BSM

-Near Conformal Strong Dynamics-

Yasumichi Aoki [Kobayashi-Maskawa Institute(KMI), Nagoya University]

- Lattice 2014 -

NAGOYA UNIVERSITY June 26, 2014

Request from LOC

We would like you to give a review talk on the current status of lattice BSM simulations, especially the progress towards a possible light scalar in strongly interacting gauge theories. This could include your recent work, as well as other similar studies.

Walking Technicolor for composite description of Higgs particle

• key: to realize suppressed FCNC and appropriate size of fermion masses

- eventually grows at low energies → to produce techni-pions
- mass anomalous dimension
 - large: γ_m~1

Walking Technicolor for composite description of Higgs particle

- mass anomalous dimension
 - large: γ_m~1

"Higgs boson"

- Higgs boson fund at LHC
- m_H = 125 GeV

- so far consistent with Standard Model Higgs $(J^{PC}=0^{++})$ fundamental scalar
- but it could be different
- one of the possibilities:
 - composite Higgs through strong dynamics
 - SM Higgs is the low energy effective description of that, cf: ChPT ⇔ QCD

after July 4, 2012

- Some people think technicolor is dead (how many times it should die ?)
 - $m_H=125$ GeV is too light for technicolor (typical composite mass ~ TeV)
- Some think walking technicolor is still OK
 - who ?
 - the authors of PRD 82 014510 (2010)
 - and people well aware the results
 - Yamawaki, Bando, Matumoto, PRL 56 1335 (1986)
 - and who believed that

Higgs as a techni dilaton [Yamawaki, Bando, Matumoto, PRL 1986]

- approximate scale invariance in the walking technicolor theory
- spontaneously broken due to chiral symmetry breaking \rightarrow dynamical mass
- composite Higgs particle behave like pseudo Nambu-Goldstone boson

⇒light!

- We can test this using lattice QCD tools !
- I will review the progress in this direction and related works in (near) conformal theories on the lattice

Strong gauge dynamics for BSM @ Lattice 2014

- vacuum alignment [Golterman 3F]
- Walking TC / toy model [Akerlund 1C]
- SU(2) gauge
 - Nf=2 fundamental [Rinaldi 2C, Hietanen 2C, Detmold 8C, Drach 8C]
 - Nf=4 fundamental [Matsufuru 1C]
 - Nf=6 fundamental [Matsufuru 1C]
 - Nf=8 fundamental [Huan 1C, Matsufuru 1C, Rantaharju 5C]
 - Nf=2 adjoint [Del Debbio 5C]
 - Nf=2 sextet [Sinclair 1C]

Strong gauge dynamics for BSM @ Lattice 2014

- SU(3) gauge
 - Nf=2+N fundamental [Ejiri P]
 - Nf=4+8 fundamental [Weiberg 2C, Witzel P]
 - Nf=6 fundamental [Nunes da Silva 1C]
 - Nf=8 fundamental [Nunes da Silva 1C, Nagai 9C, Ohki 9C]
 - Nf=12 fundamental [Rinaldi P, Geltzer P, Itou P, Hasenfratz 5C, Lin 5C]
 - Nf=2 sextet [Kuti 2C, Wong 2C, Mondal 8C]
- SU(4) gauge
 - Bosonic composite DM [Buchoff 8C]
 - Nf=2 sextet [Liu 9C]

Other BSM models @ Lattice 2014

- Higgs sector
 - gauge-Higgs unification [Moir 2C, de Forcrand 8C]
 - Higgs-Yukawa with Φ^6 [Nagy 9C]
- Supersymmetry
 - N=1 SYM [Muenster P, Piemonte 6C]
 - N=4 SYM [Korcyl P, Joseph 6C, Wenger 6C, Catterall 6C, Giedt 6C, Schaich 6C]
- 4D Quantum Gravity [Laiho P]

BSM QCD matrix elements @ Lattice 2014

- BK with non-SM operators [Hansen 3C]
- nEDM (chromo) [Shindler 3C, Abramczyk]
- N charges [Yoon 4D, Gupta 6D]
- proton decay [Soni P]
- N-Nbar oscillation
- [Wagman P]

Many thanks to those who let me know the works

G. Schierholz [Horsley, Perit, Rakow, Schierholz, Schiller, PLB 2014]

- numerical stochastic perturbation theory to 20th order in pure gauge QCD
 - combined with 4-loop fermion effect and/or Pade improvement
 - IR fixed point emerges even for Nf=2

M. Della Morte [Della Morte and Hernandez JHEP 1311; Lattice 2013]

non-perturbative study of massive gauge theories: simplest EWSB

M. Hanada [Hanada, Hyakutake, Nishimura Sience 2014; 2E]

- gauge-gravity duality conjecture is correct to $1/\lambda$ and 1/N

Thanks to the members of LatKMI collaboration

K.Nagai, H.Ohki, K.Yamawaki, T.Yamazaki

A.Shibata

Running coupling

running coupling from step scaling: issue of continuum extrapolation

- SU(2) 2 adjoints: SF coupling [Del Debbio 5C]
- grey: "honest estimate of the systematic error"

running coupling from step scaling: issue of continuum extrapolation

better method needed

- Wilson + adjoint gauge, nHYP smeared staggered [Cheng et al JHEP 1405]
- gradient flow coupling and finite volume $c = \sqrt{8t}/L = 0.2$

Wilson + adjoint gauge, nHYP smeared staggered

[Cheng et al JHEP 1405]

gradier Method being tested using MILC HISQ 2+1+1 flavor lattices

Wilson + adjoint gauge, nHYP smeared staggered

[Cheng et al JHEP 1405]

• gradient flow coupling and finite volume $c = \sqrt{8t}/L = 0.2$

- Wilson + adjoint gauge, nHYP smeared staggered [Chen
- [Cheng et al JHEP 1405]
- gradient flow coupling and finite volume $c = \sqrt{8t}/L = 0.2$

- Wilson + adjoint gauge, nHYP smeared staggered
 [Cheng et al JHEP 1405]
- gradient flow coupling and finite volume $c = \sqrt{8t}/L = 0.2$

different c=0.25,, investigated

robustness is being tested

SU(3) fundamental Nf=12: running coupling [Lin 5C]

- Taiwan-Japan collab.: D. Lin et al
- gradient flow coupling and step scaling
- Wilson gauge with twisting x,y
- Naive staggered with twisting
- study palette and clover operators to check the continuum extrapolation
- c=0.25, 0.30, 0.35, 0.40 $c = \sqrt{8t}/L = 0.2$

SU(3) fundamental Nf=12: running coupling [Lin 5C]

Saturday, June 14, 14

SU(3) fundamental Nf=12: running coupling [Lin 5C]

- Taiwan-Japan collab.: D. Lin et al
- gradient flow coupling and step scaling
- Wilson gauge with twisting x,y
- Naive staggered with twisting
- study palette and clover operators to check the continuum extrapolation
- c=0.25, 0.30, 0.35, 0.40 $c = \sqrt{8t}/L = 0.2$
- inconclusive on existence of IRFP / continuum limit; needs further investigation
 - problem being unfolded through the high precision of gradient flow method
- L= $8 \rightarrow 24$ so far. 32 simulation underway.

SU(2) Nf=8 fundamental: running coupling

• HEX sm

 $+ c_{SW} \delta S_{SW}(V)$

J

t-shift gradient flow (Cheng et al) coupling with SF boundary & step scaling

• Continuum limit with $\Sigma(u, a/L) = \sigma(u) + c(a/L)^2$

Inconclusive on existence of IRFP

SU(2) Nf=8 fundamental: running coupling

- HEX smeared O(a) improved Wilson $S = (1 c_g)S_G(U) + c_gS_G(V) + S_F(V) + c_{SW}\delta S_{SW}(V)$
- t-shift gradient flow (Cheng et al) coupling with SF boundary & step scaling

• Inconclusive on existence of IRFP

SU(3) gauge + fundamental fermions Nfc ?

SU(3) fundamental: N_{fc} from T_c(Nf) [Nunes da Silva 1C]

- Comparing Tc for different Nf
- requires common scale
- IR scale would not be good
- as a UV scale ω_0 is used
- Nt=6, 8 simulation
 - 1 loop Symazik gauge
 - Naik & tadpole improvement
- mass effect under investigation

SU(3) fundamental Nf=12 spectrum vs mf

0.7

0.6

0.5

0.4

0.3

0.2

Including the effect of near-marginal operator [Cheng et al 2014]

- data from three collaborations (different actions) well aligned with single γ
- 2 segments seem to be observed: separated at x~1.3 for all quantities
- suggesting abrupt change of environment ?

Conformal theory with IR cutoff [Iwasaki/Ishikawa Lattice 2013]

phase diagram of theories which has IR fixed point

[Ishikawa, Iwasaki, Nakayama, Yoshie PRD87 2013, PRD89 2014]

- finite V
 - conformal <-> confinement: separated by 1st order phase transition
 - power low correction to the exponential decay of 2pt function in conformal

Conformal theory with IR cutoff

Nf=16

- finite V
 - conformal <-> confinement: separated by 1st order phase transition
 - power low correction to the exponential decay of 2pt function in conformal
 - counter argument (investigating a 2 d toy model) [Akerlund 1C]

mass anomalous dimension

- scaling near IRFP of composite spectrum (mass deformed theory)
 - LatKMI 0.4-0.5 KMI data: right segment of the scaling figure
 - Cheng et al $0.235(15) \omega$ correction, using all data, both segments
- eigenmode number
 - Cheng et al 0.32(3) mf=0 simulation [JHEP 1307 061]
- twisted Polyakov loop scheme, step scaling
 - [Itou and Tomiya P] 0.081(18)(+25-0) mf=0 simulation
- needs better understanding of the difference

flavor singlet composite scalar (Higgs inposter)

SU(2) Nf=2 adjoint glueball spectrum [Del Debbio et al PRD2010]

- Likely in conformal window
- $0.16 < \gamma^* < 0.28$
- light 0++ is observed
- $M_{0++} < M_{\pi}$
- novel spectrum pattern

hint of possible light composite Higgs in near conformal theories
SU(2) Nf=1 adjoint [Athenodorou et al Lattice 2013]

- conformal or near-conformal $\mapsto 0^+$ scalar meson $\vdash \Box \to 0^{++}$ glueball \vdash Spin- $\frac{1}{2}$ state $\vdash \times \dashv 2^+$ scalar baryon 2 • $0.9 < \gamma^* < 1.0$ from mf-scaling of $\mapsto \sqrt{\sigma}$ $\vdash * \dashv 0^{-}$ pseudoscalar meson chiral condensate 푞 1.5叠 am_{State} ∄ • $\gamma^*=0.92(1)$ from Dirac spectrum ₫ eigen mode number 1 本 ₩ ▓ 2 pions : not enough for EWSB 0.5₫ € • $M_{f0} \leq M_{\pi}$ 0 0.02 0.04 0.1 0.120.14 0.06 0.08 0 0.16 am_{PCAC}
- similar spectrum pattern as $N_f=2$
- glueball ↔ fermion bilinear ops consistent

- with very high statistics
- and a variance reduction
- ➡reasonable signal

- with very high statistics
- and a variance reduction
- ➡reasonable signal

 $*\pi$ was lightest in QCD (Nf=2)

- with very high statistics
- and a variance reduction
- ➡reasonable signal
- $*\pi$ was lightest in QCD (Nf=2)
 - results by SCALAR Collab.

- with very high statistics
- and a variance reduction
- ➡reasonable signal
- $*\pi$ was lightest in QCD (Nf=2)
 - results by SCALAR Collab.
- σ is lightest for Nf=12 SU(3):

- with very high statistics
- and a variance reduction
- ➡reasonable signal
- $*\pi$ was lightest in QCD (Nf=2)
 - results by SCALAR Collab.
- σ is lightest for Nf=12 SU(3):
 - 0++ glueball is lightest for SU(2) Nf=2 adjoint

- with very high statistics
- and a variance reduction
- ➡reasonable signal
- $*\pi$ was lightest in QCD (Nf=2)
 - results by SCALAR Collab.
- σ is lightest for Nf=12 SU(3):
 - 0++ glueball is lightest for SU(2) Nf=2 adjoint
 - 0++ glueball/ σ is lightest for SU(2) Nf=1 adjoint

- with very high statistics
- and a variance reduction
- ➡reasonable signal
- $*\pi$ was lightest in QCD (Nf=2)
 - results by SCALAR Collab.
- σ is lightest for Nf=12 SU(3):
 - 0++ glueball is lightest for SU(2) Nf=2 adjoint
 - 0++ glueball/ σ is lightest for SU(2) Nf=1 adjoint
- hint of possible light composite Higgs in near conformal theories for SU(3)

SU(3) Nf=12 flavor singlet scalar spectrum LatKMI↔LSD [Kuti Lattice 2013]

- very high statistics ~ 10,000 configurations
- with variance reduction method
- example of effective mass

m_{f}	$L^3 \times T$	$N_{\rm cf}[N_{\rm st}]$
0.015	$36^3 \times 48$	3200[2]
0.02	$36^3 \times 48$	5000[1]
0.02	$30^3 \times 40$	8000[1]
0.03	$30^3 \times 40$	16500[1]
0.03	$24^3 \times 32$	36000[2]
0.04	$30^3 \times 40$	12900[3]
0.04	$24^3 \times 32$	50000[2]
0.04	$18^3 \times 24$	9000[1]
0.06	$24^3 \times 32$	18000[1]
0.06	$18^3 \times 24$	9000[1]

[LatKMI arXiv:1403.5000]

• scalar as light as π

- scalar as light as π
- clearly lighter than ρ

- scalar as light as $\boldsymbol{\pi}$
- clearly lighter than p
 - ➡ far from heavy quark limit

- scalar as light as $\boldsymbol{\pi}$
- clearly lighter than p
 - ➡ far from heavy quark limit
- light scalar:

- scalar as light as $\boldsymbol{\pi}$
- clearly lighter than p
 - ➡ far from heavy quark limit
- light scalar:
 - similar property with Nf=12

- scalar as light as $\boldsymbol{\pi}$
- clearly lighter than ρ
 - ➡ far from heavy quark limit
- light scalar:
 - similar property with Nf=12
 - likely due to (near) conformality

- scalar as light as $\boldsymbol{\pi}$
- clearly lighter than ρ
 - ➡ far from heavy quark limit
- light scalar:
 - similar property with Nf=12
 - ➡likely due to (near) conformality
- main result of Nf=8 scalar spectrum from LatKMI

trial chiral extrapolation for $N_f=8$ SU(3) m_o [LatKMI: PRD2014; Nagai 9C]

- though it is too far, so far
- 2 ways:
 - naive linear $m_{\sigma}=c_0+c_1m_f$
 - dilaton ChPT m_σ²=d₀+d₁m_π² (Matsuzaki-Yamawaki 2013)
 - differ only at higher order
- possibility to have ~125GeV Higgs
 - F/J2=123 GeV one-family model
- lighter mass data needed!

 $d_0 = -0.019(13)(+3-20)$ c.f. $m_\sigma = F/\sqrt{2} \rightarrow c_0 = 0.014 \parallel d_0 = 0.0002$

- $d_1 = 1.18(24)(+35-7)$
 - c.f. d₁~1 (holographic: $F_{\sigma} \sim \sqrt{N_f}F$) [Matsuzaki & Yamawaki 2012]

Transition from QCD like to walking: SU(3) Nf=4+8 [Weinberg 2C, Witzel P]

- 4 light quarks and varying 8 flavor mass: continuously move from Nf=4 to 12
- gradient flow coupling and spectrum

spectrum for mh=0.060 underway

SU(3) Nf=2 sextet

[LatHC: Kuti, Wong 2C]

• extended calculation with 2 beta's and up to 48³x96

• $M_{f0} \le M_{\pi}$

SU(3) Nf=2 sextet

[LatHC: Kuti, Wong 2C]

• spectrum at the chiral limit

Systematic error under investigation

SU(3) Nf=2 sextet: effect of topology on spectrum [LatHC: Kuti, Wong 2C]

- About 1σ effect is observed in M_{a_0} and M_{f_0} , less significant in M_{π} and $F \Rightarrow$ More controls are needed
- Other studies on topological effects are undergoing (more details in Julius Kuti's talk)

Composite Higgs: other quantities

Extended Technicolor (ETC)

- fermion masses \rightarrow extended technicolor (ETC)
- New strong interaction of SU(N_{ETC}): N_{ETC}>N_{TC}, T_{ETC}=(T, f): T \in TC, f \in SM
- SSB: SU(N_{ETC}) \rightarrow SU(N_{TC}) x SM @ Λ_{ETC} (» Λ_{TC})

- FCNC should be small ⇔ top or bottom quark mass should be produced
- → enhancement of TC chiral condensate → walking TC $\gamma^*_m \sim 1$

[Yamawaki et al, Holdom, Akiba & Yanagida, Appelquist]

enhancement of php [LSD PRL2010; arXiv:2014]

 $X^{(CF)} = \frac{\left\langle \overline{\psi}\psi \right\rangle_m}{F_D^3}$

 $X^{(CM)} = \frac{(M_P^2/2m)^{3/2}}{\left\langle \overline{\psi}\psi \right\rangle_m^{1/2}}$

- ratio of Σ/F^3 $R_8^{(IJ)} = \frac{X^{(IJ)}(N_f = 8)}{X^{(IJ)}(N_f = 2)},$
- domain-wall fermions
- $X^{(FM)} = \frac{M_P^2}{2mF_P}$ • β tuned so $1/a = M_{\rho}(m_f=0)$ 1.5 1.5 R_{6} R_8 Ŧ ¥ 0.5 0.5 $M^2/(2mF)$ 0 0.03 0.02 0.03 0.01 0.02 0.01 m m

FIG. 10. Ratios $R_{N_f}^{(IJ)}$ of the three observables $X^{(IJ)}$ in Eq. (16) that reduce to $\langle \overline{\psi}\psi \rangle/F^3$ in the chiral limit, for $N_f = 6$ normalized by $N_f = 2$ (left) and $N_f = 8/N_f = 2$ (right). The horizontal axis is the geometric mean $\widetilde{m} = \sqrt{m_{N_f} = 2m_{N_f} = 6}$.

• similar enhancement of Σ/F^3 observed for Nf=6 and 8

Extended Technicolor (ETC)

- fermion masses → extended technicolor (ETC)
- New strong interaction of SU(N_{ETC}): N_{ETC}>N_{TC}, T_{ETC}=(T, f): T \in TC, f \in SM
- SSB: SU(N_{ETC}) \rightarrow SU(N_{TC}) x SM @ Λ_{ETC} (» Λ_{TC})

- FCNC should be small ⇔ top or bottom quark mass should be produced
- ⇒ enhancement of TC chiral condensate → walking TC $\gamma^*_m \sim 1$
- ⇒ in tern could generate a relevant 4 fermi op $\overline{T}T\overline{T}T$ → fine tuning problem [Sannino 04, Luty 04, Rattazzi et al 08]

anomalous dimension of 4 fermi operators [Del Debbio 5C]

- SF step scaling set up for SU(2) Nf=2 adj.
- multiplicatively ren. op combination

Scheme-independence: system in a neighbourhood of a fixed point?

S parameter

Ciucini et al JHEP1308 106 (M_H=126GeV)

Figure 4. Left: two-dimensional probability distribution for the oblique parameters S and T obtained from the fit with S, T, U and the SM parameters, with the large- m_t expansion for the two-loop fermionic EW corrections to ρ_Z^f . Center: two-dimensional probability distribution for the oblique parameters S and T obtained from the fit with S, T and the SM parameters with U = 0, with the large- m_t expansion for the two-loop fermionic EW corrections to ρ_Z^f . The individual constraints from M_W , the asymmetry parameters $\sin^2 \theta_{\text{eff}}^{\text{lept}}$, P_{τ}^{pol} , A_f and $A_{\text{FB}}^{0,f}$ with $f = \ell, c, b$, and Γ_Z are also presented, corresponding to the combinations of parameters A, B and C in eq. (3.5). Right: same as center, but using the results of ref. [16, 83]. In this case, the constraint from Γ_Z cannot be used.

S parameter

- calculated through vacuum polarization function of flavor non-singlet currents
- lattice calculation suffers from power divergence without exact chiral symm.
- so far, overlap and domain-wall fermion methods are reported
- Overlap
 - Nf=2 SU(3) [JLQCD Shintani et al PRL 2008]
- Domain-wall
 - Nf=2+1 SU(3) [RBC/UKQCD Boyle et al PRD 2010]
- Staggered (utilizing exact non-siglet symmetry due to multiple fields)
 - Nf=4n system setup on HISQ [Aoki (LatKMI) Lattice 2013]

S parameter with SU(3) fundamental fermions [LSD, PRL 2011; arXiv:2014]

- domain wall fermions with Nf=2,6,8
- one doublet has EW charge \rightarrow
- Nf=6
 - decreases as mf enters chiral regime
 - turns up after chiral log sets in
 - low value of S possible for unabsorbed massive pions
- Nf=8
 - similar trend as Nf=6, but not conclusive

S parameter for SU(3) Nf=8

[LatKMI: Ohki 9C]

- S parameter calculated with HISQ (preliminary), same ballpark as LSD
- More volumes, lighter mass calculations underway
- check the trend of bending down

Dilaton decay constant

[Ohki 9C]

- Fσ for composite Higgs, like F for pion, gives coupling to other particles
- using continuum Ward-Takahashi identity
- expressing everything with finite quantities on the lattice
- $F\sigma$ can be calculated
- Those who interested should come to 214 Pupin at 17:50- on Friday

SUMMARY

- Development on method
 - Running coupling is getting much precise through gradient flow
 - would allow robust evidence of the IRFP
 - S parameter can be calculated in Nf=4n (n>1) staggered fermions
 - a method to calculate dilation decay constant proposed
- Common feature of (near) conformal theories
 - $m_{0++}(m_f) < m_{\pi}(m_f)$ for the range of m_f so far investigated
 - challenging task $m_f \rightarrow 0$ for walking theory: level crossing and 2π threshold

SUMMARY

- SU(3) Nf=12 fundamental
 - growing evidence of the existence of IRFP
 - different action / scheme being tested to get robust answer
 - mass anomalous dimension: needs more study
- SU(3) Nf=8 fund.: (near) conformal, large anomalous dimension, Light 0++
 - could be a candidate of walking technicolor (WTC) theory
 - needs further study (lighter mass, larger V)
- SU(3) Nf=2 sextet: Light 0++, could be a candidate of WTC
 - spectrum most extensively studied so far
 - 0++ suffers from topology sampling: systematic study underway
We are heading forward, steadily...

We are heading forward, steadily...

some path may lead to Berlin-wall [© Ukawa]...

We are heading forward, steadily...

some path may lead to Berlin-wall [© Ukawa]...

We will do our best, and may be it will lead to ...

bridge to the new world

ATLA

Thank you very much for your attention !

Higgs mechanism (cf. Farhi & Susskind)

- Higgs potential : $V=\mu^2 |\varphi|^2 + \lambda |\varphi|^4$ with $\mu^2 < 0$: "wine bottle"
 - rotating: m=0 mode
 - radial: m≠0: Higgs particle
- weak doublet: 4 fields: 1 massive Σ , 3 massless

- massless: Π[±], Π⁰ : Nambu-Goldstone boson (rotational symm. br.)
- have coupling to weak current: $\langle 0|J_{\mu^{\pm}}|\Pi^{\pm}\rangle = F p_{\mu};$ $F = \langle 0|\varphi|0\rangle = 246 \text{ GeV}$
- make a massless pole in the vacuum polarization
- cancels massless pole of original W[±] propagator → massive gauge boson

$\left< 0 | J_{\mu^{\pm}} | \Pi^{\pm} \right> = F p_{\mu}$

- Isn't it familiar ? : $\left< 0 | J_{\mu^{\pm}} | \Pi^{\pm} \right> = F \, p_{\mu} \,$ with massless boson Π^{\pm}
- pion decay: $\langle 0|A_{\mu^{\pm}}|\pi^{\pm}\rangle = f p_{\mu}$
 - $\pi^{\pm}\pi^{0}$ Nambu-Goldstone boson made of u, q quarks due to
 - $SU(2)_L x SU(2)_R \rightarrow SU(2)_V$: spontaneous chiral symmetry breaking
 - f=93 MeV ⇔ F=246 GeV
- axial current $A_{\mu^{\pm}}$ is a part of weak current $J_{\mu^{\pm}}$: (V-A)
- Even if there is no Higgs, weak boson gets mass due to chiral br. in QCD

Technicolor (TC)

- $\bullet \quad \left< 0 \big| J_{\mu^{\pm}} \big| \Pi^{\pm} \right> \ = F \ p_{\mu}$
- · realize this with a new set of
 - massless quarks (techni-quarks)
 - which have coupling to weak bosons,
 - and interact with techni-gluons
 - which breaks the chiral symmetry in the techni-sector,
 - produces techni-pions which have decay constant

 \Rightarrow F = 246 / /N GeV: scale up version of QCD (N: # weak doublet from new techni-sector)

Technicolor ⇔ SM Higgs

- success of technicolor
 - explaining the origin of EW symmetry breaking
 - dynamics of gauge theory $\Leftrightarrow \mu^2 < 0$
 - evading the gauge hierarchy problem: naturalness problem
 - due to logarithmic UV divergence ⇔ power divergence
- fermion masses ?
 - ETC effective 4 Fermi interaction ⇔ fermion-Higgs Yukawa coupling
 - produced by introducing interaction: techni-quarks and SM fermions

conformal window and walking gauge coupling - non-Abelian gauge theory with Nf massless fermions -

conformal window and walking gauge coupling - non-Abelian gauge theory with N_f massless fermions -

conformal window and walking gauge coupling - non-Abelian gauge theory with $N_{\rm f}$ massless fermions -

• Walking Techinicolor could be realized just below the conformal window

conformal window and walking gauge coupling - non-Abelian gauge theory with Nf massless fermions -

- Walking Techinicolor could be realized just below the conformal window
- crucial information: N_f^{crit} and...

conformal window and walking gauge coupling - non-Abelian gauge theory with $N_{\rm f}$ massless fermions -

• Walking Techinicolor could be realized just below the conformal window

- crucial information: N_f^{crit} and...
- mass anomalous dimension γ & the composite mass spectrum around N_f^{crit}

models being studied:

- SU(3)
 - fundamental: Nf=6, 8, 10, 12, 16
 - sextet: Nf=2
- SU(2)
 - adjoint: Nf=2
 - fundamental: Nf=8
- SU(4)
 - decuplet: Nf=2

N

F.Sannino

models being studied:

- SU(3)
 - fundamental: Nf=6, 8, 10, 12, 16
 - sextet: Nf=2
- SU(2)
 - adjoint: Nf=2
 - fundamental: Nf=8
- SU(4)
 - decuplet: Nf=2

SU(N) Phase Diagram

models being studied:

- SU(3)
 - fundamental: Nf=6 8,10,12 16
 - sextet: Nf=2
- SU(2)
 - adjoint: Nf=2
 - fundamental: Nf=8
- SU(4)
 - decuplet: Nf=2

SU(N) Phase Diagram

