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[BW hep-lat/0611014,hep-lat/0609068,0903.4155,1005.3508]

Curvature: k£ = 0.0066(2)(4) (we: 1102.1356]

At RHIC a broad energy range
V/SNN = 7.7...200 has been
scanned with heavy ion collisions.
Last inelastic scattering:
chemical freeze-out.

For each energy the chemical
freeze-out is described as a grand
canonical ensemble with one
temperature and chemical
potential.

Traditional method:

Hadron Resonance Gas
(HRG)-based statistical fit of
pion, kaon, proton, etc yields.

Fit result at \/syn = 130GeV
e = 38(12) MeV and

Ten = 165(5) MeV.

[Andronic et al nucl-th/0511071]



Fluctuations of conserved charges

The idea

Let's not look at yields but things that exist on a lattice:
conserved charges. Lattice calculates the grand canonical ensemble
for a given charge (baryon number, electric charge or strangeness)
and this is matched to the event-by-event statistics from the
experiment

Net proton: number of protons - number of antiprotons
Net electric charge: number of positive - negative particles

. _ Olog Z : . 2\ _ 262 log Z
Mean: <Nx.> =T Varlanc.e. (ONg) =—T e
On the lattice we have access to normalized quark number

susceptibilities:
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Fluctuations from experiment

At RHIC STAR has measured the mean, variance, skewness and
kurtosis of the event-by-event net charge distribution at various
energies and centralities.
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Thermometer from the skewness

A possible thermometer [nisielefeid 1208.1220) T¢py is found through

503/I\/I’

experiment

(beam energy) = So° /M|, ;e (Ten)

Comparing Wuppertal-Budapest lattice results with STAR data:

Net electric charge:
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[Wuppertal-Budapest 1304.5161],

[STAR 1402.1558].

Conclusion T, < 157MeV

Net baryon number:
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Conclusion T, < 148MeV



Challenge at the LHC

At LHC energies ug ~ 0, we have to find two parameters only:
temperature and volume, the latter cancels in ratios of cumulants.
At the same time skewness and mean are both zero, the skewness
thermometer hit a 0/0 limit.

What could be a good thermometer?

Baryon fluctuations [shown here]: 14 [RO—E ‘ HNRfé
noisy, non-ideal T-dependence, 12 b NNIZB |
. . 10 s
in experiment protons, not 1R N2 e
baryons are measured. o 1[I W8 continuum fimit =
STAR at 200 GeV 13005681 06
Y /xE = 0.897(29)(20)
Electric charge fluctuations: 02 R

H or . . , T [MeV]
large cut-off effects in the po o - p o

staggered formulation
[Wuppertal-Budapest 1304.5161]



Our goal: the electric charge kurtosis

We calculate the experimentally relevant Xf/xg‘) ratio as a function
of tempearture with physical quark masses in the continuum.

2nd generation staggered program:
m 4stout staggered action (taste breaking similar to HISQ),
tree-level Symanzik gauge action, smeared one-link fermions

m 2+1+1 dynamical flavors, also used e.g. for charmed equation
of state [s. krieg, Thu

m Bare masses tuned to M, /f;, My /f:, scale setting: f;

m Charm mass set to mc./ms = 11.85 Hraco: 09103102]

Electric charge is mostly carried by pions: taste breaking must be
brought under control.



Finite temperature ensembles

T[MeV] [ 24°x6 [ 327 x8 [ 40° x 10 | 48° x 12 | 64° x 16 | 80° x 20 | 64° x 24
125 - 10515 10080 10008 5027 2060 1024
130 - 5766 5326 10253 5099 600 617
135 - 14762 10590 10060 10189 2000 1108
140 6477 14863 5381 15043 4959 5097 1015
145 6292 5784 5020 10014 5019 700 -
150 3514 5464 5067 11043 5064 1000 1135
155 2668 5613 5001 4000 5015 999 -
157 4775 5526 5409 10018 5160 1065 -
160 5270 5247 5017 4973 5073 1082 1311
165 5429 8169 10086 10496 5000 1000 -
170 7313 6005 6113 5600 5111 600 1195
175 26197 | 12018 5375 5058 5104 972 -
180 6024 5007 5089 5034 5013 1000 1079
190 10156 4900 5031 5121 5045 992 -
200 9666 5989 5002 6722 1012 1000 1069
220 12036 5514 5000 7231 1003 1000 347

Number of analyzed configurations, separated by ten RHMC trajectories.
We used 4 x 128 random sources for the kurtosis analysis.




Extrapolating up-down correlator

This correlator is driven by pions in the confined phase and is
extremely sensitive to taste breaking.
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Systematic errors are calculated from the spread of various fit models:
Histogram method [BmMw science 322 1224

Weight: using the Akaike Information Criterion (AIC)



The up-down correlator

This correlator is driven by pions in the confined phase and is
extremely sensitive to taste breaking. Below T.: agreement with HRG
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The errors are combined (statistical+systematic) using the histogram
method with AIC weights.



We update the continuum limit of the charge susceptibility:

Charge susceptibility

agreement with HRG shown to high precision
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For earlier calculations see [Wuppertal-Budapest: 1112.4416, HotQCD: 1203.0784]



Continuum
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Linear extrapolation on fine lattices or non-linear fit to all lattices

give consistent results.

Systematic errors from the histogram metod [Bmw science (2008) 322, 1224]

extrapolation of the kurtosis



Finding the optimal splines

Data(T; N;) = X(T) + Y(T)/N?

Assuming the smoothness of X(T) and Y(T) can significantly
improve the errors, and correlation is introduced. The result will
depend on the set of node points. [c. Endrsdi 1010.2052]

Method to include the systematics:

m Random node point set: place a node point with 0.5
probability between each subsequent pair of data points, its
location is evenly distributed in that interval.

m Use the AIC weight as likelyhood
exp[—(x2 + 2Nparameter)/2] with Nparameter = 2Nnodepoint

m Do a Markov-chain with an AlC-based accept/reject step to
automatically find several optimal number and position of
node points.

m Use the fluctuation of these splines in the final error



Continuum curve for Xf/XzQ

The continuum limit is away from the HRG result.
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Here three methods for the continuum extrapolation are compared:

a) Temperature-by-temperature linear fitting though the finer lattices (points)
b) Spline extrapolation X(T) + Y(T)/N? using N; > 12 (red band)

c) Spline using N; > 10 (blue band shows the deviation from b) )



The up-down correlator

This correlator is driven by pions in the confined phase and is
extremely sensitive to taste breaking. Below T.: agreement with HRG
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The errors are combined (statistical+systematic) using the histogram
method with AIC weights.



An effective pion mass

If we know that the hadron resonance gas model gives a proper
discription of x,q4(T) for T < T, then we can quantify lattice
artefacts as an effective pion mass:

At fixed T* (e.g. 125 MeV):

Which pion mass shall we put into HRG so that we get the same x4 as
the lattice finds for a given lattice spacing

ATTIC * ! G/ T+
Xad Ty = Xud (T

Mg then corresponds to a =1/N, T*

Useful is this definition if Mg (a) is not (strongly) T* dependent.
This is an a finite temperature estimate for the pion splitting.



Effective pion mass

The finite temperature pion splitting estimate is in the ballpark of
the RMS pion mass (Root mean square of all 16 pion levels).
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The mass estimates with T* = 125 or 140 MeV are fairly consistent.



Are the lattices fine enough for Xf/XQQ?

What does HRG give for XS/XS using the effective pion masses?

s
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The continuum trend is the opposite of what we might expect from HRG.



Summary

We calculated the electric charge fluctuations on very fine
staggered lattices: Ny = 6,8,10,12,16,20 and 24.

m Strong enough T-dependence, good R
thermometer for heavy ion B By
applications at LHC LIF fw::u;mmwm”mﬁgmT

m Around the expected freeze-out o \l“«i
temperature kurtosis data are 0 e e
inconsistent with the HRG estimate

We demonstrated that the taste breaking can be kept under
control on the example of the up-down correlator.

We characterized the staggered lattice artefacts by an effective
mass based on mathing HRG to finte-temperature results.

What is the physical reason for the failure of the hadron resonance gas
model here?



Backup slides



Translating from quark numbers to B,Q and S

In terms of physical derivatives

d 1 1 1
dMB 3 +3 d+3 S
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— = Z29,— 94— =0
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d
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Translating from quark numbers to B,Q and S

[204 + 02 4+ 60203 + 120202
+80920, + 89305 + 80204
424020405 + 12020,04] log Z
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e

X$ = L& [170% + 0% + 240203 + 300202
—4930, — 28030, — 40030y
+2402040s — 240°0,04] log Z

Xi =y OilogZ.

Similar expressions can be derived for the mixed derivatives.



Caveats

Effects due to volume variation because of finite centrality bin width
Experimentally corrected by centrality-bin-width correction
method

Finite reconstruction efficiency

Experimentally corrected based on binomial distribution

[A. Bzdak, V. Koch, PRC (2012)]

Spallation protons

Experimentally removed with proper cuts in pr

Canonical vs Gran Canonical ensemble

Experimental cuts in the kinematics and acceptance

[V. Koch, S. Jeon, PRL (2000)]

Proton multiplicity distributions vs baryon number fluctuations
Numerically very similar once protons are properly treated

[M. Asakawa and M. Kitazawa], [PRC (2012), M. Nahrgang et al., 1402.1238]

Final-state interactions in the hadronic phase [ J Steinheimer et al., PRL (2013)]
Consistency between different charges = fundamental test



