Review on
Quark masses

Francesco Sanfilippo

UNIVERSITY OF
Southampton
School of Physics
and Astronomy

NYC, 26th July 2014
6 known quarks
Facts

6 known quarks

...and 30 minutes to talk...
Facts

6 known quarks

...and 30 minutes to talk...

\[
\frac{30 \text{ minutes}}{\text{Up, Down, Strange, Charm, Bottom, Top}} = 5 \text{ Minutes per quark}
\]
6 known quarks

...but we must fit in 5 minutes for questions!
Facts

6 known quarks

...but we must fit in 5 minutes for questions!

\[
\text{25 minutes} \div (\text{Up, Down, Strange, Charm, Bottom, Top}) = 5 \text{ Minutes per quark}
\]
FLAG II - arXiv:1310.8555

- Flag did a great job
- They already gave an average for $m_l = \frac{m_u + m_d}{2}$, m_s, and m_d/m_u
- If they did the same for m_c and m_b, I would’ve been even more relaxed

Methods that I want to discuss

Instead of filling you with numbers, I prefer to discuss the following points:

- Strategies for heavy quarks
- Relevance of quark mass ratios
- Nonperturbative renormalization approaches

Quantitative results that I want to discuss

- Collect the contributions presented at this conference for all quark masses
- Update averages for m_c, m_b, m_d/m_u
Relevance of quark mass values

Input parameters for other computations

Countless phenomenological applications
Examples:
- charm effect in the loops to B-physics observables in FCNC processes
- cross section of the $H \rightarrow b\bar{b}$ decay, dominant mode for a $m_H = 126$ GeV in SM

Consistency: Universality of continuum limit

- Quarks are confined, no comparison with m_q^{exp} available. Instead, comparison in a specific renormalization scheme and at a specific renormalization scale.
- Traditionally it is $\overline{\text{MS}}$ and $\mu = 2$ GeV (except for c, b-quark), now moving to higher scales
- Higher scale \rightarrow more accurate comparison with LQCD results obtained in non-MS schemes
- Increase in precision of the computation allows to check consistency of lattice methods

Flavor theory

- Grand Unified Theories predict quark masses in terms of other fundamental parameters
- Example SU(5): $m_e = m_d$, $m_\mu = m_s$, $m_\tau = m_b$
- We do not know the true Flavor model, so we can test ability of suggested models to reproduce quark mass hierarchy \rightarrow provide bounds on GUT
Computing renormalized quark masses

Regularize the theory

\[\mathcal{L}_{\overline{\text{QCD}}} = \sum_{f \in \{u, d, s, c\}} \bar{\psi}_f (D + m_f) \psi_f + \ldots \]

- Introduce regulator: lattice scale \(a \)
- \(N_f + 1 \) parameters: 1 for each quark and absolute scale, related to \(\Lambda_{\overline{\text{QCD}}} \)

Renormalize the theory

- Tune parameters to keep physics fixed while removing the cut-off
 - Appropriate choice: quantities strongly depending upon \(m_f \)
 - Typical choice: pseudoscalar meson masses and decay constants (recently also baryon masses)

- The procedure produces:
 - \textit{bare} quark masses (parameters of the Action)
 - lattice spacings
Lattice quark masses and their ratios

Lattice quark masses

Every lattice computation must tune quark masses to reproduce QCD in the continuum limit

- Tune through some quantity, typically meson masses (combining with continuum limit)
- Bare parameters of the Lagrangian: $a m_q^{\text{bare}}$ available to everybody
- Knowledge of $a m_q^{\text{bare}}$ describing constant physics line essential to perform simulations
- But not useful to compare between different regularizations

Ratio of quark masses

As long as the quark mass is multiplicatively renormalizable

$$m_q^{\text{ren}} = Z_m m_q^{\text{bare}}$$

and in renormalization schemes in which Z_m does not depend upon m_q:

$$\partial_m Z_m = 0$$

ratio of renormalized quark masses can be computed through bare quark mass ratios:

$$\frac{m_{q_1}^{\text{ren}}}{m_{q_2}^{\text{ren}}} = \frac{Z_m m_{q_1}^{\text{bare}}}{Z_m m_{q_2}^{\text{bare}}} = \frac{a m_{q_1}^{\text{bare}}}{a m_{q_2}^{\text{bare}}}$$

Let us discuss a concrete example
Tuning $m_l = (m_u + m_d)/2$ and m_s bare masses - MILC collaboration

Light quark

At each β tune the ratio:

$$\frac{(a^2) M_{\pi}^2 (am)}{(a^2) f_{\pi}^2 (am)}$$

to reproduce $(M_{\pi}/f_{\pi})_\text{exp}^2$ and learn:
- $am^\text{bare}_{\text{light}}$ from corresponding am
- a from $a f_{\pi} \left(am^\text{bare}_{\text{light}} \right) / f_{\pi}^\text{exp}$

Strange quark

Tune the quantity: $2M_K^2 - M_{\pi}^2$ (independent from m_{light} at LO)

→ learn m_s

Charm quark

Similarly, tune m_c to reproduce M_{D_s}

Javad Komijani talk, Wed. 25, 12.10
Extrapolating to the continuum m_s/m_l - MILC collaboration

Continuum limit

Once determined

$$[m_s/m_l](a)$$

at each lattice spacing separately, the **continuum limit** must be taken

Renormalization Group Invariant?

- IF QED is not included or
- IF QED is included, for ratios of same charged quarks

Undervalued quantities!

- (Almost) Every lattice groups tuning to physical point is in the position to compute ratios
- But this information is **scarcely emphasized**
Renormalization approaches

To give an absolute value for the renormalized quark mass we need to know Z_m

Non-Perturbative renormalization
- Rome-Southampton method or Schroedinger functional
- Then perturbatively matched to \overline{MS} (conventionally)

Perturbative renormalization
- Schroedinger functional **costly**
- Rome-Southampton not always easy to implement (e.g. Staggered quarks)

Forced to use **perturbation theory** to renormalize
- Convergence is quite unreliable and at least 2-loop perturbative correction is needed
- Difficult to go **beyond 2 loop** calculations on the lattice (but see: 3 loop stochastic computation by M.Brambilla et al., 1402.6581, cfr. [talk by M. Brambilla, Fri 27, 16.50](#))

How to avoid the renormalization on the lattice?
- Compute a RGI quantity
- Match it to a continuum, perturbative computation in terms of \overline{MS} masses and coupling

Examples:
- Moments of the correlators
- Energy of the non-relativistic heavy meson
Learning Z_m from charm correlator moments

Adimensional moments of two points correlation function between charm currents:

$$G^{(j)}_n = \sum_t (t/a)^n G^{(j)}(t), \quad G^{(j)}(t) = \left(a m_c^{\text{bare}} \right)^2 \sum_{\vec{x}} \langle j^{\text{ren}}(\vec{x}, t) j^{\text{ren}}(\vec{0}, 0) \rangle$$

Reduced moments

$$R^{(j)}_n = \frac{a M_{\text{mes}j}}{2 a m_c^0} \sqrt{\frac{G^{(j)}_n G^{(j0)}_n}{G^{(j)}_{n-2} G^{(j0)}_{n-2}}}$$

- Built of bare lattice quantities
- Automatically renormalized (simplified expression if PCAC holds)
- Can be extrapolated to the continuum limit
- Perturbative if n not too big (exponentially suppressed, $n-$power enhanced in t)

Update of C.McNeile et al., PRD82 (2010)
Learning Z_m from charm correlator moments

Lattice input

L_n^{LQCD} computed numerically:
- Interpolated to am_c^bare reproducing M_{η_c} (estimating EM & disconn. diagram)
- Extrapolated to the continuum and chiral limit

Continuum perturbation theory input

- Khum et al. Nucl.Phys. B778 (2007), at 3 order α_s
- Comparing R_n^{LQCD} and R_n^{PQCD}

$$R_n^{\text{PQCD}} = \frac{r_n^{\text{PQCD}}(\alpha_{\text{MS}}, \mu/m_c)}{2m_c^{\text{MS}}(\mu)/M_{\text{mes}}^j}$$

In this way we learn $Z_m^{\text{MS}}(\frac{1}{a}) = m_c^{\text{MS}}(\frac{1}{a}) / am_c^\text{bare} / a$ using a **physical input** (M_{mes}^j)
Scared of non-perturbative effects?

Perturbativity issues

- HPQCD collaboration performed various checks:
 - stability of $m_c(\mu)$ as n is changed to probe perturbativity window of R_n
 - extending the analytic parametrization of R_n including condensates
- ETMC repeated this study and compared with Z^{RI-MOM}_m (M.Petschlies, Lattice 2011):
 - compatible with direct determination based upon Z^{RI-MOM}_m (preliminary!)
 - not clear advantage in terms of precision

Viability of the method

Is the method correct? Yes (for circumstantial evidence)
- Various internal consistency checks
- Results compatible with more traditional approaches

Is it useful? Yes and no
- Do not need to set-up Non Perturbative Renormalization program
- But it is subject to similar complications (α_s^m truncation, n-window, etc)

Not clearly superior, but a viable and interesting alternative

Future improvements and additional checks

HPQCD promised they will:
- check consistency with the RI-MOM-like determinations
- shift to determine Z_m from b quark in the future (more reliable perturbation theory)
Binding energy at finite lattice spacing

\[M_{\Upsilon}^{\text{exp}} = 2m_b^{\text{pole}} + \Delta M_{\Upsilon}, \quad \Delta M_{\Upsilon} = \text{bind. energy} \]

- Non Relativistic QCD (NRQCD) is non-renormalizable
- \(m_b^{\text{pole}} \) can be determined by working at fixed lattice spacing
- Lattice-spacing-per-lattice-spacing: \(\Delta M = a^{-1}(aE_{\text{sim}} - 2aE_0) \)
- Relation between **divergent quantities** in the continuum limit

Ingredients

- tune \(\overline{M}_{bb} = a^{-1}(3aM_{\Upsilon}^{\text{sim}} + aM_{\eta_b}^{\text{sim}}) / 4 \) to its physical value, through kinetic energy \(M_{\text{kin}} \) extracted from dispersion relation of NRQCD meson \(\rightarrow m_b^{\text{bare}} \)
- compute \(\Delta M_{\Upsilon} \) subtracting (**power divergent in a!**) \(E_0 \) determined at 2 loops using automated perturbation theory & high \(\beta \) simulations (cfr. C.Monahan, Latt’13)

 Determine \(2m_b^{\text{pole}} = M_{\Upsilon}^{\text{exp}} - a^{-1}(aE_{\Upsilon}^{\text{sim}} - 2aE_0) \), cross-check using \(B_s \)

 Compare different lattice spacing (no **continuum limit** can be taken)

Outcome - Phys. Rev. D 87, 074018 (2013), HPQCD coll.

- MILC 2+1 Asqtad ensembles, one-loop radiative corrected NRQCD action
- Convert \(m_b^{\text{pole}} \) to \(m_b^{\text{MS}}(m_b) = 4.166(43) \) GeV for \(N_f = 5 \)
- Improved over \(m_b^{\text{MS}}(m_b) = 4.4(3) \) GeV by A. Gray et al., PRD 72, (’05), including \(\mathcal{O}(\beta^2) \)
Matching HQET and QCD

After long efforts **Alpha** matched **HQET** to **QCD** at $O(1/m_h)$

$$\mathcal{L}^{HQET} = \bar{\psi}_h \left[\left(D_0 + m_{\text{bare}}\right) - \omega_{\text{kin}} D^2 - \omega_{\text{spin}} \sigma \cdot B \right] \psi_h$$

by making use of Step Scaling method [cfr. JHEP 1209 (2012) 132]

The theory is renormalizable order by order.

Observable of Expansion at $O(1/m_h)$

Terms $\propto \omega_{\text{kin}}, \omega_{\text{spin}}$ are of $O(1/m_h)$ and treated as **operator insertions**:

$$\langle O \rangle = \langle O \rangle_{\text{stat}} + \omega_{\text{kin}} \langle O \bar{\psi}_h D^2 \psi_h \rangle_{\text{stat}} + \omega_{\text{kin}} \langle O \bar{\psi}_h \sigma \cdot B \psi_h \rangle_{\text{stat}}$$

and similarly

$$M_B = m_{\text{bare}} + E_{\text{stat}} + \omega_{\text{kin}} E_{\text{kin}} + \omega_{\text{spin}} E_{\text{spin}},$$

$E_{\text{kin}}, E_{\text{spin}}$ determined from time behavior of correlation functions with **operator insertions**

Determination of m^r_{b}

Interpolate $M_B (m_{\text{bare}})$ to the m_{bare} reproducing M_B^{exp} while:

- chirally and continuum extrapolating $M_B (m_{\text{bare}}, M_\pi, a)$ in HMChPT
- considering m_{bare} as a function of RGI mass as determined with Schröedinger Functional
- converting it to m^MS_b using perturbation theory

✓ $N_f = 2$, improved wrt the quenched computation [M.Della Morte, JHEP 0701 (2007)]
✓ $1/m_h$ corrections turn out to be very small
ETM \(N_f = 2 + 1 + 1 \) determination (presented at Latt.’13)

RI-MOM for \(N_f = 2 + 1 + 1 \) - 1403.4504

- Mass independent renormalization: all masses much smaller than \(\mu \)
- Usual approach to match \(\overline{\text{MS}} \): take chiral limit of \(Z \) as done for observables
- \(N_f = 2 + 1 + 1 \) simulations contain massive \(s \) and \(c \) quarks

ETM collaboration performed dedicated simulations with \(N_f = 4 \) light quarks

Cut-off effects

- Quark masses determined tuning \(f_\pi \) and pseudoscalar meson masses
- Reduce cut-off effects taking ratios between similar quantities (e.g. \(M_\pi / M_\bar{s}s, M_D / M_\bar{c}s \))
ETM $N_f = 2 + 1 + 1$ determination of b quark mass

Extrapolating from c region

- The mass M_{hl} of a heavy-light meson diverges in the static limit: $\lim_{m_h \to \infty} \frac{M_{hl}}{m_h} = 1$
- Could be directly used to extrapolate $M_{hl}(m_h, m_l, a)$ from $h = c$ region

Ratio method [cfr. R.Frezzotti et al., JHEP 1004 (2010)]

- Instead, consider a series of masses $m^{(0)} = m_c, m^{(1)} = \lambda m_c, \ldots m^{(n)} = \lambda^n m_c$,

$$y \left(m_h^{(n)}, \lambda; m_l, a \right) = \lambda \frac{M_{hl}(m_h^{(n)}; m_l, a)}{M_{hl}(m_h^{(n)}/\lambda; m_l, a)} \xrightarrow{m_h \to \infty} 1$$
- Compute $y \left(m_h^{(n)}, \lambda; m_l, a \right)$, extrapolate to the continuum, and reconstruct $M_{hl}(m_h, m_l)$

Results for m_b

- Tune m_b to reproduce M_B [see: N.Carrasco et al., JHEP 1403 (2014)]
- Preliminary improvement:
 - Use GEVP
 - Adopt more sophisticated ratios y_Q

![Figure 2: $c = 0.75$: y_Q against $1/\mu_h$ at NLL using SL, w-opt and GEVP two-point correlation functions. The fit ansatz is of the form $y_Q(\mu_h) = 1 + \eta_1 \mu_h + \eta_2 \mu_h^2$. Input data of the M^2 type have been used.](image)
Physical point simulation

- $N_f = 2 + 1 + 1$ Möbius Domain Wall fermions,
- 2 lattice spacings: $a^{-1} = 2.358(7), 1.730(4)$ GeV
- Quark masses essentially at the physical point ($M_\pi = 139$ MeV)

Global fit

- How to re-tune to $M_{\pi_0} = 135$ MeV?
- Combine with heavier pion data to slightly extrapolate

\[
m_l^{\overline{\text{MS}}} (3 \text{ GeV}) = 3.014(39)_{\text{stat}}(0)_{\text{chir}}(5)_{\text{fse}}(35)_{\text{ren}} \text{ MeV}
\]

\[
m_s^{\overline{\text{MS}}} (3 \text{ GeV}) = 82.27(92)_{\text{stat}}(0)_{\text{chir}}(6)_{\text{fse}}(95)_{\text{ren}} \text{ MeV}
\]

- Use many inputs in a global fit (M_K, M_π, M_Ω, f_K, f_π, etc.)
Physical inputs

- **Fix** m_s from triply stranged baryon Ω

 ![Graph](image1.png)

- Fix m_c from singly charmed baryon Λ_c

 ![Graph](image2.png)

- Lattice spacings determined using Pion & Proton masses

Chiral and continuum extrapolation

\[
\begin{align*}
M_\Omega &= M_{\Omega}^{\text{chir}} + c_\Omega M_\pi^2 + d_\Omega a^2 \\
M_{\Lambda_c} &= M_{\Lambda_c}^{\text{chir}} + c_\Omega^{(2)} M_\pi^2 + c_\Omega^{(3)} M_\pi^3 + d_\Omega a^2
\end{align*}
\]

More challenging than meson analysis: less well founded Chiral theory and FSE guidance

Outcomes

- Observed mild dependence on volume
- Reasonable agreement with determination obtained in meson sector

Cfr. Ch. Kallidonis talk Wed. 25, 09:40
Electromagnetism

Hadron Self Energy

Correct inputs used to fix quark masses
- Neutral pseudo-Goldstone boson masses corrected only at $O(e^2 m)$
- Compute electromagnetic contribution to meson masses: $\hat{M}_P = M_P - \Delta M^{QED}$
 - \hat{M}_π^2 and $\left[\hat{M}_{K^+}^2 + \hat{M}_{K^0}^2 \right]$ at LO independent of $m_u - m_d \rightarrow$ use to determine m_l and m_s
 - $\hat{M}_{K^+}^2 - \hat{M}_{K^0}^2 \propto B_2 (m_d - m_u)$ at LO, use to determine $m_d - m_u$
- Note: separation of QED and QCD contributions requires defining a scheme

BMW results

- Electro-quenched simulations (not related to recent QCD+QED project 1406.4088)
- Determined from ChPT LEC B_2 (1310.3626) and Kaon mass difference PRL 111 (2013)
- **Preliminary:** $m_{u,d}^{\overline{MS}}(2 \text{ GeV}) = \{2.29(6)(5), 4.65(6)(5)\}$, $m_u/m_d = 0.49(1)(1)$

Other results

- ETM combining with RM123 results obtained expanding IB at first order PRD87 (2013)
- Fermilab: updating the Kaon mass splitting results of 1301.7137 combining with quark mass dependence found in decay constant analysis (cfr. talk by J.Komijani, Wed 26)
\(m_b^{\overline{\text{MS}}} (m_b) \) [GeV]

- **ETM 2014 (prel), \(N_f=2+1+1 \), Ratio method**
- **ETM 2013, \(N_f=2 \), Ratio method**
- **HPQCD 2013, \(N_f=2+1 \), NRQCD**
- **Alpha 2013, \(N_f=2 \), HQET**
- **HPQCD 2010, \(N_f=2+1 \), Corr.moments**

PDG
m_b/m_c

ETMC, $N_f=2+1+1$, prel
HPQCD 2010, $N_f=2+1$
Conclusions

Ratios of quark masses
- Renormalization constants cancel in ratios
- Many groups could contribute to estimate quantities such as m_s/m_l
- Please **come forward**...

Absolute quark mass values
- Many ways to compute renormalized quark masses
- Only a few results currently available for heavy quarks

Thanks a lot to...
- D.Becirevic
- C.Bernard
- A.Constantinou
- C.Davies
- P. Dimopoulos
- F.Di Renzo
- J.Frison
- N.Garron
- C.Kelly
- C.Monahan
- V.Lubicz
- A.Portelli
- C.Sachrajda
- C.Tarantino

For **sending** their material and for the very **useful discussion**!