Hadron Spectroscopy

Sasa Prelovsek

University of Ljubljana & Jozef Stefan Institute, Ljubljana, Slovenia sasa.prelovsek@ijs.si

Lattice 2014, June 2014, Columbia University, New York City

Disclaimer

 the organizers asked me to concentrate on mesons, in particular to exotic quarkonium-like states (XYZ) that have been experimentally confirmed during 2013/2014

• I will review also other topics in hadron spectroscopy to the extent possible

Outline

- Methods (most commonly used ones)
- \diamond States well below strong decay threshold
- \diamond Excited states: single-hadron approximation
- \diamond Near-threshold states
- \diamond Resonances
- Related studies

Methods (most commonly used ones)

Discrete energy spectrum from correlators

Meson(like) system with given $\mathbf{J}^{\mathbf{PC}}$ (or irrep.) is created by $M_1(\vec{p}_2)$

 $\mathcal{O} = \overline{q} \Gamma q, \quad (\overline{q} \Gamma_1 q)_{\vec{p}_1} (\overline{q} \Gamma_2 q)_{\vec{p}_2}, \quad [\overline{q} \Gamma_3 \overline{q}] [q \Gamma_4 q], \dots$ $M_1(\vec{p}_1) M_2(\vec{p}_2)$

$$C_{ij}(t) = \left\langle 0 \middle| \mathcal{Q}_{i}(t) \mathcal{Q}_{j}^{+}(0) \middle| 0 \right\rangle$$

= $\sum_{n} \left\langle 0 \middle| \mathcal{Q}_{i} \middle| n \right\rangle e^{-E_{n}t} \left\langle n \middle| \mathcal{Q}_{j}^{+} \middle| 0 \right\rangle = \sum_{n} Z_{i}^{n} Z_{j}^{n^{*}} e^{-E_{n}t} \qquad Z_{i}^{n} = \left\langle 0 \middle| \mathcal{Q}_{i} \middle| n \right\rangle$

All physical states with given J^{PC} (or irrep) appear as E_n in principle (and are mixtures of) :

- "single-particle" states
- "two-particle" states: for periodic BC $E(L) = \sqrt{m_1^2 + \vec{p}_1^2} + \sqrt{m_2^2 + \vec{p}_2^2} + \Delta E$, $\vec{p}_1 = \frac{2\pi}{L}\vec{n}_1$ $\vec{p}_2 = \frac{2\pi}{L}\vec{n}_2$
- three particle states.... (not yet in practice)

E_n and overlaps Z are extracted from variational method [C. Michael 1985, Luscher, Wolff, 1990, Blossier 2009]

$$\lambda^{(n)}(t) \propto e^{-E_n t} \left[1 + O(e^{-\Delta E t})\right] \qquad Z_j^{(n)}(t) = e^{E_n t/2} \frac{|C_{jk}(t)u_k^{(n)}(t)|}{|C(t)^{\frac{1}{2}}u^{(n)}(t)|} \qquad C(t)u^{(n)}(t) = \lambda^{(n)}(t)C(t_0)u^{(n)}(t)$$

Wick contractions require all-to-all methods

• Example of Wick contractions needed for the X(3872) channel

 $\mathcal{O}: \ \overline{c} \ c, \ (\overline{c}u)(\overline{u}c), \ (\overline{c}c)(\overline{u}u)$

- all-to-all methods are needed and widely used by now
- Examples:
 - distillation method [Peardon et al, JHEP 2009]
 - stochastic distillation method [Morningstar et al, PRD 2011]
 - a number of others

u,d quarks

Phys. Rev. Lett. 2013]

Extracting information on strong interactions

- <u>Luscher-type relation</u>: input E^{cm} [Luscher 1991] $\tan \delta(p) = \frac{\sqrt{\pi p L}}{2 Z_{00} \left(1; \left(\frac{pL}{2\pi}\right)^2\right)}$ in favorable cases (P=0): one equation for one unknown $\delta_1(E^{cm})$ in less favorable case (P≠0, θ≠0, coupled ch.): one equation for several unknowns $\delta_1^a(E^{cm})$ encouraging that HSC managed to extract T-matrix for coupled K π , K η [Dudek et al, HSC, 1406.4158], Wilson extensions and references reviewed by Briceno and Yamazaki, plenaries det $(F^{-1} + i\mathcal{M}) = 0$ $\delta_1^a(E^{cm})$
- <u>finite-volume Hamiltonian EFT</u>: input E [Hall et al, 1303,.4157, PRD], Leinweber fit E with λ of Hamiltonian EFT and extract parameters of Hamiltonian
- <u>HALQCD method</u>: [Ishii et al., PLB712, 437 (2012)] members of HALQCD determine V(r) between two mesons and extract δ(E) by solving Schrodinger eq.
- possibility of rigorously extracting info from overlaps has not been fully explored so far used mostly at the intuitive level considerations in this direction may turn out fruitful $Z_i^n = \langle 0 | Q_i | n \rangle$

Precision spectrum: States well below strong decay threshold

States well below threshold

- no two-particle states nearby: standard procedure applicable
- m=E (for P=0)
- extrapolation $a \rightarrow 0, L \rightarrow \infty$
- simulation at m_q^{phy} or extrapolation/interpolation $m_q \rightarrow m_q^{phy}$
- particular care needed for discretization errors related to am_c and am_b: complementary methods give compatible results for a→0
- many precision lattice results available !

Charmonium : <u>c</u>c

- mixing with light hadrons is omitted for all hidden charm states that I will present !
- the rigorous treatment which goes beyond that still presents an unsolved challenge
 (i) noise in disconnected diagrams, (ii) mixing with a number of lighter states
 S. Prelovsek, Hadron Spectrum

uncertainty from scale setting and disconnected diagrams not taken into account in above plots Fermilab/MILC, Daniel Mohler, Monday 17h30

HPQCD/MILC, Ben Galloway, Tuesday 15h35

S. Prelovsek, Hadron Spectrum

η and η'

- both very narrow
- two-meson strong decay modes negligible

[C. Michael, K. Ottnad, C. Urbach, ETMC, 1310.1207, Phys. Rev. Lett. 2013]

"Non-precision" spectrum: states near or above threshold

only one or few a, L, $m_{u/d}$

limits $a \rightarrow 0$, $L \rightarrow \infty$, $m_{u/d} \rightarrow m_{u/d}^{phy}$ usually not performed

Almost all hadrons are near or below threshold

States near or above threshold: single-hadron approximation

only interpolating fields *O* ≈ *q q* assumptions: all energy levels correspond to "one-particle" states no two-particle state is seen
 m=E (for P=0)
 these are strong assumptions ...
 but results still present valuable reference point

Isoscalar mesons : single hadron approximation

[HSC : Dudek, Edward, Guo, Thomas: 1309.2608, PRD]

[HSC : Dudek, Edward, Guo, Thomas: 1309.2608, PRD]

S. Prelovsek, Hadron Spectrum

Isoscalar mesons: multiplets from overlaps

[HSC : Dudek, Edward, Guo, Thomas: 1309.2608, PRD]

<u>cc</u> spectrum: single hadron approximation

D and D_s mesons: [G. Moir et al., HSC : 1301.7670, JHEP]

[HSC, L. Liu et al: 1204.5425, JHEP]

- m_π≈400 MeV, L≈2.9 fm, Nf=2+1
- \bullet reliable J^{PC} determination
- identification with $n^{2S+1}L_{J}$ multiplets using $\langle O | n \rangle$
- green: lat, black: exp

S. Prelovsek, Hadron Spectrum

Hybrids:

some of them have exotic J^{PC}

large overlap with $O=\underline{q} F_{ij} q$

Beyond single hadron approximation

- most of the effort in this direction
- one can not expect plots with a number of multiplets soon

States near threshold

Most of interesting states are found near threshold in experiment ! Z_c^+ , Z_b^+ , X(3872), D_{s0}^* (2317), Λ (1405)

Challenges for the lattice community: quarkonium-like states

TABLE 10: Quarkonium-like states at the open flavor thresholds. For charged states, the C-parity is given for the neutral members of the corresponding isotriplets.

	State	$M, { m MeV}$	Γ , MeV	J^{PC}	Process (mode)	Experiment $(\#\sigma)$	Year	Status
	X(3872)	3871.68 ± 0.17	< 1.2	1^{++}	$B \rightarrow K(\pi^+\pi^- J/\psi)$	Belle [772, 992] (>10), BaBar [993] (8.6)	2003	Ok
					$p\bar{p} \rightarrow (\pi^+\pi^- J/\psi) \dots$	CDF [994, 995] (11.6), D0 [996] (5.2)	2003	Ok
					$pp ightarrow (\pi^+\pi^- J/\psi) \dots$	LHCb [997, 998] (np)	2012	Ok
					$B ightarrow K(\pi^+\pi^-\pi^0 J/\psi)$	Belle $[999]$ (4.3), BaBar $[1000]$ (4.0)	2005	Ok
					$B o K(\gamma J/\psi)$	Belle $[1001]$ (5.5) , BaBar $[1002]$ (3.5)	2005	Ok
						LHCb $[1003]$ (> 10)		
					$B \to K(\gamma \psi(2S))$	BaBar $[1002]$ (3.6) , Belle $[1001]$ (0.2)	2008	NC!
					_	LHCb [1003] (4.4)		
		1			$B \to K(D\bar{D}^*)$	Belle $[1004]$ (6.4), BaBar $[1005]$ (4.9)	2006	Ok
	$Z_c(3885)^+$	3883.9 ± 4.5	25 ± 12	1^{+-}	$Y(4260) \to \pi^{-}(D\bar{D}^{*})^{+}$	BES III [1006] (np)	2013	NC!
$c \underline{u}$	$Z_c(3900)^+$	3891.2 ± 3.3	40 ± 8	??-	$Y(4260) ightarrow \pi^-(\pi^+ J/\psi)$	BES III $[1007]$ (8), Belle $[1008]$ (5.2)	2013	Ok
c d / 1				-		T. Xiao et al. [CLEO data] [1009] (>5)		
<u>e</u>	$Z_c(4020)^+$	4022.9 ± 2.8	7.9 ± 3.7	??-	$Y(4260, 4360) o \pi^-(\pi^+ h_c)$	BES III [1010] (8.9)	2013	NC!
	$Z_c(4025)^+$	4026.3 ± 4.5	24.8 ± 9.5	??-	$Y(4260) \to \pi^- (D^* \bar{D}^*)^+$	BES III [1011] (10)	2013	NC!
$\overline{=}$	$Z_b(10610)^+$	10607.2 ± 2.0	18.4 ± 2.4	1^{+-}	$\Upsilon(10860) \rightarrow \pi(\pi\Upsilon(1S, 2S, 3S))$	Belle $[1012-1014]$ (>10)	2011	Ok
bu \					$\Upsilon(10860) \to \pi^-(\pi^+ h_b(1P, 2P))$	Belle [1013] (16)	2011	Ok
hd /1					$\Upsilon(10860) ightarrow \pi^- (B\bar{B}^*)^+$	Belle $[1015]$ (8)	2012	NC!
	$Z_b(10650)^+$	10652.2 ± 1.5	11.5 ± 2.2	1^{+-}	$\Upsilon(10860) \to \pi^-(\pi^+\Upsilon(1S, 2S, 3S))$	Belle $[1012, 1013]$ (>10)	2011	Ok
]			$\Upsilon(10860) \to \pi^-(\pi^+h_b(1P,2P))$	Belle [1013] (16)	2011	Ok
					$\Upsilon(10860) ightarrow \pi^- (B^* ar{B}^*)^+$	Belle $[1015]$ (6.8)	2012	NC!

QCD and strongly coupled gauge theories: challenges and perspectives

[review: Brambilla et al., 1404.3723]

N. Brambilla^{*†},¹ S. Eidelman[†],^{2,3} P. Foka^{†‡},⁴ S. Gardner^{†‡},⁵ A.S. Kronfeld[†],⁶ M.G. Alford[‡],⁷ R. Alkofer[‡],⁸ M. Butenschön[‡],⁹ T.D. Cohen[‡],¹⁰ J. Erdmenger[‡],¹¹ L. Fabbietti[‡],¹² M. Faber[‡], ¹³ J.L. Goity[‡], ^{14, 15} B. Ketzer^{‡§}, ¹ H.W. Lin[‡], ¹⁶ F.J. Llanes-Estrada[‡], ¹⁷ H.B. Meyer[‡],¹⁸ P. Pakhlov[‡],^{19,20} E. Pallante[‡],²¹ M.I. Polikarpov[‡],^{19,20} H. Sazdjian[‡],²² A. Schmitt[‡], ²³ W.M. Snow[‡], ²⁴ A. Vairo[‡], ¹ R. Vogt[‡], ^{25, 26} A. Vuorinen[‡], ²⁷ H. Wittig[‡], ¹⁸ P. Arnold,²⁸ P. Christakoglou,²⁹ P. Di Nezza,³⁰ Z. Fodor,^{31, 32, 33} X. Garcia i Tormo,³⁴ R. Höllwieser,¹³ M.A. Janik,³⁵ A. Kalweit,³⁶ D. Keane,³⁷ E. Kiritsis,^{38, 39, 40} A. Mischke,⁴¹ R. Mizuk,^{19, 42} G. Odyniec,⁴³ K. Papadodimas,²¹ A. Pich,⁴⁴ R. Pittau,⁴⁵ J.-W. Qiu,^{46,47} G. Ricciardi,^{48,49} C.A. Salgado,⁵⁰ K. Schwenzer,⁷ N.G. Stefanis,⁵¹ G.M. von Hippel,¹⁸ and V.I. Zakharov^{11,19}

More challenges: quarkonium-like states above threshold

TABLE 1 for the ne	2: Quarkoniu utral members	m-like sta s of the c	tes abc orrespo	ove the corresponding open f onding isotriplets.	lavor thresholds. For charged states, the C-p	arity i	is given
State	M, MeV	Γ, MeV	J^{PC}	Process (mode)	Experiment $(\#\sigma)$	Year	Status
Y(3915)	3918.4 ± 1.9	20 ± 5	$0/2^{?+}$	$B \to K(\omega J/\psi)$	Belle [1050] (8), BaBar [1000, 1051] (19)	2004	Ok
				$e^+e^- ightarrow e^+e^-(\omega J/\psi)$	Belle [1052] (7.7), BaBar [1053] (7.6)	2009	Ok
$\chi_{c2}(2P)$	3927.2 ± 2.6	24 ± 6	2^{++}	$e^+e^- ightarrow e^+e^-(D\bar{D})$	Belle [1054] (5.3), BaBar [1055] (5.8)	2005	Ok
X(3940)	3942^{+9}_{-8}	37^{+27}_{-17}	??+	$e^+e^- \rightarrow J/\psi \left(D\bar{D}^* ight)$	Belle [1048, 1049] (6)	2005	NC!
Y(4008)	3891 ± 42	255 ± 42	1	$e^+e^- ightarrow (\pi^+\pi^- J/\psi)$	Belle [1008, 1056] (7.4)	2007	NC!
$\psi(4040)$	4039 ± 1	80 ± 10	1	$e^+e^- \to (D^{(*)}\bar{D}^{(*)}(\pi))$	PDG [1]	1978	Ok
				$e^+e^- ightarrow (\eta J/\psi)$	Belle [1057] (6.0)	2013	NC!
$Z(4050)^+$	4051_{-43}^{+24}	82^{+51}_{-55}	??+	$\bar{B}^0 \rightarrow K^-(\pi^+\chi_{c1})$	Belle [1058] (5.0), BaBar [1059] (1.1)	2008	NC!
Y(4140)	4145.8 ± 2.6	18 ± 8	??+	$B^+ \to K^+(\phi J/\psi)$	CDF [1060] (5.0), Belle [1061] (1.9), LHCb [1062] (1.4), CMS [1063] (>5) D0 [1064] (3.1)	2009	NC!
$\psi(4160)$	4153 ± 3	103 ± 8	1	$e^+e^- \to (D^{(*)}\bar{D}^{(*)})$	PDG [1]	1978	Ok
φ(1100)	1100 1 0	100 ± 0	-	$e^+e^- \rightarrow (nJ/\psi)$	Belle $[1057]$ (6.5)	2013	NC!
X(4160)	4156^{+29}_{-25}	139^{+113}_{-5}	??+	$e^+e^- \rightarrow J/\psi \left(D^*\bar{D}^*\right)$	Belle $[1049]$ (5.5)	2007	NC!
$Z(4200)^+$	4196^{+35}	370^{+99}	1+-	$\bar{B}^0 \to K^-(\pi^+ J/\psi)$	Belle $[1065]$ (7.2)	2014	NC!
$Z(4250)^+$	4248^{+185}	177^{+321}_{-70}	??+	$\bar{B}^0 \rightarrow K^-(\pi^+ \chi_{c1})$	Belle $[1058]$ (5.0), BaBar $[1059]$ (2.0)	2008	NC!
Y(4260)	4250 ± 9	108 ± 12	1	$e^+e^- \rightarrow (\pi\pi J/\psi)$	BaBar [1066, 1067] (8), CLEO [1068, 1069] (11)	2005	Ok
					Belle [1008, 1056] (15), BES III [1007] (np)		
				$e^+e^- \rightarrow (f_0(980)J/\psi)$	BaBar [1067] (np), Belle [1008] (np)	2012	Ok
				$e^+e^- \to (\pi^- Z_c(3900)^+)$	BES III [1007] (8), Belle [1008] (5.2)	2013	Ok
				$e^+e^- \rightarrow (\gamma X(3872))$	BES III [1070] (5.3)	2013	NC!
Y(4274)	4293 ± 20	35 ± 16	??+	$B^+ \rightarrow K^+(\phi J/\psi)$	CDF [1060] (3.1), LHCb [1062] (1.0),	2011	NC!
					CMS [1063] (>3), D0 [1064] (np)		
X(4350)	$4350.6^{+4.6}_{-5.1}$	13^{+18}_{-10}	$0/2^{?+}$	$e^+e^- \rightarrow e^+e^-(\phi J/\psi)$	Belle [1071] (3.2)	2009	NC!
Y(4360)	4354 ± 11	78 ± 16	1	$e^+e^- \rightarrow (\pi^+\pi^-\psi(2S))$	Belle [1072] (8), BaBar [1073] (np)	2007	Ok
$Z(4430)^+$	4458 ± 15	166^{+37}_{-32}	1+-	$\bar{B}^0 \rightarrow K^-(\pi^+\psi(2S))$	Belle [1074, 1075] (6.4), BaBar [1076] (2.4)	2007	Ok
		-32			LHCb [1077] (13.9)		
				$\bar{B}^0 \to K^-(\pi^+ J/\psi)$	Belle $[1065]$ (4.0)	2014	NC!
X(4630)	4634^{+9}_{-11}	92^{+41}_{-22}	1	$e^+e^- \rightarrow (\Lambda_c^+ \bar{\Lambda}_c^-)$	Belle [1078] (8.2)	2007	NC!
Y(4660)	4665 ± 10	53 ± 14	1	$e^+e^- \rightarrow (\pi^+\pi^-\psi(2S))$	Belle [1072] (5.8), BaBar [1073] (5)	2007	Ok
$\Upsilon(10860)$	10876 ± 11	55 ± 28	1	$e^+e^- \to (B^{(*)}_{(*)}\bar{B}^{(*)}_{(\pi)}(\pi))$	PDG [1]	1985	Ok
				$e^+e^- \rightarrow (\pi\pi\Upsilon(1S, 2S, 3S))$	Belle [1013, 1014, 1079] (>10)	2007	Ok
				$e^+e^- \rightarrow (f_0(980)\Upsilon(1S))$	Belle $[1013, 1014]$ (>5)	2011	Ok
				$e^+e^- \rightarrow (\pi Z_{\rm b}(10610, 10650))$	Belle $[1013, 1014]$ (>10)	2011	Ok
				$e^+e^- \rightarrow (n\Upsilon(1S, 2S))$	Belle [948] (10)	2012	Ok
				$e^+e^- \rightarrow (\pi^+\pi^-\Upsilon(1D))$	Belle [948] (9)	2012	Ok
$Y_b(10888)$	10888.4 ± 3.0	$30.7\substack{+8.9\\-7.7}$	1	$e^+e^- \rightarrow (\pi^+\pi^-\Upsilon(nS))$	Belle [1080] (2.3)	2008	NC!

All these believed NOT to be QQ !

[review: Brambilla et al., 1404.3723]

Charged charmonium-like Z_c+ (manifestly exotic)

Charged charmonium **Z**_c⁺: experimental status

[review: Brambilla et al., 1404.3723]

preferred		narticle	C	ĮΡ	decay
I ^G =1+, J ^{PC} =1+-				5	uccay
(C is for neutral partn	er)	Z ⁺ (4430)	-	1+	ψ(2S) π
		Z _c ⁺ (3900)	-	?	J/ψ π+
4.6	thresholds	Z _c ⁺ (3885)	-	1+	(DD*)+
	$\psi(3770) \pi$ D* D*	Z _c ⁺ (4020)	-	?	h _c (1P) π
4.4	$\psi(2S) \pi$	Z _c ⁺ (4025)	-	?	(D* D*)
4.2 — 🛓	$ \begin{array}{c} - & D D^* \\ - & \eta_c \rho \end{array} $	Z ⁺ (4200)	-	1+	$J/\psi \pi^+$
-	J/ψ π	Z ⁺ (4050)	+	?	$\chi_{c1} \pi^+$
		Z+(4250)	+	?	$\chi_{c1}~\pi^{+}$
$\begin{array}{c} \bigcirc \\ \square \\ 3.8 \\ \hline \\ 3.6 \\ \hline \\ 3.4 \\ \hline \\ 3.2 \\ \hline \\ \end{array}$	Events / 0.01 GeV/c ² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 3.8 3.9 M _{max} (π [±] J/ψ) (GeV	+ Data Total Back PHSI Sidet 4.0 /C ²)	fit ground fit P.M.C and	[BE Z
Exp.	Questio	n for our comm	unit	y:	

candidates with

Does QCD support existence of such states?

 ψ π+
 2014
 Belle

 μ π+
 2008
 Belle

 μ π+
 2008
 Belle

 Belle
 Belle
 Belle

coll

BESIII

BESIII

BES III

Belle, BABAR, LHCb

BESIII, Belle, CLEOc

year

2008

2013

2013

2013

2013

 $Z_c^+(3900) \rightarrow J/\Psi \pi^+$

<u>c</u>c <u>d</u>u

Towards evidence for Z_c^+ from lattice: I^G=1⁺, J^{PC}=1⁺⁻

[S.P., Lang, Leskovec, Mohler, 1405.7623] Wilson Clover, $m_{\pi} \approx 266$ MeV, L ≈ 2 fm, N_f=2

- search for Z_c^+ with E < 4.3 GeV
- horizontal lines correspond to energies of all two-particle states with E < 4.3 GeV on this lattice
- There would be many more two-particle states for larger L !
- 9 two-particle states are expected

Towards evidence for Z_c^+ from lattice: I^G=1⁺, J^{PC}=1⁺⁻

[S.P., Lang, Leskovec, Mohler, 1405.7623] Wilson Clover, $m_{\pi} \approx 266$ MeV, L ≈ 2 fm, Nf=2 Meson-meson interpolators:

$$\begin{split} \mathcal{O}_{1}^{\psi(0)\pi(0)} &= \bar{c}\gamma_{i}c(0) \ \bar{d}\gamma_{5}u(0) \,, \\ \mathcal{O}^{\psi(1)\pi(-1)} &= \sum_{e_{k}=\pm e_{x,y,z}} \bar{c}\gamma_{i}c(e_{k}) \ \bar{d}\gamma_{5}u(-e_{k}) \,, \\ \mathcal{O}^{\eta_{c}(0)\rho(0)} &= \bar{c}\gamma_{5}c(0) \ \bar{d}\gamma_{i}u(0) \,, \\ \mathcal{O}_{1}^{D(0)D^{*}(0)} &= \bar{c}\gamma_{5}u(0) \ \bar{d}\gamma_{i}c(0) + \{\gamma_{5} \leftrightarrow \gamma_{i}\} \,, \\ \mathcal{O}^{D^{*}(0)D^{*}(0)} &= \epsilon_{ijk} \ \bar{c}\gamma_{j}u(0) \ \bar{d}\gamma_{k}c(0) \,, \\ \text{and 9 others ..} \end{split}$$

Diquark antidiquark interpolators (expected to couple particularly well to exotic state but couple also to two-meson st.):

 $O_1^{4q} \approx [\overline{c} \ C\gamma_5 \overline{d}]_{3_c} [c \ \gamma_i C \ u]_{\overline{3}_c}$ $O_2^{4q} \approx [\overline{c} \ C \ \overline{d}]_{3_c} [c \ \gamma_i \gamma_5 C \ u]_{\overline{3}_c}$

and 2 others ..

Evidence for Z_c⁺ from lattice: I^G=1⁺, J^{PC}=1⁺⁻

[S.P., Lang, Leskovec, Mohler, 1405.7623] $m_{\pi} \approx 266$ MeV, L ≈ 2 fm, Nf=2

- Black circles: two-meson states
- Red asterix: candidate for Z_c⁺ (the smaller error is statistical, the larger corresponds to systematics)
- 9 two meson states below 4.3 GeV
- an additional state found
- since we exhausted all two mesonstates below 4.3 GeV, it is a candidate for an exotic Z_c⁺.

Comparing to experimental **Z**_c⁺ candidates

Luka Leskovec, Friday 15h15 Hadron Spectroscopy

- Challenge: this problem would have to be ideally treated as 6-coupled channels, but rigorous Luscher-type treatment is not realistic in the near future ⁽³⁾
- Smart ideas for improvement along these welcome!

Nearby experimental candidates: $Z_c^+(4020)$, Γ=7.9 ± 3.7 MeV BESIII 2013 $Z_c^+(4025)$, Γ=24.8 ± 9.5 MeV BESIII 2013 $Z_c^+(4200)$, Γ=370 ± 110 MeV Belle, Moriond 2014

Lattice (m_π =266 MeV, Nf=2): $m(Z_c^+) = 4.16 \text{ GeV}$ $\pm 0.163 \text{ GeV} \pm O(\Gamma)$ [S.P., Lang, Leskovec, Mohler, 1405.7623]

S. Prelovsek, Hadron Spectrum

Other searches with no Z_c^+ candidate (yet)

(1) Search for Z_c⁺(4430) in D*<u>D</u>₁ scattering near threshold
 3 quenched asymmetric lattices
 phase shift extracted with help of asymmetric boxes
 [G.Z. Meng et al, CLQCD, 0905.0752, PRD 2009]

Other searches with no Z_c⁺ candidate (yet)

(4) Search for resonance in $D\underline{D}^*$ scattering near threshold $E \simeq 3.9 \text{ GeV}$

- just D D* interpolators, no $\psi\,\pi$ interpolators
- twisted mass quarks, m_{π} = 300, 420, 485 MeV, 32³ x 64
- partially twisted BC for u,d (not for c) and take care about s-p mixing when present
- the authors conclude that no Z_c^+ candidate is found near DD* threshold

[Y. Chen et al, 1403.1318, CLQCD coll, Phys. Rev. D] L. Liu: Parallel, Hadron Spectrum, Friday, 14h55

- Cautionary remark and lesson based on experience from [S.P., Lang, Leskovec, Mohler, 1405.7623]
 - conclusions based on D D* interpolators may not be reliable
 - m_{eff} is dropping down to the true ground state $\psi \: \pi$
 - $\psi\,\pi$ interpolators (and probably some others) needed

S. Prelovsek, Hadron Spectrum

X(3872), J^{PC}=1⁺⁺, charmonium-like

- First charmonium-like state discovered [Belle, PRL, 2003]
- sits within 1 MeV of D⁰D^{0*} threshold
 8 MeV below D⁺D^{*-} threshold
- believed to have a large molecular D⁰<u>D</u>^{0*} Fock component
- Γ < 1.2 MeV
- decays to I=0, 1 equally important

 $X(3872) \rightarrow J/\Psi \omega (I=0)$

 $X(3872) \rightarrow J/\Psi \rho$ (I=1)

[LHCb, PRL 2013]

isospin breaking effects my be

important

Evidence for X(3872) : J^{PC}=1⁺⁺, I=0

Overlaps normalized to <0|O₁^{cc} |X(3872)>

X(3872)	m - (m _{D0} +m _{D0*})
lat	- 11 ± 7 MeV
ехр	- 0.14 ± 0.22 MeV

[S.P. and L. Leskovec : 1307.5172, Phys. Rev. Lett.] $m_{\pi} \approx 266$ MeV, L ≈ 2 fm, Nf=2

New evidence for X(3872) : J^{PC}=1⁺⁺, I=0

 $\mathcal{O}: \ \overline{c} \ c, \ DD^*$

HISQ quarks , $m_u = m_d = m_s/5$, 16³ x 48, a =0.15 fm [C. DeTar, Song-haeng Lee] C. DeTar, Poster Session

Possible direction to improve on X(3872):

- larger volumes since molecule may be of considerable size
- isospin breaking on the lattice remember: sits 1 MeV of D⁰<u>D</u>^{0*} threshold and 8 MeV below D⁺D^{*-} threshold, decays to I=0,1

Related analytical studies

- Light quark mass dependence of the X(3872) in XEFT
 [M. Jansen, H.-W. Hammer, Yu Jia , 1310.6937, Phys. Rev. D]
- Strategies for an accurate determination of the X(3872) energy from QCD lattice simulations
 [E. J. Garzon, R. Molina, A. Hosaka, E. Oset, 1310.0972, Phys. Rev. D]
- Hidden charm molecules in a Finite Volume
 [M. Albaladejo, C. Hidalgo-Duque, J. Nieves, E. Oset, 1312.5339]

Searches for double charm tetraquark with JP=1+, I=0

(1) HALQCD method [Ishii et al., PLB712, 437 (2012)]

- potential between D and D* , and corresponding phase shift
- m_π≈410-700 MeV, L≈2.9 fm, Nf=2+1
- potential is attractive, no bound tetraquark state found [Y. Ikeda, HALQCD coll, , 1311.6214, Phys. Lett. B 2014]

(2) variational method with DD*, D*D* and tetraquark interpolators
 preliminary results do not lead yet to the conclusion on existence of these states
 Andrea Guerrieri, Wednesday 12h10, Hadron Spectrum

D_s states near DK and D*K thresholds

DK in s-wave and $D_{s0}^{*}(2317)$ bound state

D*K s-wave and D_{s1}(2460), D_{s1}(2536)

[D. Mohler, C. Lang, L. Leskovec, S.P.,R. Woloshyn, 1308.3175, Phys. Rev. Lett.]

[C. Lang, L. Leskovec, D. Mohler, S.P., R. Woloshyn, 1403.8103]

Wilson Clover, $m_{\pi} \approx 156$ MeV, L ≈ 2.9 fm, Nf=2+1

$$a_{0} = -1.33 \pm 0.20 \text{ fm}$$

$$r_{0} = 0.27 \pm 0.17 \text{ fm}$$
• poles in S-matrix correspond do bound states
$$T \propto \frac{1}{\cot \delta - i} = \infty$$
• phase shift for DK or D*K $\tan \delta(p) = \frac{\sqrt{\pi} p L}{2 Z_{00} \left(1; \left(\frac{pL}{2\pi}\right)^{2}\right)}$

$$a_{0} = -1.11 \pm 0.11 \text{ fm}$$

$$r_{0} = 0.10 \pm 0.10 \text{ fm}$$

DK s-wave and $D_{s0}^{*}(2317)$ bound state

D*K s-wave and D_{s1}(2460), D_{s1}(2536)

[D. Mohler, C. Lang, L. Leskovec, S.P., R. Woloshyn, 1308.3175, Phys. Rev. Lett.] for mc= ∞ : D_{s1}(2536) does not couple to s-wave [Isgur Wise 1991]

[C. Lang, L. Leskovec, D. Mohler, S.P., R. Woloshyn, 1403.8103]

m_π≈156 MeV, L≈2.9 fm, Nf=2+1

D_s mesons (near-threshold)

[C. Lang, L. Leskovec, D. Mohler, S.P., R. Woloshyn: PRL 2013, 1403.8103]

these results

C. B. Lang, Monday, 17h50
preliminary results for DK and Dπ
S. Ryan, Thursday 16h15

S. Prelovsek, Hadron Spectrum

X

V

Composition of $\Lambda(1405)$, $J^P = \frac{1}{2}$

Derek Leinweber, Wednesday, Hadron Spectroscopy

- exp: resonance in $\pi\Sigma$ located below KN th.
- ground state energy determined from lat. using

O = uds and represented by pink crosses

- ground state E fitted with the eigenvalue of finite volume Hamiltonian EFT and parameters extracted [Hall et al, 1303,.4157, PRD]
- Hamiltonian EFT describes interactions between

uds, πΣ, <u>K</u>N, KΞ, ηΛ

- composition of eigenstate is extracted from EFT
- authors conclude that Λ(1405) is dominated by <u>K</u>N at the physical quark mass
- PACS-CS conf, m_{π} =150-700 MeV, L=2.9 fm

Effect of including $N\pi$ interpolators for other channels Waseem Kamleh, Wednesday, Hadron Sepctrum

Valentina Verduci, Poster Session

ρ resonance in ππreviewed by Takeshi Yamazaki, plenary talkK*(892) resonance Kπreviewed by Takeshi Yamazaki, plenary talk

Resonances in Kπ, Kη coupled channels

discussed by Yamazaki, Briceno, Wilson at Lat 14

- <u>q</u>q, Kπ, Kη interpolators
- a number of different 0<P≤2
- for each E_n: one determinant equation for many unknowns
- T-matrix parametrized to get around this problem

- the location of poles of T-matrix in complex plain is given below
- K*(892) and κ are below threshold for this m_{π}
- K_0^* , K_2^* are resonances
- m_π=391 MeV, N_L=16, 20, 24

[Dudek, Edwards, Thomas, Wilson, HSC, 1406.4158]

$$\det\left[\delta_{ij}\delta_{JJ'} + i\rho_i t_{ij}^{(J)}(E_{\mathsf{cm}})\left(\delta_{JJ'} + i\mathcal{M}_{JJ'}^{\vec{P}\Lambda}(p_iL)\right)\right] = 0,$$

D-meson resonances in $D\pi$ and $D^*\pi$

discussed by Daniel Mohler, plenary at Lattice 2012

g is compared to exp instead of $\Gamma~$ (Γ depends on phase sp. and $\,m^{}_{\pi})$

$J^{P} = 0^{+} : D \pi$

 $\Gamma(E) = g^2 \frac{p}{F^2}$

J ^P =1 ⁺	:	D*	π

(analysis of spectrum in this case is based on an assumption given in paper below)

D ₀ *(2400)	m - 1/4(mD+3 mD*)	g	D ₁ (2430)	m - 1/4(mD+3 mD*)	g
lat	351 ± 21 MeV	2.55 ± 0.21 GeV	lat	381 ± 20 MeV	2.01 ± 0.15 GeV
ехр	347 ± 29 MeV	1.92 ± 0.14 GeV	ехр	456 ± 40 MeV	2.50 ± 0.40 GeV

1000 900 [MeV] 800 700 600 m - 1/4 (m_D+3m_{D*}) 500 × 400 $\overline{\Phi}$ 300 BaBar 2010 200 LHCb 2013 100 PDG values 0 lat: naive level × \diamond lat: resonance -100 J^P: **0**⁺ 1+ 0 1 1⁺ 2^{+} 2

first lattice result for strong decay width of a hadron containing charm quark

[D. Mohler, S.P., R. Woloshyn: 1208.4059, PRD]

• m_{\pi} {\approx} 266 MeV, L {\approx} 2 fm, Nf=2

Lightest axial resonances $a_1(1260)$ and $b_1(1235)$

- Simulating scattering:
 - $\rho \pi$ in 1⁺⁺ channel to extract a₁
 - $\omega \pi$ in 1⁺⁻ channel to extract b₁
- m_π≈266 MeV, L≈2 fm, Nf=2 , P=0 [Lang, Leskovec, Mohler, S.P. , 1401.2088, JHEP]

resonance	$a_1(1260)$			$b_1(1235)$	
quantity	$m_{a_1}^{ m res}$	$g_{a_1 ho\pi}$	$a_{l=0}^{ ho\pi}$	$m_{b_1}^{ m res}$	$g_{b_1\omega\pi}$
	[GeV]	[GeV]	[fm]	[GeV]	[GeV]
lat	$1.435(53)(^{+0}_{-109})$	1.71(39)	0.62(28)	$1.414(36)(^{+0}_{-83})$	input
exp	1.230(40)	1.35(30)	-	1.2295(32)	0.787(25)

$$f(E) \equiv g^2 \frac{p}{E^2}$$

Γ

- ρ and ω assumed to be stable which is a good approximation for given simulation parameters
- going beyond that aprpoximation will be very challenging
- analytical study of a₁ for unstable ρ: [Roca, Oset, 1201.0438]
- analytical studies of 3-particles:
 - [Hansen, Sharpe 1311.4848; Polejaeva, Rusetsky, 1203.1241; Briceno, Davoudi, 1212.3398]

S. Prelovsek, Hadron Spectrum

Isovectors including meson-meson interpolators

- anisotropic, m_{π} =240, 390 MeV, N_{L} =24,32
- a number of <u>q</u>q and MM interpolators for a number of u,d,s channels
- stochastic distillation
- results for ρ channel shown
 - Morningstar, Wednesday, Hadron Spectroscopy

• numbers of operators for I = 1, S = 0, P = (0, 0, 0) on 24³ lattice

$(24^2 390)$	A_{1g}^{+}	A_{1u}^{+}	A_{2g}^{+}	A_{2u}^{+}	E_g^+	E_u^+	T_{1g}^{+}	T_{1u}^{+}	T_{2g}^{+}	T_{2u}^{+}
SH	9	7	13	13	9	9	14	23	15	16
"ππ"	6	12	2	6	8	9	15	17	10	12
" $\eta\pi$ "	2	10	8	4	8	11	21	14	14	13
" $\phi\pi$ "	2	10	8	4	8	11	23	3	14	13
" <i>KK</i> "	0	4	1	4	1	4	8	10	4	6
Total	19	43	32	31	34	44	81	67	57	60

effective masses $\widetilde{m}^{\rm eff}(t)$ for levels 16 to 31 $32^3 \times 256$ lattice for $m_{\pi} \sim 240$ MeV

E_n in ρ channel for approx. 50 levels

Related topics

 Meson mass decomposition Yi-Bo Yang et al, XQCD coll., 1405.4440, Yang, Tuesday

$$\begin{array}{c} 1 \\ (\%) \\ ($$

$$M = -\langle T_{44} \rangle = \langle H_E \rangle + \langle H_m \rangle + \langle H_g \rangle + \langle H_a \rangle$$
$$H_E = \sum_{u,d,s...} \int d^3x \, \overline{\psi}(D \cdot \gamma)\psi \qquad H_m = \sum_{u,d,s...} \int d^3x \, m \, \overline{\psi}\psi \qquad H_g = \int d^3x \, \frac{1}{2} (B^2 - E^2),$$

Extended QCD

limit Nc=∞ : direct connection with nonrelativistic quark models with constituent quark mass respects chiral symmetry giving massless pion in chiral limit

Challenges: two examples

Challenge : precision simulation of Z_c⁺

On larger volume: more two particle states

Rigorous treatment very challenging: at least 6 two-particle channels coupled !!

On larger volume: more two-particle states

Rigorous treatment very challenging: at least 6 two-particle channels coupled !!

Belle 2011

 $Y_{1S} \pi^+$

Conclusions

Recent developments in hadron spectroscopy (with emphasis on mesons):

- below threshold states treated with unprecedented accuracy
- extensive results for multiplets within single-hadron approximation
- first rigorous treatments of near-threshold states:

evidences for Z_c⁺, X(3872), D_{s0}^{*}(2317), A(1405)

- a number of resonances studied rigorously:
 ρ, κ, K*, K₀*, K₂*, D₀*, D₁, a₁, b₁
- coupled inelastic problem treated in QCD for the first time (to my knowledge): $K\pi$, $K\eta$: κ , K^* , K_0^* , K_2^*

Conclusions

Recent developments in hadron spectroscopy (with emphasis on mesons):

- below threshold states treated with unprecedented accuracy
- extensive results for multiplets within single-hadron approximation
- first rigorous treatments of near-threshold states:

evidences for Z_c^+ , X(3872), D_{s0}^* (2317), Λ (1405)

- a number of resonances studied rigorously:
 ρ, κ, K*, K₀*, K₂*, D₀*, D₁, a₁, b₁
- coupled inelastic problem treated in QCD for the first time (to my knowledge): $K\pi$, $K\eta$: κ , K^* , K_0^* , K_2^*

Conclusions

Many exciting challenges remain !

♦ An urgent example: quarkonium-like states

- can one afford to study them on larger volumes given the increasing number of two particle states?
- how about interesting states that lie even higher above threshold(s) ?
- rigorous treatment near multiple thresholds?

State	M, MeV	Γ, MeV	J^{PC}	Process (mode)	Experiment $(\#\sigma)$	Year	Status
X(3872)	3871.68 ± 0.17	< 1.2	1++	$B \rightarrow K(\pi^+\pi^-J/\psi)$	Belle [772, 992] (>10), BaBar [993] (8.6)	2003	Ok
				$p\bar{p} \rightarrow (\pi^+\pi^- J/\psi) \dots$	CDF [994, 995] (11.6), D0 [996] (5.2)	2003	Ok
				$pp \rightarrow (\pi^+\pi^- J/\psi) \dots$	LHCb [997, 998] (np)	2012	Ok
				$B \rightarrow K(\pi^+\pi^-\pi^0 J/\psi)$	Belle [999] (4.3), BaBar [1000] (4.0)	2005	Ok
				$B \rightarrow K(\gamma J/\psi)$	Belle [1001] (5.5), BaBar [1002] (3.5) LHCb [1003] (> 10)	2005	Ok
				$B \rightarrow K(\gamma \psi(2S))$	BaBar [1002] (3.6), Belle [1001] (0.2) LHCb [1003] (4.4)	2008	NC!
				$B \rightarrow K(D\bar{D}^*)$	Belle [1004] (6.4), BaBar [1005] (4.9)	2006	Ok
$Z_c(3885)^+$	3883.9 ± 4.5	25 ± 12	1^{+-}	$Y(4260) \rightarrow \pi^{-}(D\bar{D}^{*})^{+}$	BES III [1006] (np)	2013	NC!
$Z_c(3900)^+$	3891.2 ± 3.3	40 ± 8	<u> ?</u> ?-	$Y(4260) \rightarrow \pi^-(\pi^+ J/\psi)$	BES III [1007] (8), Belle [1008] (5.2) T. Xiao et al. [CLEO data] [1009] (>5)	2013	Ok
$Z_c(4020)^+$	4022.9 ± 2.8	7.9 ± 3.7	??-	$Y(4260, 4360) \rightarrow \pi^{-}(\pi^{+}h_{c})$	BES III [1010] (8.9)	2013	NC!
$Z_c(4025)^+$	4026.3 ± 4.5	24.8 ± 9.5	??-	$Y(4260) \rightarrow \pi^{-}(D^{*}\bar{D}^{*})^{+}$	BES III [1011] (10)	2013	NC!
$Z_b(10610)^+$	10607.2 ± 2.0	18.4 ± 2.4	1^{+-}	$\Upsilon(10860) \rightarrow \pi(\pi\Upsilon(1S, 2S, 3S))$	Belle [1012–1014] (>10)	2011	Ok
				$\Upsilon(10860) \rightarrow \pi^{-}(\pi^{+}h_{b}(1P, 2P))$	Belle [1013] (16)	2011	Ok
				$\Upsilon(10860) \rightarrow \pi^{-}(B\bar{B}^{*})^{+}$	Belle [1015] (8)	2012	NC!
$Z_b(10650)^+$	10652.2 ± 1.5	11.5 ± 2.2	1^{+-}	$\Upsilon(10860) \rightarrow \pi^-(\pi^+\Upsilon(1S, 2S, 3S))$	Belle [1012, 1013] (>10)	2011	Ok
				$\Upsilon(10860) \rightarrow \pi^{-}(\pi^{+}h_{b}(1P, 2P))$	Belle [1013] (16)	2011	Ok
				$\Upsilon(10860) \rightarrow \pi^{-}(B^{*}\bar{B}^{*})^{+}$	Belle [1015] (6.8)	2012	NC!

- Can we understand almost complete absence of exotics in most of other meson systems?
- ♦ Looking forward to new challenges ...

Thanks to those who sent me the material

Christine Davies, Carleton DeTar, Derek Leinweber, Keh-Fei Liu, Daniel Mohler, Colin Morningstar, Raul Briceno, Takeshi Yamazaki, Andrea Guerrieri, Christopher Thomas

And to my collaborators :

Christian B. Lang	(Graz)
Daniel Mohler	(Fermilab)
Luka Leskovec	(Ljubljana)
Richard Woloshyn	(Vancouver)

Apologies to those whose work I was not able to present.

Backup slides

$$\begin{array}{ll} \mathcal{O}_{1} = \mathcal{O}_{1}^{\psi(0)\pi(0)} = \bar{c}\gamma_{i}c(0) \; \bar{d}\gamma_{5}u(0) \,, \\ \mathcal{O}_{2} = \mathcal{O}_{2}^{\psi(0)\pi(0)} = \bar{c}\gamma_{i}\gamma_{t}c(0) \; \bar{d}\gamma_{5}u(0) \,, \\ \mathcal{O}_{3} = \mathcal{O}_{3}^{\psi(0)\pi(0)} = \bar{c}\overleftarrow{\nabla}_{j}\gamma_{i}\overrightarrow{\nabla}_{j}c(0) \; \bar{d}\gamma_{5}u(0) \,, \\ \mathcal{O}_{4} = \mathcal{O}_{4}^{\psi(0)\pi(0)} = \bar{c}\overleftarrow{\nabla}_{j}\gamma_{i}\gamma_{t}\overrightarrow{\nabla}_{j}c(0) \; \bar{d}\gamma_{5}u(0) \,, \\ \mathcal{O}_{5} = \mathcal{O}_{5}^{\psi(0)\pi(0)} = |\epsilon_{ijk}||\epsilon_{klm}| \; \bar{c}\gamma_{j}\overleftarrow{\nabla}_{l}\overrightarrow{\nabla}_{m}c(0) \; \bar{d}\gamma_{5}u(0) \,, \\ \mathcal{O}_{5} = \mathcal{O}_{5}^{\psi(0)\pi(0)} = |\epsilon_{ijk}||\epsilon_{klm}| \; \bar{c}\gamma_{j}\overleftarrow{\nabla}_{l}\overrightarrow{\nabla}_{m}c(0) \; \bar{d}\gamma_{5}u(0) \,, \\ \mathcal{O}_{6} = \mathcal{O}_{6}^{\psi(0)\pi(0)} = |\epsilon_{ijk}||\epsilon_{klm}| \; \bar{c}\gamma_{j}\overleftarrow{\nabla}_{l}\overrightarrow{\nabla}_{m}c \; \bar{d}\gamma_{5}u(0) \,, \\ \mathcal{O}_{7} = \mathcal{O}_{7}^{\psi(0)\pi(0)} = R_{ijk}Q_{klm} \; \bar{c}\gamma_{j}\overleftarrow{\nabla}_{l}\overrightarrow{\nabla}_{m}c \; \bar{d}\gamma_{5}u(0) \,, \\ \mathcal{O}_{8} = \mathcal{O}_{8}^{\psi(0)\pi(0)} = R_{ijk}Q_{klm} \; \bar{c}\gamma_{i}\gamma_{j}\overleftarrow{\nabla}_{l}\overrightarrow{\nabla}_{m}c \; \bar{d}\gamma_{5}u(0) \,. \\ \mathcal{O}_{9} = \mathcal{O}^{\psi(1)\pi(-1)} = \sum_{e_{k}=\pm e_{x,y,z}} \bar{c}\gamma_{i}c(e_{k}) \; \bar{d}\gamma_{5}u(-e_{k}) \,, \\ \mathcal{O}_{10} = \mathcal{O}_{1}^{\rho(0)\mathcal{D}^{*}(0)} = \bar{c}\gamma_{5}c(0) \; \bar{d}\gamma_{i}u(0) \,, \\ \mathcal{O}_{11} = \mathcal{O}_{1}^{D(0)\mathcal{D}^{*}(0)} = \bar{c}\gamma_{5}\gamma_{i}u(0) \; \bar{d}\gamma_{i}c(0) + \{\gamma_{5}\leftrightarrow\gamma_{i}\} \,, \\ \mathcal{O}_{13} = \mathcal{O}^{D(1)\mathcal{D}^{*}(-1)} = \sum_{e_{k}=\pm e_{x,y,z}} \bar{c}\gamma_{5}u(e_{k}) \; \bar{d}\gamma_{i}c(-e_{k}) + \{\gamma_{5}\leftrightarrow\gamma_{i}\} \,, \\ \mathcal{O}_{14} = \mathcal{O}^{D^{*}(0)\mathcal{D}^{*}(0)} = \epsilon_{ijk} \; \bar{c}\gamma_{j}u(0) \; \bar{d}\gamma_{k}c(0) \,, \\ \mathcal{O}_{15} = \mathcal{O}_{1}^{4q} = N_{L}^{3} \; \epsilon_{abc}\epsilon_{ab'c'}(\bar{c}_{b}C\bar{d}_{c}\; c_{b'}\gamma_{i}\bar{\gamma}_{b}Cu_{c'} - \bar{c}_{b}C\gamma_{i}\bar{d}_{c}\; c_{b'}\gamma_{5}Cu_{c'}) \,, \\ \mathcal{O}_{16} = \mathcal{O}_{2}^{4q} = N_{L}^{3}\; \epsilon_{abc}\epsilon_{ab'c'}(\bar{c}_{b}C\bar{d}_{c}\; c_{b'}\gamma_{i}\gamma_{5}\bar{C}u_{c'} - \bar{c}_{b}C\gamma_{i}\gamma_{5}\bar{d}_{c}\; c_{b'}Cu_{c'}) \,, \\ \mathcal{O}_{17} = \mathcal{O}_{3}^{4q} = \mathcal{O}_{1}^{4q}(N_{v}=32) \,, \end{array}$$

S. Prelovsek, Hadron Spectrum

 $\mathcal{O}_{18} = \mathcal{O}_4^{4q} = \mathcal{O}_2^{4q}(N_v = 32)$.

Interpolators in Zc channel

[S.P., Lang, Leskovec, Mohler, 1405.7623

Wick contractions for Zc+

b

 $\bar{c}c$

 $\bar{c}c$ < $\bar{q}q$ q [S.P., Lang, Leskovec, Mohler, 1405.7623]

 $\bar{q}q$

) īcc

 $\bar{q}q$

Overlaps of all states in Zc+ channel

S. Prelovsek, Hadron Spectrum

D spectrum: single hadron approximation

[G. Moir et al, HSC (Hadron Spectrum Coll.): 1301.7670, JHEP]

- m_π≈400 MeV, L≈2.9 fm, Nf=2+1
- reliable J^P determination; many excited states
- identification with $n^{2S+1}L_{J}$ multiplets using < O | n >
- green: lat, black: exp

S. Prelovsek, Hadron Spectrum

Hybrids:

large overlap with $O = \underline{q} F_{ij} q$ gluonic tensor $F_{ij} = [D_i, D_j]$ $(\overline{q} q)$

D_s **spectrum:** single hadron approximation

[G. Moir et al., HSC : 1301.7670, JHEP]

- $m_{\pi} \approx 400$ MeV, L ≈ 2.9 fm, Nf=2+1
- reliable J^{PC} determination
- identification with $n^{2S+1}L_{J}$ multiplets using $\langle O | n \rangle$
- green: lat, black: exp

S. Prelovsek, Hadron Spectrum

Hybrids:

large overlap with $O=\underline{q} F_{ij} q$

gluonic tensor $F_{ij} = [D_i, D_j]$

