Hadronic interactions

Lattice2014

The 32nd International Symposium on Lattice Field Theory
© Columbia University, June 23-28, 2014

Hadronic interactions

One of ultimate goals of Lattice QCD
quantitatively understand properties of hadrons
Current status of lattice QCD
very close to reproduce mass for stable hadrons
Experiment
Many hadrons decay through hadronic interaction, originating from strong interaction

> Next task: hadronic interactions

Decay and scattering
Cannot be treated separately to understand properties of unstable hadrons finial states of unstable particle $=$ scattering states

More difficult to calculate, but important for the ultimate goal

Hadronic interactions

One of ultimate goals of Lattice QCD
quantitatively understand properties of hadrons
Famous hadronic interaction
nuclear force : bind nucleons into nucleus originate from strong interaction \leftarrow well known in experiment

Another ultimate goal of lattice QCD quantitatively understand formation of nuclei from first principle of strong interaction

http://www.jicfus.jp/jp/promotion/pr/mj/2014-1/

Review recent results related to scatterings, decays, and light nuclei

I will not cover

- Scattering lengths

$$
I=0 \pi \pi, I=3 / 2 K \pi, I=1 K K, I=1 K \bar{K}, \cdots
$$

- Scattering phase shifts $I=2 \pi \pi, I=3 / 2 K \pi, I=1 / 2 K \pi, \cdots$
- Charmed scattering and bound states [Plenary:Prelovsek Fri 9:00]
- Decays
$\pi \pi \rightarrow \sigma$
[Talk:Howarth Tue 4B 17:30], [Talk:Wakayama Wed 6B 11:10]
$\eta \pi \rightarrow a_{0}$
[Talk:Berlin Wed 6B 11:30], [Talk:Abedel-rehim Wed 6B 11:50] $N \pi \rightarrow N^{*}$ [Poster:Verduci Tue]
$K \pi \rightarrow \kappa, \rho \pi \rightarrow a_{1}, \omega \pi \rightarrow b_{1}, \cdots$
- Amplitude (transfer matrix) method for resonances [Talk:Petschlies Thu 7B 14:35]
- Multi-hadron correlation function [Poster:Vachaspati Tue]
- Theoretical development [Plenary:Briceño Tue 11:15]

Contents

- Introduction
- Lüscher's finite volume method
- Scattering lengths
$-I=2 \pi \pi, I=1 / 2 K \pi$
- Scattering phase shifts (resonances)
$-\pi \pi \rightarrow \rho, K \pi \rightarrow K^{*}$
- Comparison with HALQCD method
$-I=2 \pi \pi, \mathrm{H}$ dibaryon, two-nucleon channels
- Light nuclei
- Summary

Lüscher's finite volume method

Lüscher, CMP105:153(1986),NPB354;531(1991)
spinless two-particle elastic scattering in center of mass (CM) frame

Important assumption

1. Two-particle interaction is localized.
\rightarrow Interaction range R exists.

$$
V(r) \begin{cases}\neq 0 & (r \leq R) \\ =0 & \left(\sim e^{-c r}\right)(r>R)\end{cases}
$$

2. $V(r)$ is not affected by boundary. $\rightarrow R<L / 2$

Two-particle wave function $\phi_{p}(\vec{r})$ satisfies Helmholtz equation

$$
\begin{gathered}
\left(\nabla^{2}+p^{2}\right) \phi_{p}(\vec{r})=0 \text { in } r>R(R<L / 2) \\
\leftarrow \text { Klein-Gordon eq. of free two particles } \\
E=2 \sqrt{m^{2}+p^{2}}, p^{2} \neq\left(\frac{2 \pi}{L} \cdot \vec{n}\right)^{2} \text { in general }
\end{gathered}
$$

Lüscher's finite volume method (cont'd)

Lüscher, CMP105:153(1986),NPB354;531(1991)
Helmholtz equation on L^{3}

1. Solution of $\left(\nabla^{2}+p^{2}\right) \phi_{p}(\vec{r})=0$ in $r>R$

$$
\phi_{p}(\vec{r})=C \cdot \sum_{\vec{n} \in Z^{3}} \frac{e^{i \vec{r} \cdot \vec{n}(2 \pi / L)}}{\vec{n}^{2}-q^{2}}, \quad q^{2}=\left(\frac{L p}{2 \pi}\right)^{2} \neq \text { integer }
$$

2. Expansion by spherical Bessel $j_{l}(p r)$ and Noeman $n_{l}(p r)$ functions

$$
\phi_{p}(\vec{r})=\beta_{0}(p) n_{0}(p r)+\alpha_{0}(p) j_{0}(p r)+(l \geq 4)
$$

3. S-wave Scattering phase shift $\delta_{0}(p)$ in infinite volume

$$
\begin{aligned}
\frac{\beta_{0}(p)}{\alpha_{0}(p)}= & \tan \delta_{0}(p)=\frac{\pi^{3 / 2} q}{Z_{00}\left(1 ; q^{2}\right)} \\
& Z_{00}\left(s ; q^{2}\right)=\frac{1}{\sqrt{4 \pi}} \sum_{\vec{n} \in Z^{3}} \frac{1}{\left(\vec{n}^{2}-q^{2}\right)^{s}}, \quad q=\frac{2 \pi}{L} p
\end{aligned}
$$

Relation between $\delta(p)$ and $p\left(E=2 \sqrt{m^{2}+p^{2}}\right)$
Wave function: CP-PACS, PRD70:094504(2005), Sasaki and Ishizuka, PRD78:014511(2008)
Potential: Ishii, Aoki, and Hatsuda, PRL99:022001(2007), ...

Calculation of phase shift in function of p

Lüscher's method $\delta(p)$ from $E=2 \sqrt{m^{2}+p^{2}}$ in CM frame
Extended to Moving frames $|P| \neq 0$ with $m_{1}=m_{2}$
$\delta\left(p_{\mathrm{cm}}\right)$ from $E_{P}^{2}=4\left(m^{2}+p_{\mathrm{cm}}^{2}\right)+P^{2}$ Rummukainen and Gottlieb, NPB450:397(1995) $\pi(P) \pi(0)$ on lattice
$\rightarrow \pi\left(p_{\mathrm{cm}}\right) \pi\left(-p_{\mathrm{cm}}\right)$ in CM frame
Kim, Sachrajda, and Sharpe, NPB727:218(2005)
Christ, Kim, and TY, PRD72:114506(2005)
Feng, Jansen, and Renner, PoS(Lattice 2010):104(2010)
Dudek, Edwards, Thomas, PRD86:034031(2012)

Extension of moving frames $|P| \neq 0$ to $m_{1} \neq m_{2}$
$\delta\left(p_{\mathrm{cm}}\right)$ from $E_{P}^{2}=\left(\sqrt{m_{1}^{2}+p_{\mathrm{cm}}^{2}}+\sqrt{m_{2}^{2}+p_{\mathrm{cm}}^{2}}\right)^{2}+P^{2}$
mixing of even and odd l
Fu, PRD85:014506(2012)
Leskovec and Prelovsek, PRD85:114507(2012), Döring et al., EPJA48:114(2012) Göckeler et al., PRD86:094513(2012) Li and Liu, PRD87:014502(2013)

$$
\begin{gathered}
\text { Scattering length } a_{0}^{I} \\
a_{0}=\lim _{p \rightarrow 0} \frac{\tan \delta(p)}{p} \\
I=2 \pi \pi a_{0}^{2} \text { and } I=1 / 2 K \pi a_{0}^{1 / 2}
\end{gathered}
$$

Scattering length I

$I=2 \pi \pi$ Simplest scattering system

Comparison of dynamical calculations

Fu PQ(2012)
ASQTAD: same to $\operatorname{Fu}(2013)$ $m_{\text {sea }}=m_{\text {val }}$ at PQ lightest data not only PQ effect
\rightarrow other systematic error
\bigcirc Wilson type; \square ASQTAD; \triangle DWF; \triangleleft Twisted; ∇ overlap
MA:DWF on ASQTAD; PQ:partial quenched

Scattering length I

$I=2 \pi \pi$ Simplest scattering system

Comparison of dynamical calculations

\bigcirc Wilson type;ASQTAD; \triangle DWF; \triangleleft Twisted; ∇ overlap
MA:DWF on ASQTAD; PQ:partial quenched

$$
\text { NLO ChPT: } a_{0}^{2} m_{\pi}=\frac{m_{\pi}^{2}}{8 \pi f_{\pi}^{2}}\left[-1+\frac{32}{f_{\pi}^{2}}\left[m_{\pi}^{2} L_{\pi \pi}+\text { analytic }+\mathrm{log}\right]\right]
$$

Scattering length I

$I=2 \pi \pi$ Simplest scattering system

Comparison of dynamical calculations

\bigcirc Wilson type; \square ASQTAD; \triangle DWF; \triangleleft Twisted; ∇ overlap
MA:DWF on ASQTAD; PQ:partial quenched
vending of PACS-CS(2014) due to chiral symmetry breaking effect
$N_{f}=3$ NLO WChPT: $a_{0}^{2} m_{\pi}=\frac{m_{\pi}^{2}}{8 \pi f_{\pi}^{2}}\left[-1+\frac{32}{f_{\pi}^{2}}\left[m_{\pi}^{2}\left(L^{\prime}-\frac{L_{5}}{2}\right)+\right.\right.$ analytic $\left.\left.+\log \right]\right]-\frac{c_{2} a^{2}}{8 \pi f_{\pi}^{2}}$ Simultaneous fit with a_{0}^{I} for $I=2 \pi \pi, I=1 K K, I=3 / 2,1 / 2 K \pi$

Scattering length I

$I=2 \pi \pi$ Simplest scattering system
Comparison of dynamical calculations at physical m_{π}
Wilson type; \square ASQTAD; \triangle DWF; \downarrow Twisted; ∇ overlap
MA:DWF on ASQTAD; PQ:partial quenched

Sources of systematic error: finite volume effects, $\Delta_{\text {MA }}, \Delta_{\text {Wilson }}, \ldots$
might able to take weighted average for lattice prediction

Scattering length I

$I=2 \pi \pi$ Simplest scattering system
Comparison of dynamical calculations at physical m_{π}

\bigcirc Wilson type; \square ASQTAD; \triangle DWF; \triangleleft Twisted; ∇ overlap MA:DWF on ASQTAD; PQ:partial quenched
$N_{f}=2+1$ Twisted $m_{\pi}=0.32-0.40[\mathrm{GeV}$ [Talk:Knippschild Mon 1B 14:35] Sources of systematic error: finite volume effects, $\Delta_{M A}, \Delta_{\text {Wilson }}, \cdots$
might able to take weighted average for lattice prediction

Scattering length II

 $I=1 / 2 K \pi$ rectangle diagramc.f. stochastic LapH method:

Morningstar et al., PRD83:114505(2011)

Variational analysis $\leftarrow \kappa$ expected non negligible κ effect in large m_{π} in PACS-CS

Fu: possibly systematic errors
PACS-CS: large $\Delta_{\text {Wilson }}$
\bigcirc Wilson type; \square ASQTAD PQ:partial quenched
Fu, PRD85:074501(2012), Lang et al., PRD86:054508(2012), PACS-CS, PRD89:054502(2014) other works: NPLQCD, PRD74:114503(2006)(indirect), Nagata et al., PRC80:045203(2009)

$$
\begin{array}{r}
\text { NLO ChPT: } a_{0}^{1 / 2} \mu_{\pi K}=\frac{\mu_{\pi K}^{2}}{4 \pi f_{\pi}^{2}}\left[2+\frac{32}{f_{\pi}^{2}}\left[m_{\pi} m_{K} L^{\prime}+\frac{m_{\pi}^{2}+m_{K}^{2}}{2} L_{5}+\text { analytic }+\log \right]\right]_{\mu_{\pi K}}=m_{\pi} m_{K} /\left(m_{\pi}+m_{K}\right)
\end{array}
$$

Scattering length II

$I=1 / 2 K \pi$ rectangle diagram

c.f. stochastic LapH method:

Morningstar et al., PRD83:114505(2011)
Variational analysis $\leftarrow \kappa$ expected non negligible κ effect in large m_{π} in PACS-CS

Fu: possibly systematic errors PACS-CS: large $\Delta_{\text {Wilson }}$

O Wilson type; \square ASQTAD PQ:partial quenched
Fu, PRD85:074501(2012), Lang et al., PRD86:054508(2012), PACS-CS, PRD89:054502(2014) other works: NPLQCD, PRD74:114503(2006)(indirect), Nagata et al., PRC80:045203(2009)

NLO WChPT: $a_{0}^{1 / 2} \mu_{\pi K}=\frac{\mu_{\pi K}^{2}}{4 \pi f_{\pi} f_{K}}\left[2+\frac{32}{f_{\pi} f_{K}}\left[m_{\pi} m_{K} L^{\prime}+\frac{m_{\pi}^{2}+m_{K}^{2}}{2} L_{5}+\right.\right.$ analytic $\left.\left.+\log \right]\right]$
PACS-CS due to chiral symmetry breaking effect

$$
-\frac{c_{2} a^{2}}{4 \pi f_{\pi} f_{K}} \frac{\mu_{\pi K}^{2}}{m_{\pi} m_{K}}
$$

Simultaneous fit with a_{0}^{I} for $I=2 \pi \pi, I=1 K K, I=3 / 2,1 / 2 K \pi$

Scattering length II

$I=1 / 2 K \pi$
Comparison at physical m_{π}

\bigcirc Wilson type; \square ASQTAD; \triangle DWF; MA:DWF on ASQTAD; PQ:partial quenched NPLQCD, PRD74:114503(2006)(indirect; LEC from $a_{0}^{3 / 2}$ of $K \pi$), Fu, PRD85:074501(2012),

PACS-CS, PRD89:054502(2014)
other works: Nagata et al., PRC80:045203(2009)
more accurate direct calculation is desired
$N_{f}=2+1$ DWF $m_{\pi}^{\text {phys }}, m_{K}^{\text {phys }}$ on $L=5.5$ fm[Talk:Janowski Mon 1B 15:15]
Preliminary result $a_{0}^{1 / 2} m_{\pi}=0.174(60)$

Scattering phase shift $\delta(p)$

$$
I=1 \pi \pi \rightarrow \rho, I=1 / 2 K \pi \rightarrow K^{*}
$$

Phase shift I

$I=1$ P-wave $\pi \pi \rightarrow \rho$

	1.	2.	3.	4.	5.	6.
$L\|P\| / 2 \pi$	1	$0,1, \sqrt{2}$	$0,1, \sqrt{2}$	$0,1^{2}, \sqrt{2}$	0^{*}	$0,1^{2}, \sqrt{2}^{3}, \sqrt{3}^{2}, 2$
$N_{\text {mom }}$	2	$5-6$	5	6	6	29
$m_{\pi}[\mathrm{MeV}]$	320	$290-480$	270	410,300	300	390
$m_{\pi} L$	4.2	≥ 3.7	2.7	$6.0,4.4$	≥ 4.6	≥ 3.8

* asymmetric lattice $L^{2} \times \eta L, \eta=1,1.25,2$

1. CP-PACS, PRD76:094506(2007), 2. ETMC, PRD83:094505(2011),
2. Lang et al., PRD84:054503(2011), 4. PACS-CS, PRD84:094505(2011),
3. Pelissier et al., PRD87:014503(2013), 6. Hadron Spectrum, PRD87:034505(2013)
other works: QCDSF, PoS(LATTICE 2008)136, BMW, PoS(Lattice 2010)139

Phase shift I

$I=1$ P-wave $\pi \pi \rightarrow \rho$

	1.	2.	3.	4.	5.	6.
$L\|P\| / 2 \pi$	1	$0,1, \sqrt{2}$	$0,1, \sqrt{2}$	$0,1^{2}, \sqrt{2}$	0^{*}	$0,1^{2}, \sqrt{2}^{3}, \sqrt{3}^{2}, 2$
$N_{\text {mom }}$	2	$5-6$	5	6	6	29
$m_{\pi}[\mathrm{MeV}]$	320	$290-480$	270	410,300	300	390
$m_{\pi} L$	4.2	≥ 3.7	2.7	$6.0,4.4$	≥ 4.6	≥ 3.8

* asymmetric lattice $L^{2} \times \eta L, \eta=1,1.25,2$

1. CP-PACS, PRD76:094506(2007), 2. ETMC, PRD83:094505(2011),
2. Lang et al., PRD84:054503(2011), 4. PACS-CS, PRD84:094505(2011),
3. Pelissier et al., PRD87:014503(2013), 6. Hadron Spectrum, PRD87:034505(2013)
other works: QCDSF, PoS(LATTICE 2008)136, BMW, PoS(Lattice 2010)139

Preliminary results

1. [Talk:Fahy Mon 1B 14:15]
$m_{\pi} \sim 0.24 \mathrm{GeV}$ at $m_{\pi} L=4.4$
$g_{\rho \pi \pi}=4.3(1.6)$
$a_{t} m_{\rho}=0.1355(19) \rightarrow m_{\rho} \sim 0.79 \mathrm{GeV}$
2. [Talk:Metivet Mon 1B 14:55]

5 data: $m_{\pi} \sim 0.135-0.3 \mathrm{GeV}$ at $m_{\pi} L \gtrsim 4$
[Talk:Fahy Mon 1B 14:15]

Phase shift I

$I=1$ P-wave $\pi \pi \rightarrow \rho$

open symbol: lattice dispersion relation CP-PACS, PRD76:094506(2007), ETMC, PRD83:094505(2011), Lang et al., PRD84:054503(2011), PACS-CS, PRD84:094505(2011), Pelissier et al., PRD87:014503(2013),
Hadron Spectrum, PRD87:034505(2013)
others [Talk:Fahy Mon 1B 14:15] [Talk:Metivet Mon 1B 14:55]
m_{ρ} scattered, but depends on scale setting quantities

Phase shift I

$I=1$ P-wave $\pi \pi \rightarrow \rho$

open symbol: lattice dispersion relation
scale fixed by $r_{0}=0.47 \mathrm{fm}$
CP-PACS, PRD76:094506(2007), ETMC, PRD83:094505(2011), Lang et al., PRD84:054503(2011), PACS-CS, PRD84:094505(2011), Pelissier et al., PRD87:014503(2013),
Hadron Spectrum, PRD87:034505(2013)
others [Talk:Fahy Mon 1B 14:15] [Talk:Metivet Mon 1B 14:55]
Lang et al.: small $m_{\rho} \rightarrow$ finite volume effect
Hadron Spectrum: small $m_{\rho} \rightarrow$ uncertainty of scale determination small $g_{\rho \pi \pi} \rightarrow$ need to check systematic error

Phase shift II

$I=1 / 2$ P-wave $K \pi \rightarrow K^{*}$

Breit-Wigner form fit of $\sin ^{2} \delta(p)$
$N_{f}=2+1$ ASQTAD
$L|P| / 2 \pi=1\left(\right.$ irrep $\left.A_{1}\right)$
assume $\delta_{0}=0$
$L=3 \mathrm{fm} @ m_{\pi}=0.24 \mathrm{GeV}$
Fu and Fu, PRD86:094507(2012)
mixing of even and odd l in Moving frames
Fu, PRD85:014506(2012)
Leskovec and Prelovsek, PRD85:114507(2012), Döring et al., EPJA48:114(2012)
Göckeler et al., PRD86:094513(2012) Li and Liu, PRD87:014502(2013)
$L|P| / 2 \pi=1$ (irrep $\left.A_{1}, \delta_{l \geq 2}=0\right): E(p) \rightarrow \delta_{l=0}(p)$ and $\delta_{l=1}(p)$ $\delta_{0}(p)$ is not negligible in experiment
Systematic errors should be estimated.
$-\delta_{0} \neq 0$ neglected

- other taste scatterings, $\pi_{\mathrm{SC}} K_{\mathrm{SC}}, \cdots$, than $\pi_{5} K_{5}$

Phase shift II

$I=1 / 2$ P-wave $K \pi \rightarrow K^{*}$
Breit-Wigner form fit of $\frac{p^{3}}{\sqrt{s}} \cot \delta(p)$

$N_{f}=2$ clover: $L|P| / 2 \pi=0,1, \sqrt{2}$, choose irreps where $l \geq 1$
$-L=1.9 \mathrm{fm}$ @ $m_{\pi}=0.27 \mathrm{GeV}$
Prelovsek et al., PRD88:054508(2013)

- 4 data in resonance region
$-g_{K^{*} \pi K}=5.7(1.6) \leftrightarrow g_{K^{*} \pi K}^{\exp }=5.65(5), \quad m_{K^{*}}=0.891(14) \mathrm{GeV}$
- no data in $m_{K^{*}}<E_{\pi}\left(p_{\mathrm{cm}}\right)+E_{K}\left(p_{\mathrm{cm}}\right)$

Phase shift II

$I=1 / 2$ P-wave $K \pi \rightarrow K^{*}$

Breit-Wigner form fit

$N_{f}=2+1$ aniso. clover: $L|P| / 2 \pi=0,1, \sqrt{2}, \sqrt{3}, 2$ take care of mixing of $l=0,1,2$

- 19 data near threshold $m_{\pi}+m_{K} \quad$ [Talk:Wilson Mon 1B 15:35]
$-m_{K^{*}}<m_{\pi}+m_{K}$: bound state
Hadron Spectrum, arXiv:1406.4158
expect calculation at realistic kinematics within a few years

Phase shift III

$I=1 / 2 K \pi$ S-wave and D-wave

$N_{f}=2+1$ aniso. clover: $L|P| / 2 \pi=0,1, \sqrt{2}, \sqrt{3}, 2$, choose irreps

- $K \pi, K \eta$ coupled channel analysis [Talk:Wilson Mon 1B 15:35]
- $\delta_{K \pi}, \delta_{K \eta}, \eta$ inelasticity

Hadron Spectrum, arXiv:1406.4158
$-m_{\kappa}<m_{\pi}+m_{K}$

- resonances corresponding to $K_{0}^{*}\left(K_{2}^{*}\right)$ in $l=0(2)$

Comparison with HALQCD method

HALQCD method

Definition of potential

Ishii, Aoki, and Hatsuda, PRL99:022001(2007), Aoki, Hatsuda, and Ishii, PTP123:89(2010)
Nambu-Bethe-Salpeter (NBS) wave function for $N N$

$$
\phi_{n}(\vec{r})=\sum_{\vec{x}}\langle 0| N(\vec{x}+\vec{r}) N(\vec{x})\left|N N, W_{n}\right\rangle
$$

$$
\left(\frac{\nabla^{2}}{m_{N}}+\frac{p_{n}^{2}}{m_{N}}\right) \phi_{n}(\vec{r})=\int d^{3} r^{\prime} U\left(\vec{r}, \vec{r}^{\prime}\right) \phi_{n}\left(\vec{r}^{\prime}\right) \text { where } W_{n}=2 \sqrt{m_{N}^{2}+p_{n}^{2}}
$$

NN 4-point function
$C_{N N}(\vec{r}, t)=\sum_{\vec{x}}\langle 0| N(\vec{x}+\vec{r}, t) N(\vec{x}, t) \overline{N N}(0)|0\rangle=\sum_{n} A_{n} \phi_{n}(\vec{r}) e^{-W_{n} t}$
Define $\bar{C}_{N N}(\vec{r}, t)=C_{N N}(\vec{r}, t) e^{2 m_{N} t}$
$\left(\frac{\nabla^{2}}{m_{N}}+\frac{1}{4 m_{N}} \frac{\partial^{2}}{\partial t^{2}}-\frac{\partial}{\partial t}\right) \bar{C}_{N N}(\vec{r}, t)=\sum_{n} A_{n} \int d^{3} r^{\prime} U\left(\vec{r}, \vec{r}^{\prime}\right) \phi_{n}\left(\vec{r}^{\prime}\right) e^{-t\left(W_{n}-2 m_{N}\right)}$ HALQCD, PLB712:437(2012)
Assume $U\left(\vec{r}, \vec{r}^{\prime}\right)=V(\vec{r}) \delta\left(\vec{r}-\vec{r}^{\prime}\right)+O\left(\nabla^{2}\right)$

$$
V(\vec{r})=\frac{\left(\frac{\nabla^{2}}{m_{N}}+\frac{1}{4 m_{N}} \frac{\partial^{2}}{\partial t^{2}}-\frac{\partial}{\partial t}\right) \bar{C}_{N N}(\vec{r}, t)}{\bar{C}_{N N}(\vec{r}, t)}
$$

\rightarrow less sensitive to t than $C_{N N}(\vec{r}, t)$ at $t \gg 1$

HALQCD method

Strategy

- fit $V(r)$ with continuous functions, like Yukawa function
- solve Shrödinger equation to calculate $\delta(p)$ in any p

Assumptions

1. $U\left(\vec{r}, \vec{r}^{\prime}\right)=V(\vec{r}) \delta\left(\vec{r}-\vec{r}^{\prime}\right)+O\left(\nabla^{2}\right) \rightarrow$ small energy dependence of $V(\vec{r})$ one small p : Murano et al., PTP125:1225(2011)
2. $V(r)$ in infinite volume, if small finite volume effect of $V(r)$
volume dependence at heavy m_{π} : HALQCD, PRL106:162002(2011)
3. $V(\vec{r})$ depends on sink operator of $C_{N N}(\vec{r}, t)$, but $\delta(p)$ does not c.f. operator dependence of $V(\vec{r})$ in SU(2) QCD

Takahashi et al., PRD82:094506(2010)

HALQCD method

$N_{f}=0 @ m_{\pi}=0.53 \mathrm{GeV}$ Ishii, Aoki, and Hatsuda, PRL99:022001(2007)

repulsive core + one-pion exchange potential
\rightarrow Qualitatively consistent with phenomenological potential

HALQCD method

their works

- Energy dependence of $V(\vec{r})$ Murano et al., PTP125:1225(2011)
- LS force in odd parity sectors HALQCD, PoS(LATTICE 2013)234, 235
- Hyperon potentials halQCD, Pos(LATTICE 2013)233
- charmed meson potentials haLQCD, PoS(LATTICE 2013)261
- spin-2 S-wave $N \Omega$ dibaryon HALQCD, arXiv:1403.7284

$$
\begin{aligned}
& -\Delta E_{N \Omega}=19(5)\binom{12}{2} \mathrm{MeV} \\
& a_{N \Omega}=-1.28(13)\binom{14}{15} \mathrm{fm} \\
& r_{N \Omega}=0.499(26)\binom{29}{48} \mathrm{fm}
\end{aligned}
$$

$-\Omega-\Omega$ potential HALQCD, PoS(LATTICE 2013)232 [Talk:Yamada Thu 7B 15:35] c.f. $a_{0}=-0.16(22) \mathrm{fm} @ m_{\pi}=0.39 \mathrm{GeV}$, Buchoff et al., PRD85:094511(2012)

- three-nucleon force halQCD, PTP127:723(2012)
quark mass dependence of three-nucleon force [Talk:Doi Thu 7B 15:55]

Comparison with HALQCD method

$I=2 \pi \pi$

Kurth et al., JHEP012:015(2013)

Red line from HALQCD method symbols from Lüscher's method
$\delta(p)$ at small $p @ m_{\pi}=0.94 \mathrm{GeV}$ a_{0} / m_{π} ©
$m_{\pi}=0.94,0.50,0.33 \mathrm{GeV}$

Quantitative agreement

H dibaryon (bound state) $\Delta E_{H}=m_{H}-2 m_{\wedge}$
$\mathrm{NPLQCD} N_{f}=3 @ m_{\pi}=0.8 \mathrm{GeV} \quad \mathrm{HALQCD} N_{f}=3$

NPLQCD, PRL106:162001(2011)
PRD87:034506(2013)
HALQCD, PRL106:162002(2011)
NPA881:28(2012)
black:
Lüscher's method ($L^{3} \rightarrow \infty$) red: HALQCD method

Qualitative agreement: existence of H dibaryon

H dibaryon

Mainz group [Talk:Green Wed 6B 12:30]

update from Lat13 pos(LATtice 2013)440 using several improvements
several local (smeared) six-quark operators with variational method No signal of H dibaryon $E_{0}>2 m_{\wedge}$

Important to check: variational method including two-baryon operators

$N N$ channels with Lüscher's method

Current status from Lüscher's method

TY et al., preliminary result@ $m_{\pi}=0.3 \mathrm{GeV}$ with 2 volumes

$N N$ channels with Lüscher's method

Current status from Lüscher's method

TY et al., preliminary result $m_{\pi}=0.3 \mathrm{GeV}$ with 2 volumes
$L^{3} \rightarrow \infty$: existence of bound states in ${ }^{3} S_{1}$ and ${ }^{1} S_{0}$ inconsistent with experiment due to larger m_{π}

$N N$ channels with Lüscher's method

Current status from Lüscher's method

TY et al., preliminary result $m_{\pi}=0.3 \mathrm{GeV}$ with 2 volumes
$L^{3} \rightarrow \infty$: existence of bound states in ${ }^{3} S_{1}$ and ${ }^{1} S_{0}$ inconsistent with experiment due to larger m_{π}
$a_{0}<0 @ m_{\pi}=0.8 \mathrm{GeV} \rightarrow$ bound state in each channel
c.f. Sasaki and TY, PRD74:114507(2006)

	PACS-CS, $N_{f}=0^{*}$	NPLQCD, $N_{f}=3$
$a_{0}{ }^{3} S_{1}[\mathrm{fm}]$	$-1.05(24)\binom{5}{65}$	$-1.82\binom{14}{13}\binom{17}{12}$
$a_{0}{ }^{1} S_{0}[\mathrm{fm}]$	$-1.62(24)\binom{1}{75}$	$-2.33\binom{19}{17}\binom{27}{20}$

* from $L=6.1 \mathrm{fm}$ PACS-CS, PRD84:054506(2011)

NPLQCD, PRD87:034506(2013)

$N N$ channels with HALQCD method

HALQCD, $N_{f}=2+1 m_{\pi}=0.41,0.57,0.70 \mathrm{GeV}$

No bound states
in both ${ }^{3} \mathrm{~S}_{1}$ and ${ }^{1} \mathrm{~S}_{0}$ inconsistent with experiment due to larger m_{π}

Qualitative difference from Lüscher's method

Uncertainty of Lüscher's method

TY et al. and NPLQCD
Lüscher's method $\sim \Delta E$ of Oth state and $L^{3} \rightarrow \infty$
\rightarrow same as traditional method to obtain hadron mass
current study: smeared quark field $+C_{N N}(t) /\left(C_{N}(t)\right)^{2}$ in large t $\Delta E(t)$ from + to $-\rightarrow$ plateau \rightarrow large statistical fluctuation

TY et al., $N_{f}=2+1 m_{\pi}=0.5 \mathrm{GeV}$

- Oth state energy from variational method

Uncertainty of Lüscher's method

TY et al. and NPLQCD
Lüscher's method $\sim \Delta E$ of Oth state and $L^{3} \rightarrow \infty$
\rightarrow same as traditional method to obtain hadron mass

- Oth state energy from variational method

- 2.9σ difference of ΔE at $m_{\pi}=0.8 \mathrm{GeV}\left(N_{f}=0\right.$ and $\left.N_{f}=3\right)$
- Investigation of m_{π} dependence

Bound state in ${ }^{1} \mathrm{~S}_{0}$ vanishes at physical m_{π} ?

Uncertainty of HALQCD method

HALQCD

Need to test validity of method
$-I=2 \pi \pi$: quantitatively ok \leftarrow only $\pi \pi$ and $V(r) \geq 0$ in all r
c.f. reasonable fit with $p \cot \delta(p)=1 / a_{0}$ Had. Spec., PRD86:034031(2012)

- Existence of H dibaryon: qualitatively ok $\leftarrow V(r) \leq 0$ in all r

Agreements in simple systems (insensitive to $V(r)$ at small r)

$$
I=2 \pi \pi
$$

H dibaryon

$N N$

- NN channels: qualitative difference complex $V(r) \rightarrow$ positive and negative $V(r)$ depending on r Important to study uncertainties of $V(r)$

Uncertainty of HALQCD method

HALQCD

- NN channels: qualitative difference

Possible uncertainties

1. Uncertainties of $V(r)$ in middle-large r
important for physical quantity in $p \sim 0$
$V(r) \sim 0 \rightarrow$ large relative error
Statistics
HALQCD ~ 12000 meas@ $m_{\pi}=0.4 \mathrm{GeV}$
NPLQCD 150000 meas $m_{\pi}=0.8 \mathrm{GeV}$
TY et al. 40000meas@ $m_{\pi}=0.5 \mathrm{GeV}$

$$
\text { meas }=N_{\text {conf }} \times N_{\text {src }}
$$

Uncertainty of HALQCD method

HALQCD

- NN channels: qualitative difference

Possible uncertainties

1. Uncertainties of $V(r)$ in middle-large r

Statistics

2. Uncertainties of $V(r)$ in small r
important for physical quantity in large p and also bound state
Finite a effect: affect large p HALQCD, Pos(LATTICE 2013)226
Sink operator dependence: SU(2) QCD, Takahashi et al., PRD82:094506(2010)

large r insensitive, but small r sensitive to operator

Uncertainty of HALQCD method

HALQCD

- NN channels: qualitative difference

Possible uncertainties

1. Uncertainties of $V(r)$ in middle-large r

Statistics
2. Uncertainties of $V(r)$ in small r

Finite a effect: affect large p HALQCD, Pos(LATTICE 2013)226
Sink operator dependence: SU(2) QCD, Takahashi et al., PRD82:094506(2010)
3. Uncertainties of m_{N}

Statistics and systematic \rightarrow constant shift of $V(r)$

$$
V(\vec{r}) \approx \frac{\left(\frac{\nabla^{2}}{m_{N}}-\frac{\partial}{\partial t}\right) C_{N N}(\vec{r}, t)}{C_{N N}(\vec{r}, t)}-2 m_{N}
$$

necessary detail investigation of uncertainties

Light nuclei

Light nuclei ${ }^{3} \mathrm{He}$ and ${ }^{4} \mathrm{He}$

First calculation of ${ }^{3} \mathrm{He}$ and ${ }^{4} \mathrm{He}$ PACS-CS, PRD81:111504(R)(2010)
NPLQCD, PRD87:034506(2013), TY et al., PRD86:074514(2012) and preliminary result $m_{\pi}=0.3 \mathrm{GeV}$

$L^{3} \rightarrow \infty$ results only
Light nuclei likely formed in $0.3 \mathrm{GeV} \leq m_{\pi} \leq 0.8 \mathrm{GeV}$ Same order of ΔE to experiments
$A=2,3$ states in $J=1$ bound in $N_{f}=2 \mathrm{SU}(2)$ gauge theory
[Talk:Detmold Fri 8C 14:15] arXiv:1406.4116

Light nuclei ${ }^{3} \mathrm{He}$ and ${ }^{4} \mathrm{He}$

First calculation of ${ }^{3} \mathrm{He}$ and ${ }^{4} \mathrm{He}$ PACS-CS, PRD81:111504(R)(2010)
NPLQCD, PRD87:034506(2013), TY et al., PRD86:074514(2012) and preliminary result $\mathrm{C}_{\pi}=0.3 \mathrm{GeV}$

$L^{3} \rightarrow \infty$ results only
Light nuclei likely formed in $0.3 \mathrm{GeV} \leq m_{\pi} \leq 0.8 \mathrm{GeV}$
Same order of ΔE to experiments \rightarrow relatively easier than $N N$
large $|\Delta E|$ less V dependence
touchstone of quantitative understanding of nuclei from lattice QCD Investigations of m_{π} dependence $\rightarrow m_{\pi}=0.14 \mathrm{GeV} @ L \sim 10 \mathrm{fm}$

Summary

Hadronic interactions

important to understand properties of hadrons and nuclei
various studies for hadronic scattering and decays new ideas to overcome difficulties exploratory study \rightarrow precise measurement
comparison between Lüscher's method and HALQCD method calculations with Lüscher's method need variational analysis
HALQCD method works well in $I=2 \pi \pi$
\rightarrow useful to calculate $\delta(p)$ in this channel
still need to comparison in $N N$ channel
\rightarrow investigation of uncertainties of $V(r)$
calculation of light nuclei (${ }^{3} \mathrm{He}$ and ${ }^{4} \mathrm{He}$)
might be relatively easier than $N N \rightarrow$ touchstone of nuclei calculation m_{π} dependence $\rightarrow m_{\pi}=0.14 \mathrm{GeV}$ © $L \sim 10 \mathrm{fm}$
precise measurement: $m_{u} \neq m_{d}$, EM effects, and also property of single nucleon, e.g. g_{A} and form factors

Thank you for your attention

Thank you very much for sending results and comments
John Bulava, William Detmold, Jeremy Green, Yoshinobu Kuramashi, Christian Lang, Hidekatsu Nemura, Sasa Prelovsek, Akira Ukawa

Back up

Calculation of two-particle bound state

condition of bound state through $\delta(p)$ (pole of S matrix)

$$
p \cot \delta(p)=-\gamma \text { at } p^{2}=-\gamma^{2}, \quad p^{2}=m_{b}^{2} / 4-m^{2}
$$

finite volume correction of binding energy

$$
\Delta E_{L}=\Delta E\left\{1-\frac{C}{\gamma L} \sum_{\vec{n}}^{\prime} \frac{\exp \left(-\gamma L \sqrt{\vec{n}^{2}}\right)}{\sqrt{\vec{n}^{2}}}\right\}, \Delta E=m_{b}-2 m \approx-\frac{\gamma^{2}}{m_{N}}
$$

Problem to identify bound state on finite volume

$$
\Delta E_{L}=E_{0}(L)-2 m
$$

Bound state

$$
\Delta E_{L}=\Delta E+O\left(e^{-C L}\right)<0
$$

Attractive scattering state

$$
\begin{gathered}
\Delta E_{L}=O\left(-\frac{a_{0}}{M L^{3}}\right)<0 \quad\left(a_{0}>0\right) \\
\text { necessary to take } L^{3} \rightarrow \infty
\end{gathered}
$$

Scattering length III

$I=0 \pi \pi D, C, R, V$ necessary
Most difficult, but important in $\Delta I=1 / 2 K \rightarrow \pi \pi$

\bigcirc Wilson type; \square ASQTAD; \triangle DWF; PQ:partial quenched
Recent ASQTAD calculations reasonable errors w/V diagram However, V destroys signal in Wilson and DWF $\rightarrow \sim 100 \%$ error
necessary breakthrough for other actions than KS and estimate of systematic error for KS

PACS-CS results

$N_{f}=3$ NLO WChPT

$$
\begin{aligned}
& a_{0}^{2} m_{\pi}=\frac{m_{\pi}^{2}}{8 \pi f_{\pi}^{2}}\left[-1+\frac{32}{f_{\pi}^{2}}\left[m_{\pi}^{2}\left(L^{\prime}-\frac{L_{5}}{2}\right)+\text { analytic }+\log \right]\right]-\frac{c_{2} a^{2}}{8 \pi f_{\pi}^{2}} \\
& a_{0}^{1} m_{K}=\frac{m_{K}^{2}}{8 \pi f_{K}^{2}}\left[-1+\frac{32}{f_{K}^{2}}\left[m_{K}^{2}\left(L^{\prime}-\frac{L_{5}}{2}\right)+\text { analytic }+\log \right]\right]-\frac{c_{2} a^{2}}{8 f_{\pi} f_{K}^{2}} \\
& a_{0}^{3 / 2} \mu_{\pi K}=\frac{\mu_{\pi K}^{2}}{4 \pi f_{\pi} f_{K}}\left[-1+\frac{32}{f_{\pi} f_{K}}\left[m_{\pi} m_{K} L^{\prime}-\frac{m_{\pi}^{2}+m_{K}^{2}}{4} L_{5}+\text { analytic }+\log \right]\right]-\frac{c_{2} a^{2}}{4 \pi f_{\pi} f_{K}} \frac{\mu_{\pi K}^{2}}{m_{\pi} m_{K}} \\
& a_{0}^{1 / 2} \mu_{\pi K}=\frac{\mu_{\pi K}^{2}}{4 \pi f_{\pi} f_{K}}\left[2+\frac{32}{f_{\pi} f_{K}}\left[m_{\pi} m_{K} L^{\prime}+\frac{m_{\pi}^{2}+m_{K}^{2}}{2} L_{5}+\text { analytic }+\log \right]\right]-\frac{c_{2} a^{2}}{4 \pi f_{\pi} f_{K}} \frac{\mu_{\pi K}^{2}}{m_{\pi} m_{K}}
\end{aligned}
$$

$$
L^{\prime}=2 L_{1}+2 L_{2}+L_{3}-2 L_{4}-L_{5} / 2+2 L_{6}+L_{8}
$$

fit range:
$a_{0}^{2}: m_{\pi} \leq 0.41 \mathrm{GeV}, a_{0}^{1}, a_{0}^{3 / 2}, a_{0}^{1 / 2}: m_{\pi} \leq 0.30 \mathrm{GeV}$

$$
\begin{array}{r}
c_{2}=0.089(24) \mathrm{GeV}^{4}, L_{5}=2.1(1.1) \times 10^{-3}, L^{\prime}=0.83(64) \times 10^{-3} \\
\chi^{2} / \text { d.o.f. }=1.9(1.2)
\end{array}
$$

Phase shift I

$I=2$ S-wave $\pi \pi$ Simplest scattering system

CM and Moving frames © $m_{\pi}=0.39 \mathrm{GeV}$

NPLQCD, PRD85:034505(2012)
NLO ChPT in $p \neq 0 \rightarrow$ physical m_{π}

$$
m_{\pi} / f_{\pi} \text { from MA calc. }
$$

other works: CP-PACS, PRD67:014502(2003), Kim, NPB(Proc.Suppl.)129:197(2004), CP-PACS, PRD70:074513(2004), CLQCD, JHEP06:053(2007), Sasaki and Ishizuka, PRD78:014511(2008),
Kim and Sachrajda, PRD81:114506(2010), Hadron Spectrum, PRD83:071504(R)(2011)

Resonance from phase shift

Relativistic Breit-Wigner form for scattering amplitude

$$
e^{i \delta(p)} \sin \delta(p)=\frac{-\sqrt{s} \Gamma_{R}(s)}{s-M_{R}^{2}+i \sqrt{s} \Gamma_{R}(s)}, \quad s=E_{\mathrm{Cm}}^{2}
$$

PDG, PRD:86.010001(2012)
Breit-Wigner form fit: P-wave $I=1 \pi \pi \rightarrow \rho\left(I=1 / 2 K \pi \rightarrow K^{*}\right)$

$$
M_{R}=m_{\rho}, \Gamma_{R}(s)=\frac{p^{3}}{s} \frac{g_{\rho \pi \pi}^{2}}{6 \pi} \longrightarrow \frac{p^{3}}{\sqrt{s}} \cot \delta(p)=\frac{6 \pi}{g_{\rho \pi \pi}^{2}}\left(m_{\rho}^{2}-s\right)
$$

Necessary condition of P -wave resonance (kinematics, calculation)

1. $m_{\rho}>2 m_{\pi}$
2. CM frame: $m_{\rho}>2 E_{\pi}(p)=2 \sqrt{m_{\pi}^{2}+p^{2}}$, because $\rho \rightarrow \pi(p) \pi(-p)$

Moving frames: e.g. $E_{\rho}(P)>m_{\pi}+E_{\pi}(P)$
3. ρ type and $\pi \pi$ operators in variational analysis

Amplitude (transfer matrix) method: Gottlieb et al., PL134B:346(1984), Loft and DeGrand, PRD39:2692(1989), McNeile and Michael, PRD65:094505(2002), McNeile and Michael, PLB556:177(2003), McNeile and Michael, PRD73:074506(2006),
McNeile, Michael, and Urbach, PRD80:054510(2009), Alexandrou et al., PRD88:031501(R)(2013)
「 of decuplet baryons [Talk:Petschlies Thu 7B 14:35]

Phase shift III

$I=1 / 2$ P-wave $K \pi D, C, R$ and T diagrams

[Talk:Wilson Mon 1B 15:35]

Comparison with HALQCD method

 $N N$ channels with Lüscher's method TY et al., $N_{f}=2+1 m_{\pi}=0.5 \mathrm{GeV}$PRD86:074514(2012)

$\mathrm{NPLQCD}, N_{f}=3 m_{\pi}=0.8 \mathrm{GeV}$
PRD87:034506(2013)

Effective baryon mass

- spin-2 S-wave $N \Omega$ dibaryon HALQCD, arXiv:1403.7284

Effective m_{Ω}

Simulation parameters of TY et al.

$N_{f}=2+1$ QCD

Iwasaki gauge action at $\beta=1.90$

$$
a^{-1}=2.194 \mathrm{GeV} \text { with } m_{\Omega}=1.6725 \mathrm{GeV} \quad \text { ' } 10 \mathrm{PACS}-\mathrm{CS}
$$

non-perturbative $O(a)$-improved Wilson fermion action

$$
\begin{gathered}
m_{\pi}=0.51 \mathrm{GeV} \text { and } m_{N}=1.32 \mathrm{GeV} \\
m_{\pi}=0.30 \mathrm{GeV} \text { and } m_{N}=1.05 \mathrm{GeV} \\
m_{s} \sim \text { physical strange quark mass }
\end{gathered}
$$

Finite volume dependence

		$m_{\pi}=0.3 \mathrm{GeV}$		$m_{\pi}=0.5 \mathrm{GeV}$	
L	$L[\mathrm{fm}]$	$N_{\text {conf }}$	$N_{\text {meas }}$	$N_{\text {conf }}$	$N_{\text {meas }}$
32	2.9			200	192
40	3.6			200	192
48	4.3	400	1152	200	192
64	5.8	160	1536	190	256

Effective mass @ $m_{\pi}=0.3 \mathrm{GeV}$

Preliminary result of $N_{f}=2+1$ TY et al.

effective $\Delta E_{L} @ m_{\pi}=0.3 \mathrm{GeV}$ on $L=48$
Preliminary result of $N_{f}=2+1$ TY et al.

$L^{3} \rightarrow \infty @ m_{\pi}=0.3 \mathrm{GeV}$

Preliminary result of $N_{f}=2+1 \mathrm{TY}$ et al.

