Mesonic spectral functions and transport properties in the quenched QCD continuum

F. Meyer O. Kaczmarek H.T.Ding et. al., Phys.Rev.D83 (2011) 034504, arXiv:1312.5609

University of Bielefeld

June 25, 2014

Lattice 2014 Columbia University, New York

Outline

- Introduction: spectral functions on the lattice
- Produce data
- Obtain the spectral function
- Results

Introduction

Experiments

- Dilepton rates in pp collisions well described by hadron cocktail model
- Enhancement in low energy region of *AuAu* collisions [PHENIX PRC81, 034911 (2010)]
 - \Rightarrow thermal modifications?

The spectral function (SPF)

QGP probes

- Goal is to compute vector channel SPF because
 - Photons and dileptons are produced in the QGP
 - 2 Leave it almost undisturbed

Experimental observables

- Dilepton rate linked to the vector SPF: $\frac{\mathrm{d}W}{\mathrm{d}\omega\mathrm{d}^3 p} \sim \frac{\rho_V(\omega,\vec{p},T)}{(\omega^2 \vec{p}^2)(e^{\omega/T} 1)}$
- Photon rate linked to the vector SPF: $\omega \frac{\mathrm{d}R_{\gamma}}{\mathrm{d}^3 p} \sim \frac{\rho_V^T(\omega = |\vec{p}|, T)}{e^{\omega/T} 1}$

Transport properties

- SPF relates to transport properties via Kubo formulae
- Here: electrical conductivity from spatial part: $\frac{\sigma}{T} = \frac{C_{em}}{6} \lim_{\omega \to 0} \frac{\rho_{ii}}{\omega}$

Lattice observables

Observables

- (Renormalized) vector current $J_H = Z_V \bar{\psi}(x) \gamma_H \psi(x)$
- Euclidean correlator $G_H(\tau, \vec{x}) = \langle J_H(\tau, \vec{x}) J_H^{\dagger}(0, \vec{0}) \rangle$
- In momentum space $G_H(\tau, \vec{p}) = \sum_{\vec{x}} G_H(\tau, \vec{x}) e^{i \vec{p} \vec{x}}$
- Relation to SPF ρ_H :

$$G_H(au,ec{
ho}) = \int\limits_0^\infty rac{\mathrm{d}\omega}{2\pi}
ho_H(\omega,ec{
ho},T) K(\omega, au,T)$$

with kernel
$$K(\omega, \tau, T) = rac{\cosh(\omega(\tau - rac{1}{2T}))}{\sinh(rac{\omega}{2T})}$$

• different parts of the vector SPF: sum over spatial (H = ii), temporal (H = 00) and full (H = V)

Determining the SPF

An ill posed problem

• Inversion problematic: $\sim O(10)$ data points $G(\tau)$, far finer resolution in ω required for $\rho(\omega)$

Two possible solutions

- Maximum Entropy method
- e Here: use phenomenologically motivated ansatz and fit to correlator data

Choosing the Ansatz

Free case is known

•
$$ho_{ii}(\omega,T) = 2\pi T^2 \omega \delta(\omega) + \frac{3}{2\pi} \omega^2 \tanh(\frac{\omega}{4T})$$

•
$$\rho_{00}(\omega, T) = 2\pi T^2 \omega \delta(\omega)$$

With interactions

- net quark number conservation: $ho_{00}
 ightarrow 2\pi \chi_q \omega \delta(\omega)$
- ρ_{ii} is modified: delta peak gets smeared out G.Aarts, J.M.Martinez Resco, JHEP 0204 (2002) 053 J.Hong, D.Teaney, Phys.Rev.C82 (2010) 044908
- Describe as Breit-Wigner peak + free part for large ω

\Rightarrow Phenomenologically inspired ansatz

$$\rho_{ii}(\omega, T) = \chi_q c_{BW} \frac{\omega\Gamma}{\omega^2 + (\Gamma/2)^2} + \frac{2}{3\pi} (1+k) \omega^2 \tanh\left(\frac{\omega}{4\pi}\right)$$

with parameters $c_{BW}, \Gamma, k \ (= \frac{\alpha_s}{\pi} \text{ at leading oder})$

Lattice Data

- Nonperturbatively improved Wilson-Clover action
- No dynamical Sea Quarks
- Finite volume effects under control
- All quark masses $m_{\overline{MS}}(\mu=2 {\it GeV}) \sim {\cal O}(10 {\it MeV})$
- Nonperturbative renormalization constants
- Fixed aspect ratio $\frac{N_{\sigma}}{N_{\tau}} = 3$ for $T = 1.1 T_c$ and $1.2 T_c$
 - Continuum extrapolation of the vector correlator

N_{σ}	$N_{ au}$	β	κ	1/a[GeV]	#
$T = 1.1T_{c}$					
32	96	7.192	0.13440	9.65	314
48	144	7.544	0.13383	13.21	358
64	192	7.793	0.13345	19.30	242
$T = 1.2T_c$					
28	96	7.192	0.13440	9.65	232
42	144	7.544	0.13383	13.21	417
56	192	7.793	0.13345	19.30	273
$T = 1.45T_{c}$					
16	128	6.827	0.13495	6.43	191
24	128	7.192	0.13440	9.65	340
32	128	7.457	0.13390	12.86	255
48	128	7.793	0.13340	19.30	456

Continuum extrapolation

Observables

- Form ratio $\frac{T^2}{\chi_q} \frac{G_{ii}(\tau T)}{G_V^{free,lat}(\tau T)}$ with $\chi_q = -G_{00}/T$
 - \Rightarrow Renormalization constant drops out
- Ratio to free lattice correlator reduces cutoff effects

Continuum limit

- Use natural cubic splines \Rightarrow $N_{ au}^{max}$ data points per T
- Linear extrapolation in a^2 due to Clover term
- Error estimation via bootstrap

Continuum extrapolation

• Continuum extrapolation for each τT in $1/N_{\tau}^2$

• Well behaved extrapolation at all τT

Continuum extrapolation

Fitting the SPF

Fit

- Ansatz $\rho_{ii}(\omega, T) = \chi_q c_{BW} \frac{\omega\Gamma}{\omega^2 + (\Gamma/2)^2} + \frac{3}{2\pi} (1+k) \omega^2 \tanh\left(\frac{\omega}{4T}\right)$
- fit parameters c_{BW} , Γ , k
- k insensitive to low ω region
- Electrical conductivity $\frac{\sigma}{T} = \frac{2}{3} C_{em} \chi_q \frac{c_{BW}}{\Gamma}$
- Fit ansatz to continuum extrapolated ratio $\frac{T^2}{\chi_q} \frac{G_{ii}(\tau T)}{G_{free}^{free}(\tau T)}$
- Constrain fit further by curvature at midpoint

Numerics

- Standard gaussian quadrature for Breit-Wigner part
- Fit done using Levenberg-Marquardt minimization algorithm

Correlators reconstructed from the fits

Analysis of systematics

Modifying the ansatz

• Multiply the high ω part with smoothed out Θ -function \Rightarrow control where the high ω behaviour sets in

Electrical conductivity

Similar studies: also Wilson fermions, but w/o continuum limit

- A.Amato et al., arXiv:1307.6763
- B.B.Brandt et al., JHEP 1303 (2013) 100

Dilepton rate

•
$$\frac{\mathrm{d}W}{\mathrm{d}\omega\mathrm{d}^{3}\rho} = \frac{5\alpha^{2}}{54\pi^{3}} \frac{1}{\omega^{2}(\mathrm{e}^{\omega/T}-1)} \rho_{V}(\omega,T)$$

${\sf Conclusion}\ /\ {\sf Outlook}$

Conclusion

- Continuum extrapolation of correlator-ratios at three temperatures above \mathcal{T}_c
- Ratios reconstructed from the SPF
- Results for electrical conductivity and dilepton rate

Outlook

- \bullet Also consider finite momenta \rightarrow results for e.g. the photon rate
- Use dynamical fermions
- $\bullet~$ Reduce systematic errors \rightarrow study temperature dependence of transport properties