Nucleon electromagnetic form factors from Twisted Mass QCD

A. Abdel-Rehim^a, C. Alexandrou^{a,b}, M. Constantinou^b, K. Jansen^c and <u>Giannis Koutsou^a</u>

^aComputational-based Science and Technology Research Center (CaSToRC), The Cyprus Institute ^bDepartment of Physics, University of Cyprus ^cNIC/DESY

Lattice 2014, June 25th 2014, Columbia, NY

+ □ > < 同 > < Ξ > < Ξ >

Outline

Motivation

The proton radius and more

Lattice Setup

- Form factor extraction
- Twisted mass ensembles used
- Lattice spacing determination
- Excited state effects

Results

- Electric, magnetic, Dirac and Pauli form factors

CaSToRC

- Associated radii
- Comparison with other discretizations

Outlook

Noise reduction techniques

Summary

Motivation

Nucleon EM form-factors (FFs): insight on internal structure of the proton and neutron

- Slope of FFs at $Q^2 = 0$ defines radius
- Contact to perturbative QCD at large Q^2

Timely, due to proton "radius puzzle"

- Discrepancy in experiments when comparing muonic hydrogen Lamb shift to hydrogen Lamb shift and electron scattering
 - $\sim 2\%$ accuracy lattice measurement could give a QCD prediction of radius

Decomposition

- Dirac (F_1) and Pauli (F_2) FFs :

$$\begin{split} \langle N(p',s')|j^{\mu}|N(p,s)\rangle &= \sqrt{\frac{M_N^2}{E_N(\mathbf{p}')E_N(\mathbf{p})}}\bar{u}(p',s')\mathcal{O}^{\mu}u(p,s)\\ \mathcal{O}^{\mu} &= \gamma_{\mu}F_1(q^2) + \frac{i\sigma_{\mu\nu}q^{\nu}}{2M_N}F_2(q^2), \quad q = p' - p \end{split}$$

- Alternatively, the Electric (G_E) and (G_M) Sachs form factors:

$$G_E(q^2) = F_1(q^2) + \frac{q^2}{(2M_N)^2}F_2(q^2), \quad G_M(q^2) = F_1(q^2) + F_2(q^2)$$

CaSToRC

- Radii defined as slope at $Q^2 = 0$:

$$\langle r_i^2
angle = -\frac{6}{F_i} \frac{dF_i}{dQ^2}|_{Q^2=0}$$
 similarly for $\langle r_E^2
angle$, $\langle r_M^2
angle$

Lattice Setup

The three point correlation function

$$G^{\mu}(\Gamma; \mathbf{q}; t_s, t_i) = \sum_{\mathbf{x}_s \mathbf{x}_i} e^{-i\mathbf{p}'\mathbf{x}_s} e^{-i(\mathbf{p}'-\mathbf{p})\mathbf{x}_i} \Gamma^{\alpha\beta} \langle \bar{\chi}_N^{\beta}(\mathbf{x}_s; t_s) | j^{\mu}(\mathbf{x}_i; t_i) | \chi_N^{\alpha}(\mathbf{x}_0; t_0) \rangle$$

obtained with a sequential inversion through the sink (x_s)

Two sequential inversions:

• Unpolarized $\Gamma_0 = \frac{1}{4}(1+\gamma_0) \rightarrow G_E$

• Polarized $\Gamma = \sum_k i \Gamma_0 \gamma_k \to G_M$

CaSToRC

- Isovector and isoscalar combinations
 - $F^p F^n = F^u F^d$ • $F^p + F^n = \frac{1}{2}(F^u + F^d)$

assuming flavor SU(2) isospin symmetry, i.e. $p \leftrightarrow n$ when $u \leftrightarrow d$

— Fixed sink momentum p'=0

Lattice Setup

Lattice Setup

Lattice spacing determined from nucleon mass

Spacings determined via the nucleon mass

▶ $\beta = [1.90, 1.95, 2.10], a = [0.0936(13)(32), 0.0823(11)(35), 0.0646(7)(25)]$ fm

CaSToRC

- $\beta = 2.10, c_{SW} = 1.57551, a = 0.091(2)(1)$ fm
- $r_0 \simeq 0.479(4) \text{ fm}_{at} a = 0$

HE CYPRUS

• σ -term from $\mathcal{O}(p^3)$: $\sigma_{\pi N} = 65(2)(20)$ MeV

Form factor extraction

Plateau method

$$R_{M}^{V}(t_{i}, t_{s}; \mathbf{k}^{2}) \xrightarrow{t_{s}-t_{i} \gg} G_{M}^{V}(\mathbf{k}^{2})[1+O(e^{-\Delta M(t_{s}-t_{i})}, e^{-\Delta E(\mathbf{k})(t_{i}-t_{0})})]$$

Summation method

$$\sum R_M^V(t_i, t_s; \mathbf{k}^2) \xrightarrow{t_s \gg} C + G_M^V(\mathbf{k}^2) t_s [1 + O(e^{-\Delta M(t_s - t_0)}, e^{-\Delta E(\mathbf{k})(t_i - t_0)})]$$

Disconnected contributions to isoscalar

- N_f = 2 + 1 + 1,
$$a$$
 \simeq 0.085 fm, m_{π} \simeq 375 MeV

- \sim 150,000 statistics

CaSToRC

Details by A. Vaquero

Dependence on source-sink separation

- $N_f = 2 + 1 + 1$, *a* \simeq 0.085 fm, *m*_{π} \simeq 375 MeV
- 1,200 statistics
- 10 source-sink separations (6 shown here)
- Mild dependence on source-sink separation
- Consistency between summation and $t_s - t_0 \ge 1.2$ fm (at least for this pion mass)

Dependence on source-sink separation

- $N_f = 2 + 1 + 1$, *a* \simeq 0.085 fm, *m*_{π} \simeq 375 MeV
- 1,200 statistics
- 10 source-sink separations (6 shown here)
- Mild dependence on source-sink separation
- Consistency between summation and $t_s - t_0 \ge 1.2$ fm (at least for this pion mass)

Dependence on source-sink separation

- $N_f = 2 + 1 + 1$, *a* \simeq 0.085 fm, *m*_{π} \simeq 375 MeV
- 1,200 statistics, 10 source-sink separations
- From dipole fit:

$$F_1(Q^2) = \frac{1}{(1+Q^2/M_1^2)^2},$$

$$F_2(Q^2) = \frac{F_2(0)}{(1+Q^2/M_2^2)^2} \qquad \langle r_i^2 \rangle = \frac{12}{M_i^2}$$

Results at the physical point

- N_f = 2, *a* \simeq 0.091 fm, *m*_{π} \simeq 135 MeV - \sim 1,000 statistics for *t*_s - *t*₀ = 1.1 and 1.3 fm, \sim 300 for 0.9 fm

G_E and G_M from Twisted Mass

The Cyprus Institute

$$-t_s-t_0>1.2 \text{ fm}$$

- Tendency for steeper G_E and G_M as $m_{\pi} \rightarrow 135 \text{ MeV} \Rightarrow \text{larger radii}$

Comparison with other formulations

- LHPC arXiv:1404.4029
- Clover improved, a = 0.116 fm
- $m_{\pi} = 149 \text{ MeV}$
- Consistency between the two discretizations

Comparison with other formulations

- Confirmed curvature towards physical pion mass
- Increasing trend for enlarging source-sink separation at near physical pion masses
- Need ~1% error to contact experiment, or a multiple-fold increase in statistics.

Outlook

- Nucleon mass for $m_\pi \simeq 210$ MeV
- 250 configs. \times 80 low-precision per config.
- With EigCG, low-precision ${\sim}10{\times}$ cheaper

Summary

Excited state effects

- EigCG or similar multipl-rhs methods allow multiple source-sink separations per configuration
- Summation method useful for assessing excited state contamination
- Consistency with plateau at $t_s \ge 1.3$ fm

Results now at the physical point

- Slope of form factors towards right direction
- Broader nuclei towards physical point
- Consistency between Twisted Mass and Clover at similar volumes and near physical pion mass

Towards precision form factors and radii

- Disconnected diagrams are now possible to bound, if not compute directly
- As expected, physical point is especially noisy
- Compare 375 MeV with 1,200 statistics with 135 MeV with 1,000 statistics
- Still need multiple increases in statistics to compare with experiment
- Methods for noise reduction being investigated, such as CAA with EigCG

Thank you!

Brought to you by:

Infrastructure:

- Cy-Tera at The Cyprus Institute
- Juqueen, Juropa at the JSC
- Fermi at CINECA
- Minotauro at BSC

