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Introduction

Experiments

Dilepton rates in pp collisions well described by hadron cocktail model

Enhancement in low energy region of AuAu collisions
[PHENIX PRC81, 034911 (2010)]

⇒ thermal modifications?
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The spectral function (SPF)

QGP probes

Goal is to compute vector channel SPF because
1 Photons and dileptons are produced in the QGP
2 Leave it almost undisturbed

Experimental observables

Dilepton rate linked to the vector SPF: dW
dωd3p

∼ ρV (ω,~p,T )

(ω2−~p2)(eω/T−1)

Photon rate linked to the vector SPF: ω
dRγ
d3p
∼ ρTV (ω=|~p|,T )

eω/T−1

Transport properties

SPF relates to transport properties via Kubo formulae

Here: electrical conductivity from spatial part: σ
T = Cem

6 lim
ω→0

ρii
ω
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Lattice observables

Observables

(Renormalized) vector current JH = ZV ψ̄(x)γHψ(x)

Euclidean correlator GH(τ,~x) = 〈JH(τ,~x)J†H(0,~0)〉
In momentum space GH(τ,~p) =

∑
~x GH(τ,~x)e i~p~x

Relation to SPF ρH :

GH(τ,~p) =

∞∫
0

dω

2π
ρH(ω,~p,T )K (ω, τ,T )

with kernel K (ω, τ,T ) =
cosh(ω(τ− 1

2T
))

sinh( ω
2T

)

different parts of the vector SPF: sum over spatial (H = ii), temporal
(H = 00) and full (H = V )
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Determining the SPF

An ill posed problem

Inversion problematic: ∼ O(10) data points G (τ), far finer resolution
in ω required for ρ(ω)

Two possible solutions

1 Maximum Entropy method

2 Here: use phenomenologically motivated ansatz and fit to correlator
data
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Choosing the Ansatz

Free case is known

ρii (ω,T ) = 2πT 2ωδ(ω) + 3
2πω

2 tanh( ω
4T )

ρ00(ω,T ) = 2πT 2ωδ(ω)

With interactions

net quark number conservation: ρ00 → 2πχqωδ(ω)

ρii is modified: delta peak gets smeared out
G.Aarts, J.M.Martinez Resco, JHEP 0204 (2002) 053

J.Hong, D.Teaney, Phys.Rev.C82 (2010) 044908

Describe as Breit-Wigner peak + free part for large ω

⇒ Phenomenologically inspired ansatz

ρii (ω,T ) = χqcBW
ωΓ

ω2+(Γ/2)2 + 2
3π (1 + k)ω2 tanh

(
ω
4π

)
with parameters cBW , Γ, k (= αs

π at leading oder)
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Lattice Data

Nonperturbatively improved
Wilson-Clover action

No dynamical Sea Quarks

Finite volume effects under
control

All quark masses
mMS(µ = 2GeV ) ∼ O(10MeV )

Nonperturbative renormalization
constants

Fixed aspect ratio Nσ
Nτ

= 3 for
T = 1.1Tc and 1.2Tc

Nσ Nτ β κ 1/a[GeV] #

T = 1.1Tc
32 96 7.192 0.13440 9.65 314
48 144 7.544 0.13383 13.21 358
64 192 7.793 0.13345 19.30 242

T = 1.2Tc
28 96 7.192 0.13440 9.65 232
42 144 7.544 0.13383 13.21 417
56 192 7.793 0.13345 19.30 273

T = 1.45Tc
16 128 6.827 0.13495 6.43 191
24 128 7.192 0.13440 9.65 340
32 128 7.457 0.13390 12.86 255
48 128 7.793 0.13340 19.30 456

Continuum extrapolation of the vector correlator
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Continuum extrapolation

Observables

Form ratio T 2

χq

Gii (τT )

G free,lat
V (τT )

with χq = −G00/T

⇒ Renormalization constant drops out

Ratio to free lattice correlator reduces cutoff effects

Continuum limit

Use natural cubic splines ⇒ Nmax
τ data points per T

Linear extrapolation in a2 due to Clover term

Error estimation via bootstrap
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Continuum extrapolation
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Continuum extrapolation
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Fitting the SPF

Fit

Ansatz ρii (ω,T ) = χqcBW
ωΓ

ω2+(Γ/2)2 + 3
2π (1 + k)ω2 tanh

(
ω

4T

)
fit parameters cBW , Γ, k

k insensitive to low ω region

Electrical conductivity σ
T = 2

3Cemχq
cBW

Γ

Fit ansatz to continuum extrapolated ratio T 2

χq

Gii (τT )

G free
V (τT )

Constrain fit further by curvature at midpoint

Numerics

Standard gaussian quadrature for Breit-Wigner part

Fit done using Levenberg-Marquardt minimization algorithm
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Correlators reconstructed from the fits
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Analysis of systematics

Modifying the ansatz

Multiply the high ω part with smoothed out Θ-function
⇒ control where the high ω behaviour sets in

5 Thermal dilepton rates
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Figure 5.13: Spectral functions obtained by fitting eq. (5.19) to data (left) and dilepton
rates (right) calculated by eq. (5.1) from the spectral functions. The thin lines
represent the spectral function obtained with systematic error estimates as laid out
in section 5.7. The free spectral function (Born) is given in eq. (5.6), the HTL results
follow [62].

ω0 ∆ω (1 + κ)/χq 2cBW/Γ Γ 2
3χq

cBW
Γ χ/d.o.f Data

– – 1.216(5) 1.353(23) 2.058(85) 0.387(7) 0.52 RS
1.215(3) 1.328(12) 2.110(34) 0.380(4) 0.65 ST

0.0

0.5

1.217(5) 1.399(20) 1.963(74) 0.401(6) 0.97 RS
0.5 1.218(5) 1.420(19) 1.923(69) 0.406(6) 1.24 RS
1.0 1.219(4) 1.497(15) 1.783(57) 0.429(5) 2.71 RS
1.0 1.219(4) 1.595(8) 1.643(16) 0.456(3) 2.81 ST

1.5

0.0 1.222(4) 1.609(12) 1.607(45) 0.461(4) 6.99 RS
0.1 1.222(4) 1.705(11) 1.506(39) 0.488(3) 4.71 RS
0.1 1.213(2) 1.675(7) 1.528(14) 0.479(3) 5.50 ST
0.25 1.222(4) 1.728(11) 1.481(38) 0.495(3) 5.37 RS
0.5 1.222(4) 1.632(12) 1.572(43) 0.467(4) 8.27 RS

1.75 0.5 1.206(4) 2.139(8) 1.247(26) 0.612(2) 2.21 RS

Table 5.5: Results for fits of eqs. (5.7) and (5.19) to data, at 1.1 Tc. Values ω0 and ∆ω

in eq. (5.19) are motivated in the discussion of systematic errors. 2
3χq

cBW
Γ relates to

the electrical conductivity as given in eq. (5.8). Columns 3 to 5 directly relate to fit
variables, see eq. (5.12) and the discussion there. Abbreviations in the column Data
denote the dataset used in the fit, where RS is the dataset with resampling error
estimates, ST the dataset with standard errors, see section 5.5.3. Correlator data
points with τT ≥ 0.1875 enter into the fit.

100

Breit-Wigner part
compensates
→ conductivity rises

At some point the fit
becomes poor
→ error estimate
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Electrical conductivity5 Thermal dilepton rates
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Figure 5.19: Electrical conductivity for temperatures 1.1 Tc, 1.2 Tc and 1.4 Tc, with sys-
tematic error estimates as laid out in section 5.6.2, with a maximal ω0 = 1.5 and
∆ω = 0.1, see also tables 5.5 and 5.6. To compare the temperature dependence, re-
sults are given in units of temperature T (left) and in units of the critical temperature
Tc (right).

correlators normalized by the quark number susceptibility as T 2 ·Gii(τT )/χq ·Gfree
V (τT ).

The ratios are smooth so they allow for a cubic spline interpolation on the coarser
lattices. The continuum extrapolation is well behaved and removes lattice cutoff effects
down to distances τT = 0.125 at 1.1 Tc and τT = 0.142 at 1.2 Tc.
Spectral functions have been extracted successfully from the continuum extrapolated

correlators at all three temperatures by using a phenomenologically motivated ansatz.
This rather simple ansatz, consisting of a Breit-Wigner peak and a continuum contri-
bution, see eq. (5.7), is found to provide a good descriptions of the data set at all three
temperatures.
A systematic error analysis was performed via a parametrized modification of the

ansatz, by truncating the continuum contributions, see eq. (5.19). It is found that an
increasing continuum cutoff can not be fully compensated by an enhanced Breit-Wigner
peak, thus the truncated ansatz yields an inferior description of the data set. This allows
to find an upper limit for the Breit-Wigner contribution.
The spectral function is linked to the dilepton rate, which thus can be calculated for

all three temperatures. A summarizing plot of the spectral functions and associated
dilepton rates is provided in fig. 5.13.
In the low frequency limit, the spectral function also gives access to the electrical

conductivity as an important transport coefficient. With the systematic error estimates
in place, lower and upper bounds for the electrical conductivity have been calculated.
Within these limits, the conductivity shows no clear temperature dependence, see

fig. 5.19. The systematic error analysis – as currently employed – implies a low limit
for the electrical conductivity at each temperature. The upper limit is influence by

108

Similar studies: also Wilson fermions, but w/o continuum limit

A.Amato et al., arXiv:1307.6763

B.B.Brandt et al., JHEP 1303 (2013) 100
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Dilepton rate

dW
dωd3p

= 5α2

54π3
1

ω2(eω/T−1)
ρV (ω,T )
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Conclusion / Outlook

Conclusion

Continuum extrapolation of correlator-ratios at three temperatures
above Tc

Ratios reconstructed from the SPF

Results for electrical conductivity and dilepton rate

Outlook

Also consider finite momenta → results for e.g. the photon rate

Use dynamical fermions

Reduce systematic errors → study temperature dependence of
transport properties
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