
Fluctuations of the electric charge in theory and
experiment

Szabolcs Borsanyi
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Beam energy scan and freeze-out curve

Chiral crossover region from lattice:
Tc = 147 . . . 157
[BW hep-lat/0611014,hep-lat/0609068,0903.4155,1005.3508]

Curvature: κ = 0.0066(2)(4) [WB: 1102.1356]

At RHIC a broad energy range√
sNN = 7.7 . . . 200 has been

scanned with heavy ion collisions.
Last inelastic scattering:
chemical freeze-out.
For each energy the chemical
freeze-out is described as a grand
canonical ensemble with one
temperature and chemical
potential.
Traditional method:
Hadron Resonance Gas
(HRG)-based statistical fit of
pion, kaon, proton, etc yields.
Fit result at

√
sNN = 130GeV

µB = 38(12) MeV and
Tch = 165(5) MeV.
[Andronic et al nucl-th/0511071]



Fluctuations of conserved charges

The idea
Let’s not look at yields but things that exist on a lattice:
conserved charges. Lattice calculates the grand canonical ensemble
for a given charge (baryon number, electric charge or strangeness)
and this is matched to the event-by-event statistics from the
experiment

Net proton: number of protons - number of antiprotons
Net electric charge: number of positive - negative particles

Mean: 〈NX 〉 = −T ∂ logZ
∂µX

Variance: 〈δN2
X 〉 = −T 2 ∂2 logZ

∂µX
2

On the lattice we have access to normalized quark number
susceptibilities:

χX
2 =

1

VT 3

∂2 log Z

(∂µX/T )2



Fluctuations from experiment

At RHIC STAR has measured the mean, variance, skewness and
kurtosis of the event-by-event net charge distribution at various
energies and centralities.
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0.5 < |η| < 1.0, chosen to be beyond the analysis window
of the net-charge distributions. The centrality is repre-
sented by the average number of participating nucleons
(⟨Npart⟩) as well as percentage of total cross section, ob-
tained by the Monte Carlo (MC) Glauber simulation [31].
The total number of events analyzed are (in millions):
1.4, 2.4, 15.5, 24, 56, 32 and 75 for

√
sNN = 7.7, 11.5,

19.6, 27, 39, 62.4 and 200 GeV, respectively.

The measured positive (N+) and negative (N−)
charged particle multiplicities within |η| < 0.5 and
0.2 < pT < 2.0 GeV/c (after removing protons and anti-
protons with pT < 400 MeV/c) are used to calculate net-
charge (N+ − N−) in each event. The net-charge distri-
butions are obtained for different centrality classes. The
finite centrality bin width may cause volume variations
within a given centrality class and may introduce ad-
ditional fluctuations. The moments and moments prod-
ucts are calculated at every integer value of the centrality
variable. The values shown in the figures are weighted
averages in 5% or 10% wide centrality bins, where the
weights are the number of events at each value of the
centrality variable normalized to unity within each such
centrality bin. Such weighted averages effectively remove
the dependence of the results in the width of the central-
ity bin [32, 33]. Finite reconstruction efficiencies of the
charged particles affect the measured moments. The effi-
ciency for each centrality and collision energy is obtained
by using the embedding technique [34]. The average ef-
ficiencies vary within 63%−66% and 70%−73% for most
central (0-5% bin) and peripheral (70-80% bin) events,
respectively, for all collision energies. The corrections to
the moments are based on binomial probability distribu-
tions of efficiency [17]. For κσ2, the efficiency correction
factors for all energies and centralities are consistent with
unity, whereas for Sσ, these factors vary from 1.4 to 1.0
from peripheral to central collisions for all energies.

The statistical errors of the moments and their prod-
ucts have been calculated using the Delta theorem ap-
proach [35] and Bootstrap method [36] for efficiency-
uncorrected and corrected results, respectively. The sta-
tistical uncertainties in the corrected results increase
compared with the uncorrected ones because the effi-
ciency corrections involve higher-order cumulants. The
systematic uncertainties are obtained by varying the
track selection criteria of the charged particles, such as
the number of fit points, DCA, and the number of hit
points used to calculate ionization energy loss (dE/dx)
in the TPC. The final systematic errors were estimated
by including an additional 5% uncertainty in the recon-
struction efficiency.

In Fig. 1, the efficiency and centrality bin width cor-
rected moments of the net-charge distributions are plot-
ted as a function of ⟨Npart⟩ for Au+Au collisions at
seven colliding energies. The statistical errors dominate
in most cases and the systematic errors are within the
symbol size. For all the collision energies, we observe
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FIG. 1: (Color online) The efficiency and centrality bin width
corrected (a) mean, (b) standard deviation, (c) skewness and
(d) kurtosis of the net-charge multiplicity distributions as a
function of number of participating nucleons (⟨Npart⟩) for
Au+Au collisions. The dotted lines represent calculations
from the central limit theorem. The error bars are statistical
and systematic errors are within the symbol sizes.

that the M and σ values increase, whereas S and κ val-
ues decrease with increasing ⟨Npart⟩. The dotted lines in
the figure are central limit theorem (CLT) calculations
of the moments as a function of ⟨Npart⟩ [37], which as-
sume independent emission sources. These calculations
follow the general trend of the data points. However,
deviations from the CLT have been observed for several
data points where the χ2 values are as large as 16.9 for 7
degrees of freedom. This may imply correlated emission
of particles. The volume dependences of the moments
are evident from Fig. 1, plotted as a function of ⟨Npart⟩,
which are cancelled in suitably constructed products of
the moments.

In order to understand the nature of moments and
their products, it is essential to compare the experimental
results with baseline calculations. Two such calculations,
one using the Poisson distribution and the other the neg-
ative binomial distribution (NBD), have been studied.
In case of the Poisson baseline, the positive and nega-
tive charged particle multiplicities are randomly sampled
from their mean values, resulting in a Skellam net-charge
distribution [38]. The NBD baselines are constructed by
using both the measured mean values and variances of
the positive and negative charged particles [39]. Like the
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FIG. 4: (Color online) Beam-energy dependence of (a) σ2/M ,
(b) Sσ, and (c) κσ2, after all corrections, for most central (0-
5%) and peripheral (70-80%) bins. The error bars are statis-
tical and the caps represent systematic errors. Results from
the Poisson and the NBD baselines are superimposed. The
values of κσ2 for Poisson baseline are always unity.

for Poisson baselines are always unity. For peripheral
collisions the κσ2 values show almost no variation as a
function of beam energy and lie above the Poisson base-
line and below the NBD baseline. For central collisions,
within the statistical and systematic errors of the data,
the κσ2 values at all energies are consistent with each
other, except for

√
sNN = 7.7 GeV. The weighted mean

of κσ2 calculated for central collisions at all energies is
2.4 ± 1.2. For central collisions, both of the baseline cal-
culations follow the data points except for the one at
the lowest energy. Deviations of the data points with re-
spect to the baseline calculations have been quantified in
terms of the significance of deviation, defined as, (|Data–

Baseline|)/(
√

err2stat + err2sys), where errstat and errsys are

the statistical and systematic errors, respectively. These
deviations remain within 2 in case of Sσ and κσ2 with
respect to the corresponding Poisson and NBD baselines.
This implies that the products of moments do not show
non-monotonic behaviour as a function of beam energy.

Fluctuations of conserved quantities are originally pro-
posed to locate the QCD critical point in high-energy
nuclear collisions [7–9]. However, these fluctuations can

also be used to extract the thermodynamic informa-
tion on chemical freeze-out by comparing experimentally
measured higher moments with those from first-principle
lattice QCD calculations [22]. Higher-order correlation
functions allow stricter tests on the thermal equilibrium
in heavy-ion collisions. Estimations of freeze-out pa-
rameters based on preliminary experimental data have
been obtained from these studies [40, 41]. Tradition-
ally, by using the integrated hadron yields, the first mo-
ment of the fluctuations, the chemical freeze-out can
be extracted from hadron resonance gas (HRG) mod-
els [24, 42]. From the latest lattice [43] and HRG analy-
ses [44] using the STAR net-charge and net-proton results
for central Au+Au collisions at 7.7 to 200 GeV, the ex-
tracted freeze-out temperatures range from 135 to 151
MeV and µB values range from 326 to 23 MeV. Note
that this is the first time that the experimentally mea-
sured higher moments are used to determine the chemi-
cal freeze-out conditions in high-energy nuclear collisions.
The freeze-out temperatures obtained from the higher
moments analysis are lower with respect to the tradi-
tional method [24, 45]. This difference could indicate a
higher sensitivity to freeze-out in the higher moments,
which warrants further investigation.

In summary, the first results of the moments of net-
charge multiplicity distributions for |η| < 0.5 as a func-
tion of centrality for Au+Au collisions at seven collision
energies from

√
sNN = 7.7 to 200 GeV are presented.

These data can be used to explore the nature of the
QCD phase transition and to locate the QCD critical
point. We observe that the σ2/M values increase mono-
tonically with increasing beam energy. Weak central-
ity dependence is observed for both Sσ and κσ2 at all
energies. The Sσ values increase with decreasing beam
energy, whereas κσ2 values are uniform except at the
lowest beam energy. Most of the data points show de-
viations from Poisson baselines. The NBD baselines are
closer to the data than Poisson, but do not quantita-
tively reproduce the data, implying the importance of
intra-event correlations of the multiplicities of positive
and negative particles in the data. Within the present
uncertainties, no non-monotonic behavior has been ob-
served in the products of moments as a function of colli-
sion energy. The measured moments of net-charge mul-
tiplicity distributions provide unique information about
the thermal conditions at freeze-out by directly compar-
ing with theoretical model calculations. Future measure-
ments with high statistics data will be needed for pre-
cise determination of freeze-out conditions and to make
definitive conclusions regarding the critical point.

We thank M. Asakawa, R. Gavai, S. Gupta, F. Karsch,
V. Koch, S. Mukherjee, K. Rajagopal, K. Redlich and M.
A. Stephanov for discussions related to this work. We
thank the RHIC Operations Group and RCF at BNL,
the NERSC Center at LBNL, the KISTI Center in Korea,

[STAR: 1402.1558]



Thermometer from the skewness

A possible thermometer [BNL-Bielefeld 1208.1220] Tch is found through

Sσ3/M
∣∣
experiment

(beam energy) = Sσ3/M
∣∣
lattice

(Tch)

Comparing Wuppertal-Budapest lattice results with STAR data:

Net electric charge:
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Net baryon number:
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Challenge at the LHC

At LHC energies µB ≈ 0, we have to find two parameters only:
temperature and volume, the latter cancels in ratios of cumulants.
At the same time skewness and mean are both zero, the skewness
thermometer hit a 0/0 limit.
What could be a good thermometer?

Baryon fluctuations [shown here]:

noisy, non-ideal T -dependence,
in experiment protons, not
baryons are measured.
STAR at 200 GeV [1309.5681]:
χB
4 /χ

B
2 = 0.897(29)(20)

Electric charge fluctuations:
large cut-off effects in the
staggered formulation
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Our goal: the electric charge kurtosis

We calculate the experimentally relevant χQ
4 /χ

Q
2 ratio as a function

of tempearture with physical quark masses in the continuum.

2nd generation staggered program:

4stout staggered action (taste breaking similar to HISQ),
tree-level Symanzik gauge action, smeared one-link fermions

2+1+1 dynamical flavors, also used e.g. for charmed equation
of state [S. Krieg, Thu]

Bare masses tuned to Mπ/fπ, MK/fπ, scale setting: fπ

Charm mass set to mc/ms = 11.85 [HPQCD: 0910.3102]

Electric charge is mostly carried by pions: taste breaking must be
brought under control.



Finite temperature ensembles

T [MeV] 243 × 6 323 × 8 403 × 10 483 × 12 643 × 16 803 × 20 643 × 24

125 - 10515 10080 10008 5027 2060 1024
130 - 5766 5326 10253 5099 600 617
135 - 14762 10590 10060 10189 2000 1108
140 6477 14863 5381 15043 4959 5097 1015
145 6292 5784 5020 10014 5019 700 -
150 3514 5464 5067 11043 5064 1000 1135
155 2668 5613 5001 4000 5015 999 -
157 4775 5526 5409 10018 5160 1065 -
160 5270 5247 5017 4973 5073 1082 1311
165 5429 8169 10086 10496 5000 1000 -
170 7313 6005 6113 5600 5111 600 1195
175 26197 12018 5375 5058 5104 972 -
180 6024 5007 5089 5034 5013 1000 1079
190 10156 4900 5031 5121 5045 992 -
200 9666 5989 5002 6722 1012 1000 1069
220 12036 5514 5000 7231 1003 1000 347

Number of analyzed configurations, separated by ten RHMC trajectories.
We used 4× 128 random sources for the kurtosis analysis.



Extrapolating up-down correlator

This correlator is driven by pions in the confined phase and is
extremely sensitive to taste breaking.
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Systematic errors are calculated from the spread of various fit models:
Histogram method [BMW Science 322 1224]

Weight: using the Akaike Information Criterion (AIC)



The up-down correlator

This correlator is driven by pions in the confined phase and is
extremely sensitive to taste breaking. Below Tc : agreement with HRG
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Charge susceptibility

We update the continuum limit of the charge susceptibility:
agreement with HRG shown to high precision
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Continuum extrapolation of the kurtosis
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Finding the optimal splines

Data(T ; Nt) = X (T ) + Y (T )/N2
t

Assuming the smoothness of X (T ) and Y (T ) can significantly
improve the errors, and correlation is introduced. The result will
depend on the set of node points. [G. Endrődi 1010.2952]

Method to include the systematics:

Random node point set: place a node point with 0.5
probability between each subsequent pair of data points, its
location is evenly distributed in that interval.

Use the AIC weight as likelyhood
exp[−(χ2 + 2Nparameter)/2] with Nparameter = 2Nnodepoint

Do a Markov-chain with an AIC-based accept/reject step to
automatically find several optimal number and position of
node points.

Use the fluctuation of these splines in the final error



Continuum curve for χQ
4 /χ

Q
2

The continuum limit is away from the HRG result.
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Here three methods for the continuum extrapolation are compared:
a) Temperature-by-temperature linear fitting though the finer lattices (points)
b) Spline extrapolation X (T ) + Y (T )/N2

t using Nt ≥ 12 (red band)

c) Spline using Nt ≥ 10 (blue band shows the deviation from b) )



The up-down correlator

This correlator is driven by pions in the confined phase and is
extremely sensitive to taste breaking. Below Tc : agreement with HRG
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An effective pion mass

If we know that the hadron resonance gas model gives a proper
discription of χud(T ) for T < Tc , then we can quantify lattice
artefacts as an effective pion mass:

At fixed T ∗ (e.g. 125 MeV):

Which pion mass shall we put into HRG so that we get the same χud as

the lattice finds for a given lattice spacing

χLATTICE
ud (T ∗)

∣∣
Nt

!
= χHRG

ud (T ∗)
∣∣
Meff

Meff then corresponds to a = 1/NtT
∗

Useful is this definition if Meff(a) is not (strongly) T ∗ dependent.
This is an a finite temperature estimate for the pion splitting.



Effective pion mass

The finite temperature pion splitting estimate is in the ballpark of
the RMS pion mass (Root mean square of all 16 pion levels).
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The mass estimates with T ∗ = 125 or 140 MeV are fairly consistent.



Are the lattices fine enough for χQ
4 /χ

Q
2 ?

What does HRG give for χQ
4 /χ

Q
2 using the effective pion masses?
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Summary

We calculated the electric charge fluctuations on very fine
staggered lattices: Nt = 6, 8, 10, 12, 16, 20 and 24.

Strong enough T -dependence, good
thermometer for heavy ion
applications at LHC

Around the expected freeze-out
temperature kurtosis data are
inconsistent with the HRG estimate
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We demonstrated that the taste breaking can be kept under
control on the example of the up-down correlator.

We characterized the staggered lattice artefacts by an effective
mass based on mathing HRG to finte-temperature results.

What is the physical reason for the failure of the hadron resonance gas

model here?



Backup slides



Translating from quark numbers to B,Q and S

In terms of physical derivatives

d

dµB
=

1

3
∂u +

1

3
∂d +

1

3
∂s ,

d

dµQ
=

2

3
∂u −

1

3
∂d −

1

3
∂s ,

d

dµS
= −∂s

we have

χB
2 =

1

VT

1

9

[
2∂2u + ∂2s + 4∂u∂s + 2∂u∂d

]
log Z ,

χQ
2 =

1

VT

1

9

[
5∂2u + ∂2s − 2∂u∂s − 4∂u∂d

]
log Z ,

χI
2 =

1

VT

1

2

[
∂2u − ∂u∂d

]
log Z .



Translating from quark numbers to B,Q and S

χB
4 = T

V
1
81 [2∂4u + ∂4s + 6∂2u∂

2
d + 12∂2u∂

2
s

+8∂3s ∂u + 8∂3u∂s + 8∂3u∂d

+24∂2u∂d∂s + 12∂2s ∂u∂d ] log Z ,

χQ
4 = T

V
1
81 [17∂4u + ∂4s + 24∂2u∂

2
d + 30∂2u∂

2
s

−4∂3s ∂u − 28∂3u∂s − 40∂3u∂d

+24∂2u∂d∂s − 24∂2s ∂u∂d ] log Z ,

χS
4 = T

V ∂4s log Z .

Similar expressions can be derived for the mixed derivatives.



Caveats

Effects due to volume variation because of finite centrality bin width

Experimentally corrected by centrality-bin-width correction
method

Finite reconstruction efficiency

Experimentally corrected based on binomial distribution
[A. Bzdak, V. Koch, PRC (2012)]

Spallation protons

Experimentally removed with proper cuts in pT

Canonical vs Gran Canonical ensemble

Experimental cuts in the kinematics and acceptance
[V. Koch, S. Jeon, PRL (2000)]

Proton multiplicity distributions vs baryon number fluctuations

Numerically very similar once protons are properly treated
[M. Asakawa and M. Kitazawa], [PRC (2012), M. Nahrgang et al., 1402.1238]

Final-state interactions in the hadronic phase [ J.Steinheimer et al., PRL (2013)]

Consistency between different charges = fundamental test


