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• update of quark masses and Dashen’s theorem corrections using 
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• new insights on finite-volume effects
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• study of the                 system

❖ [BMWc, 2014] (EQ)!

• update of quark masses and Dashen’s theorem using electro-
quenched simulations
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• finite-volume corrections to hadron masses in NREFTs
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What’s new ?
❖ [QCDSF, 2014] — G. Schierholz parallel talk: tomorrow 14:15!

• new full Nf = 1+1+1 QCD+QED simulations!

• preliminary results for the baryon octet splittings

❖ [BMWc, 2014] — [arXiv: 1406.4088]!

• new set of Nf = 1+1+1+1 full QCD+QED simulations!

• extensive analytical/numerical study of finite-volume effects!

• high precision computation of the hadron spectrum 
splittings (continuum, infinite volume and physical point 
extrapolation)
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❖ Motivations!
❖ Update on electro-quenched results!
❖ Lattice QED!
❖ Full QCD+QED simulations!
❖ Isospin splittings in the hadron spectrum!
❖ Summary & outlook
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Isospin symmetry breaking
❖ Isospin symmetric world: up and down quarks are 

particles with identical physical properties.
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Isospin symmetry breaking
❖ Isospin symmetric world: up and down quarks are 

particles with identical physical properties.

❖ Isospin symmetry is explicitly broken by:!

• the up and down quark mass difference  
                              !

• the up and down electric charge difference  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❖ Well known experimentally:  
 

Nucleon mass splitting
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❖ Well known experimentally:  
 

❖ needed for proton stability

❖ determines through  
   -decay the stable nuclide 
chart

❖ initial condition for  
Big-Bang nucleosynthesis

Nucleon mass splitting

7

�

source: [PDG, 2013]
Mn �Mp = 1.2933322(4) MeV



❖ In the SU(3) chiral limit [Dashen, 1969]:  
 

Dashen’s theorem

�QEDM
2
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2
⇡ +O(↵ms)
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❖ How large are the corrections? FLAG parametrisation:  
 
 

Dashen’s theorem

�QEDM
2
K = �QEDM

2
⇡ +O(↵ms)

" =
�QEDM2

K ��QEDM2
⇡

�M2
⇡

8



❖ In the SU(3) chiral limit [Dashen, 1969]:  
 

❖ How large are the corrections? FLAG parametrisation:  
 
 

❖    is important to determine light quark mass ratios

Dashen’s theorem

�QEDM
2
K = �QEDM

2
⇡ +O(↵ms)
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�QEDM2

K ��QEDM2
⇡

�M2
⇡
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Update on electro-quenched results



EQ results for the baryon spectrum
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EQ results for "
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Non-compact lattice QED

❖ Naively discretised Maxwell action: 
 
 

14

S[Aµ] =
1

4

X

µ,⌫

(@µA⌫ � @⌫Aµ)
2



Non-compact lattice QED

❖ Naively discretised Maxwell action: 
 
 

❖ Pure gauge theory is free, it can be solved exactly

14

S[Aµ] =
1

4

X

µ,⌫

(@µA⌫ � @⌫Aµ)
2



Non-compact lattice QED

❖ Naively discretised Maxwell action: 
 
 

❖ Pure gauge theory is free, it can be solved exactly

❖ Gauge invariance is preserved
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Zero-mode subtraction
 
Finite volume: momentum quantisation
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Zero-mode subtraction
 
Finite volume: momentum quantisation
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Zero-mode subtraction
 
Finite volume: momentum quantisation

15

Possibly IR divergent, but 
not for physical quantities

Contains a straight 1/0 !
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Zero-mode subtraction

❖ This problem can be solved by removing zero modes 
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Zero-mode subtraction

❖ This problem can be solved by removing zero modes 

❖ Many possible schemes:  
modification of             on a set of measure 0

❖ Different schemes: different finite volume behaviours

❖ Some more interesting that others

Aµ(k)
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QEDTL zero-mode subtraction

❖ QEDTL:  
Mostly used in all simulations so far

17

Aµ(0) = 0



QEDTL zero-mode subtraction

❖ QEDTL:  
Mostly used in all simulations so far

❖ With QEDTL, the                ,                 limit can diverge: 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QEDTL zero-mode subtraction

❖ QEDTL:  
Mostly used in all simulations so far

❖ With QEDTL, the                ,                 limit can diverge: 
 
 

❖ QEDTL does not have reflection positivity
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QEDTL finite-volume effects
❖ Example — 1-loop QEDTL [BMWc, 2014]:  
 
 
 
 
 
up to exponential corrections, with

18

 = 2.83729 . . .

m(T, L) ⇠
T,L!+1

m

⇢
1� q2↵




2mL

✓
1 +

2

mL


1� ⇡

2

T

L

�◆

� 3⇡

(mL)3


1� coth(mT )

2

�
� 3⇡

2(mL)4
L

T

��



QEDTL finite-volume effects
❖ Example — 1-loop QEDTL [BMWc, 2014]:  
 
 
 
 
 
up to exponential corrections, with

❖ Divergent finite volume effects with              , 

18

 = 2.83729 . . .

m(T, L) ⇠
T,L!+1

m

⇢
1� q2↵




2mL

✓
1 +

2

mL


1� ⇡

2

T

L

�◆

� 3⇡

(mL)3


1� coth(mT )

2

�
� 3⇡

2(mL)4
L

T

��

T ! 1 L = cst.



QEDTL finite-volume effects
❖ Example — 1-loop QEDTL [BMWc, 2014]:  
 
 
 
 
 
up to exponential corrections, with

❖ Divergent finite volume effects with              , 

❖ Same behaviour independently discovered by MILC
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QEDL zero-mode subtraction

❖ QEDL:                           
inspired from [Hayakawa & Uno, 2008]
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QEDL zero-mode subtraction

❖ QEDL:                           
inspired from [Hayakawa & Uno, 2008]

❖ QEDL maintains reflection positivity [BMWc, 2014]:

❖ QEDL finite volume effects:  
 
 
 
             inverse powers of L, independent of T
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Finite-volume effects

Pure QED simulations (quenched) from [BMWc, 2014]
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Finite-volume effects
❖ What about composite particles (QCD + QED)?
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Finite-volume effects
❖ What about composite particles (QCD + QED)?

❖ [Hayakawa & Uno, 2008]: SU(3) PQChPT

❖ [RBC-UKQCD, 2010]: SU(2) PQChPT + heavy kaons

❖ [Davoudi & Savage, 2014]: NREFTs 
mesons, baryons, nuclei and HVP  
 

❖ [BMWc, 2014]: Ward identities: NLO is universal
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Finite-volume effects
❖ What about composite particles (QCD + QED)?

❖ [Hayakawa & Uno, 2008]: SU(3) PQChPT

❖ [RBC-UKQCD, 2010]: SU(2) PQChPT + heavy kaons

❖ [Davoudi & Savage, 2014]: NREFTs 
mesons, baryons, nuclei and HVP  
 

❖ [BMWc, 2014]: Ward identities: NLO is universal

❖ parallel talk by C. Lehner: tomorrow 15:35
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Full QCD+QED simulations



Full QCD + QED projects

23

RBC-UKQCD PACS-CS QCDSF-UKQCD BMWc

arXiv 1006.1311 1205.2961 1311.4554 
and Lat. 2014 1406.4088

fermions DWF clover clover clover

2+1 1+1+1 1+1+1 1+1+1+1

method reweighting reweighting RHMC RHMC

min(      ) (MeV) 420 135 250 195

a (fm) 0.11 0.09 0.08 0.06 — 0.10

#a 1 1 1 4

L (fm) 1.8 2.9 1.9 — 2.6 2.1 — 8.3

#L 1 1 2 11

M⇡

Nf

Starting simulation program by MILC: R. Zhou talk Monday 14:15



[BMWc, 2014]: QED simulations

❖ No mass gap: large autocorrelations !
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[BMWc, 2014]: QED simulations

❖ No mass gap: large autocorrelations !

❖ One can determine exactly an MD Hamiltonian that 
removes all memory in the QED Markov chain:  
 
 

❖ Clover term greatly reduces discretisation errors

H =
1

2TL3

X

µ,k

(
|k̂|2|Aµ,k|2 +

⇡

4|k̂|2
|⇧µ,k|2

)

24



[BMWc, 2014]: QED simulations
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Isospin splittings  
in the hadron spectrum



[QCDSF, 2014]: progress summary
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[QCDSF, 2014]: progress summary
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❖ Nf = 1+1+1  
full QCD+QED 
simulations in progress

❖ computational strategy 
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[arXiv:1102.5300]
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[BMWc, 2014]: mass splitting calculation
❖ many smeared sources per configurations (O(100))

❖ electric charge renormalisation using Wilson flow

❖ small extrapolation to the physical point  
(similar to [BMWc, 2013])

❖ Systematic error based on BMW's histogram method. 
Weights are based on the goodness of the fits, flat and 
Akaike’s information criterion (overfitting is penalised)

❖ O(500) analyses per mass splitting
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[BMWc, 2014]: finite-volume study
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[BMWc, 2014]: result summary
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Results for the nucleon mass splitting
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❖ We now have a good understanding of QCD+QED on a 
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❖ Finite-size effects on masses are now well controlled

❖ [BMWc, 2014]: full simulations of the low-energy SM 
with a potential precision of 

❖ The isospin splittings in the hadron spectrum are 
determined with a high accuracy and full control of 
uncertainties

❖ The nucleon mass splitting is determined as a           effect> 5�
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❖ Unquenched computations of the light quark masses 
and Dashen’s theorem corrections

❖ QCD+QED decay constants are gauge variant and IR 
divergent. How to deal with that? 
C.T. Sachrajda plenary talk: 28/06 — 10:30

❖ Compute corrections to matrix elements  
(       ,                 ,…)

❖ QCD+QED to compute hadronic corrections to 
anomalous magnetic moments.

K ! ⇡⇡K`3



Thank you!
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[BMWc, 2014]: QED simulations
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[BMWc, 2014]: charge renormalisation
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[BMWc, 2014]: charm discretisation effects
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