening
– Overlapping domains likely more important at coarser scales?

La
tt

ic
e

20
14 The compilation problem…

• Tightly-coupled variables should be at the register level
• Dynamic indexing cannot be resolved in register variables

– Array values with indices not known at compile time spill out into
global memory (L1 / L2 / DRAM)

 template <typename ProlongateArg>!
 __global__ void prolongate(ProlongateArg arg, int Ncolor, int Nspin) {!
 int x = blockIdx.x*blockDim.x + threadIdx.x;!
 for (int s=0; s<Nspin; s++) {!
 for (int c=0; c<Ncolor; c++) {!
! …!
 }!
 }!
 }

La
tt

ic
e

20
14 The compilation problem…

• All internal parameters must be known at compile time
– Template over every possible combination O(10,000) combinations

– Tensor product between different parameters
– O(10,000 combinations) per kernel

– Only compile necessary kernel at runtime

!

!

!

!

!

!

• JIT compilation will fix this

 template <typename Arg, int Ncolor, int Nspin>!
 __global__ void prolongate(Arg arg) {!
 int x = blockIdx.x*blockDim.x + threadIdx.x;!
 for (int s=0; s<Nspin; s++) {!
 for (int c=0; c<Ncolor; c++) {!
! …!
 }!
 }!
 }

La
tt

ic
e

20
14 Mapping the Dirac operator to CUDA

• Finite difference operator in LQCD is known as Dslash
• Assign a single space-time point to each thread

– V = XYZT threads, e.g., V = 244 => 3.3x106 threads

• Looping over direction each thread must
– Load the neighboring spinor (24 numbers x8)

– Load the color matrix connecting the sites (18 numbers x8)

– Do the computation

– Save the result (24 numbers)

• Each thread has (Wilson Dslash) 0.92 naive arithmetic intensity
• QUDA reduces memory traffic

– Exact SU(3) matrix compression (18 => 12 or 8 real numbers)
– Similarity transforms to increase operator sparsity
– Use 16-bit fixed-point representation

• No loss in precision with mixed-precision solver
• Almost a free lunch (small increase in iteration count)

review basic details of the LQCD application and of NVIDIA
GPU hardware. We then briefly consider some related work
in Section IV before turning to a general description of the
QUDA library in Section V. Our parallelization of the quark
interaction matrix is described in VI, and we present and
discuss our performance data for the parallelized solver in
Section VII. We finish with conclusions and a discussion of
future work in Section VIII.

II. LATTICE QCD
The necessity for a lattice discretized formulation of QCD

arises due to the failure of perturbative approaches commonly
used for calculations in other quantum field theories, such as
electrodynamics. Quarks, the fundamental particles that are at
the heart of QCD, are described by the Dirac operator acting
in the presence of a local SU(3) symmetry. On the lattice,
the Dirac operator becomes a large sparse matrix, M , and the
calculation of quark physics is essentially reduced to many
solutions to systems of linear equations given by

Mx = b. (1)

The form of M on which we focus in this work is the
Sheikholeslami-Wohlert [6] (colloquially known as Wilson-
clover) form, which is a central difference discretization of the
Dirac operator. When acting in a vector space that is the tensor
product of a 4-dimensional discretized Euclidean spacetime,
spin space, and color space it is given by

Mx,x0 = �1
2

4⇤

µ=1

�
P�µ ⇤ Uµ

x �x+µ̂,x0 + P+µ ⇤ Uµ†
x�µ̂ �x�µ̂,x0

⇥

+ (4 + m + Ax)�x,x0

⌅ �1
2
Dx,x0 + (4 + m + Ax)�x,x0 . (2)

Here �x,y is the Kronecker delta; P±µ are 4 ⇥ 4 matrix
projectors in spin space; U is the QCD gauge field which
is a field of special unitary 3⇥ 3 (i.e., SU(3)) matrices acting
in color space that live between the spacetime sites (and hence
are referred to as link matrices); Ax is the 12⇥12 clover matrix
field acting in both spin and color space,1 corresponding to
a first order discretization correction; and m is the quark
mass parameter. The indices x and x0 are spacetime indices
(the spin and color indices have been suppressed for brevity).
This matrix acts on a vector consisting of a complex-valued
12-component color-spinor (or just spinor) for each point in
spacetime. We refer to the complete lattice vector as a spinor
field.

Since M is a large sparse matrix, an iterative Krylov
solver is typically used to obtain solutions to (1), requiring
many repeated evaluations of the sparse matrix-vector product.
The matrix is non-Hermitian, so either Conjugate Gradients
[7] on the normal equations (CGNE or CGNR) is used, or
more commonly, the system is solved directly using a non-
symmetric method, e.g., BiCGstab [8]. Even-odd (also known

1Each clover matrix has a Hermitian block diagonal, anti-Hermitian block
off-diagonal structure, and can be fully described by 72 real numbers.

Fig. 1. The nearest neighbor stencil part of the lattice Dirac operator D,
as defined in (2), in the µ� ⇥ plane. The color-spinor fields are located on
the sites. The SU(3) color matrices Uµ

x are associated with the links. The
nearest neighbor nature of the stencil suggests a natural even-odd (red-black)
coloring for the sites.

as red-black) preconditioning is used to accelerate the solution
finding process, where the nearest neighbor property of the
Dx,x0 matrix (see Fig. 1) is exploited to solve the Schur com-
plement system [9]. This has no effect on the overall efficiency
since the fields are reordered such that all components of
a given parity are contiguous. The quark mass controls the
condition number of the matrix, and hence the convergence of
such iterative solvers. Unfortunately, physical quark masses
correspond to nearly indefinite matrices. Given that current
leading lattice volumes are 323 ⇥ 256, for > 108 degrees of
freedom in total, this represents an extremely computationally
demanding task.

III. GRAPHICS PROCESSING UNITS

In the context of general-purpose computing, a GPU is
effectively an independent parallel processor with its own
locally-attached memory, herein referred to as device memory.
The GPU relies on the host, however, to schedule blocks of
code (or kernels) for execution, as well as for I/O. Data is
exchanged between the GPU and the host via explicit memory
copies, which take place over the PCI-Express bus. The low-
level details of the data transfers, as well as management of
the execution environment, are handled by the GPU device
driver and the runtime system.

It follows that a GPU cluster embodies an inherently het-
erogeneous architecture. Each node consists of one or more
processors (the CPU) that is optimized for serial or moderately
parallel code and attached to a relatively large amount of
memory capable of tens of GB/s of sustained bandwidth. At
the same time, each node incorporates one or more processors
(the GPU) optimized for highly parallel code attached to a
relatively small amount of very fast memory, capable of 150
GB/s or more of sustained bandwidth. The challenge we face is
that these two powerful subsystems are connected by a narrow
communications channel, the PCI-E bus, which sustains at
most 6 GB/s and often less. As a consequence, it is critical
to avoid unnecessary transfers between the GPU and the host.

D
x,x

0 =

Tesla K20X

Gflops 3995

GB/s 250

AI 16

x x

x

x−

x−

U x

U
x

μ

μ

ν

La
tt

ic
e

20
14 Kepler Wilson-Dslash Performance

8 16 32 64 128
Temporal Extent

200

300

400

500

600

700

800

G
FL

O
PS

Half 8 GF
Half 8
Half 12
Single 8 GF
Single 8
Single 12

Wilson Dslash
K20X performance
V = 243xT

La
tt

ic
e

20
14 Kepler Wilson-Solver Performance

8 16 32 64 128
Temporal Extent

200

300

400

500

600

G
FL

O
PS

Single-12 / Half-8-GF
Single-12 / Half-8
Single-12 / Half-12
Single-12 / Single-8
Single-12

Wilson CG
K20X performance
V = 243xT

La
tt

ic
e

20
14 Communication-Reducing Algorithms

• Non-overlapping blocks - simply switch off inter-node comms
• Preconditioner is a gross approximation

– Use an iterative solver to solve each domain  
system

– Only block-local sums required
– Require only ~10 iterations of domain solver  
⟹ 16-bit precision

– Need to use a flexible solver ⟹ GCR
• Block-diagonal preconditioner  

impose λ cutoff
– Limits scalability of algorithm
– In practice, non-preconditioned part  

becomes source of Amdahl

La
tt

ic
e

20
14 Strong Scaling Chroma with DD

Preliminary, NVIDIA Confidential – not for distribution

Chroma (Lattice QCD) –
High Energy & Nuclear Physics

Chroma
483x512 lattice
Relative Scaling (Application Time)

XK7 (K20X) (BiCGStab)

XK7 (K20X) (DD+GCR)

XE6 (2x Interlagos)

0

2

4

6

8

10

12

14

16

18

0 128 256 384 512 640 768 896 1024 1152 1280

R
el

at
iv

e
Sc

al
in

g

Nodes

3.58x vs. XE6
@1152 nodes

“XK7” node = XK7 (1x K20X + 1x Interlagos)
“XE6” node = XE6 (2x Interlagos)

La
tt

ic
e

20
14 Deflation Algorithms in QUDA

▪ EigCG implemented in QUDA (Alexei Strelchenko)

Improving eigenvec. accuracy: the Incremental
EigCG

A. Stathopoulos and K. Orginos, SIAM J.Sci.Comput. 32 (2010) 439-462

1 U = [], H = [] //accum. Ritz vectors
2 for s = 1, ..., s1 : //for s1 RHS
3 x0 = UH�1UHbs //Galerkin proj.
4 [xi, V, H] = eigCG(nev, m, A, x0, bi) //eigCG part
5 V̄ = orthogonalize V against U //(not strictly needed)
6 [U, H] =RayleighRitz[U, V̄]
7 end for

A. Strelchenko Deflated solvers on GPUs JLAB 2014 5/20

S
G

E
M

M
 /

 W
 N

o
r
m

a
li
z
e
d

2012 2014 2008 2010 2016

Tesla
CUDA

Fermi
FP64

Kepler
Dynamic Parallelism

Maxwell
DX12

Pascal

Unified Memory

3D Memory

NVLink

20

16

12

8

6

2

0

4

10

14

18

Strong GPU Roadmap

