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1 Abstract

This poster reviews our recent calculation of B → K∗, Bs → φ, and Bs → K∗ form

factors using nonrelativistic heavy quarks and improved staggered quarks on MILC lat-

tices [1]. These unquenched calculations, performed in the low-recoil kinematic regime,

provide a significant improvement over the use of extrapolated light cone sum rule re-

sults. We use the form factors along with Standard Model determinations of Wilson

coefficients to give theoretical results for several observables [2]. Noting that the exper-

imental measurements for the B0 → K∗0µ+µ− and Bs → φµ+µ− branching fractions

are smaller at low-recoil than the Standard Model predictions, we perform a fit of the

relevant Wilson coefficients using experimental and lattice results. The favored values

hint at deviations from the Standard Model that are consistent with fits done by other

authors using complementary theoretical and experimental inputs.

2 Theory

At energies well below the W mass, b → s decays are described by the effective

Hamiltonian

Hb→s
eff = −4GF√

2
V ∗
tsVtb

∑

i

CiOi .

The operators which dominate short-distance effects in

the Standard Model are obtained as a consequence of

box and penguin diagrams

O7 =
mbe

16π2
s̄σµνPRb Fµν

O9 =
e2

16π2
s̄γµPLb ℓ̄γµℓ

O10 =
e2

16π2
s̄γµPLb ℓ̄γµγ

5ℓ

where PL/R = 1
2(1∓ γ5) and σµν = i

2[γ
µ, γν].
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In the narrow-width approximation the B → K∗ℓ+ℓ− amplitude can be written as a

sum of local (Aµ & Bµ) and nonlocal (Tµ) terms.

M =
αGFVtbV

∗
ts

π
√
2

[

(Aµ + Tµ)ūℓγµvℓ + Bµūℓγµγ5vℓ
]

with

Aµ = −2mb

q2
qνC7〈K∗|s̄ iσµνPR b|B〉 + C9〈K∗|s̄γµPLb |B〉

Bµ = C10〈K∗|s̄γµPLb |B〉

Tµ = −16iπ2

q2

∑

i=1,··· ,6,8
Ci

∫

d4x eiq·x〈K∗|TOi(0)jµ(x)|B〉

Long-distance effects arise from multiple sources, one of

the most important being the production of charmonium

resonances via current-current operators

O1 = s̄αγµPLc
β c̄βγµPLb

α

O2 = s̄αγµPLc
α c̄βγµPLb

β

where α and β are color indices.
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At high q2 an OPE in 1/q2 has been developed to approximate the matrix elements of

the nonlocal operator by a series of matrix elements of local operators [3]

Tµ =− T7(q
2)
2mb

q2
qν〈K̄∗| s̄ iσµνPRb |B̄〉 + T9(q

2)〈K̄∗|s̄γµPLb|B̄〉

+ O(αsΛQCD/mb, Λ
2
QCD/m

2
b, m

4
c/q

4)

The functions T7(q
2) and T9(q

2) are computed perturbatively.

3 Form factors

The B → V hadronic matrix elements of b→ q currents are parameterized by a set of
7 independent form factors. The traditional basis is definied through

〈V (k, ε)|q̄γµb|B(p)〉 =
2iV (q2)

mB +mV
ǫµνρσε∗νkρpσ

〈V (k, ε)|q̄γµγ5b|B(p)〉 = 2mVA0(q
2)
ε∗ · q
q2

qµ + (mB +mV )A1(q
2)

(

ε∗µ − ε∗ · q
q2

qµ
)

− A2(q
2)

ε∗ · q
mB +mV

[

(p + k)µ −
m2
B −m2

V

q2
qµ
]

qν〈V (k, ε)|q̄σµνb|B(p)〉 = 2T1(q
2)ǫµρτσε

∗ρpτkσ

qν〈V (k, ε)|q̄σµνγ5b|B(p)〉 = iT2(q
2)[(ε∗ · q)(p + k)µ − ε∗µ(m

2
B −m2

V )]

+ iT3(q
2)(ε∗ · q)

[

q2

m2
B −m2

V

(p + k)µ − qµ

]

We find it more convenient to eliminate A2 and T3 in favor of 2 form factors from the
helicity basis, A12 and T23.

A12(q
2) =

(mB +mV )
2(m2

B −m2
V − q2)A1(q

2)− λA2(q
2)

16mBm
2
V (mB +mV )

T23(q
2) =

mB +mV

8mBm
2
V

[

(

m2
B + 3m2

V − q2
)

T2(q
2)− λT3(q

2)

m2
B −m2

V

]

4 Current matching

Matching between lattice and MS schemes is done perturbatively at O(αs,ΛQCD/mb).

Writing JA0 = (ψ̄qΓ
AΨb)|latt and JA1 = − 1

2mb
(ψ̄qΓ

Aγ · ∇Ψb)|latt, with the abbreviation

ΓA ∈ [γµ, γµγ5, σµν, σµνγ5], the matched current is

J A = ZΓAJA0 + JA1 − αsζ
(A)
10 J

A
0

Truncation of O(α2
s) is the dominant systematic uncertainty, estimated to be 4%.

5 Details of the lattice calculation

MILC lattices with 2+1 flavors of AsqTad improved staggered quarks. Meson propaga-

tors computed using the same AsqTad action for the light quarks and an O(v4) NRQCD

action for the b quarks. Parameters of the calculation:

Ensemble #conf N 3
x ×Nt sea mℓ/ms #src valence mℓ/ms a−1(GeV)

c007 2109 203 × 64 0.007/0.05 16872 0.007/0.04 1.660(12)

c02 2052 203 × 64 0.02/0.05 16416 0.02/0.04 1.665(12)

f0062 1910 283 × 96 0.0062/0.031 15280 0.0062/0.031 2.330(17)

Results for meson masses:

Ensemble mB (GeV) mBs
(GeV) mπ (MeV) mK (MeV) mηs (MeV) mK∗ (MeV) mφ (MeV)

c007 5.5439(32) 5.6233(7) 313.4(1) 563.1(1) 731.9(1) 1045(6) 1142(3)

c02 5.5903(44) 5.6344(15) 519.2(1) 633.4(1) 730.6(1) 1106(4) 1162(3)

f0062 5.5785(22) 5.6629(13) 344.3(1) 589.3(2) 762.0(1) 1035(4) 1134(2)

physical 5.279 5.366 140 495 686 892 1020

6 Form factor shape

We use a simplified series expansion to fit the numerical form factor data.

Using t = q2 and t± = (mB(s)
±mV )

2, one constructs

a dimensionless variable which is small,

z(t, t0) =

√
t+ − t−√

t+ − t0√
t+ − t +

√
t+ − t0

.

We fit the form factors F = V,A0, A1, A12, T1, T2, T23 to the following form:

F (t) =
1

1− t/m2
pole

[a0(1 + c01∆x + c01s∆xs) + a1z(t, t0)]

with ∆x = (m2
π −m2

π,phys)/(4πfπ)
2 and ∆xs = (m2

ηs
−m2

ηs,phys
)/(4πfπ)

2.

7 B → K∗ form factor results

Black points: Lattice results by ensemble. Solid curve: extrapolation to the physical quark mass limit

with statistical (pale) and total (dark) error bands. Hatched band: LCSR results of [4] with a 15%

uncertainty [5]. Gray star: LCSR [6]. Gray triangle: quenched lattice QCD [7].

8 Bs → φ form factor results

Points and curves as in Box 7.

9 Observables
Decay distribution for B̄0 → K̄∗0(→ K−π+)ℓ+ℓ− :

d4Γ

dq2 d cos θℓ d cos θK∗ dφ
=

9

32π

[

Is1 sin
2θK∗ + Ic1 cos

2θK∗

+(Is2 sin
2θK∗ + Ic2 cos

2θK∗) cos 2θℓ

+I3 sin
2 θK∗ sin2 θℓ cos 2φ + I4 sin 2θK∗ sin 2θℓ cosφ

+I5 sin 2θK∗ sin θℓ cosφ + (Is6 sin
2θK∗+Ic6 cos

2θK∗) cos θℓ

+I7 sin 2θK∗ sin θℓ sinφ + I8 sin 2θK∗ sin 2θℓ sinφ

+I9 sin
2θK∗ sin2θℓ sin 2φ

]

,

Similar for CP-conjugated mode, with I
(a)
1,2,3,4,7 7→ Ī

(a)
1,2,3,4,7, I

(a)
5,6,8,9 7→ −Ī(a)5,6,8,9.

Differential decay rate: dΓ/dq2 = 3
4(2I

s
1 + Ic1) − 1

4(2I
s
2 + Ic2). CP averages and CP

aysymmetries:

S
(a)
i =

I
(a)
i + Ī

(a)
i

d(Γ + Γ̄)/dq2
A

(a)
i =

I
(a)
i − Ī

(a)
i

d(Γ + Γ̄)/dq2
〈P ′

4,5,6,8〉 =
〈S4,5,7,8〉

2
√

−〈Sc2〉〈Ss2〉

where 〈·〉 indicates binning over a range of q2.

10 Theory vs. experimental results

Standard Model (SM) predictions using these lattice QCD form factors are compared

to experimental measurements. Note that the differential decay rate dΓ/dq2 is lower

for both B0 → K∗0µ+µ− and Bs → φµ+µ− compared to the SM. (Leftmost plots in

first and third rows, respectively.)

In Box 11 we show that a better fit to the data is achieved by allowing the Wilson

coefficients C9 and C
′
9 to vary from their SM values. The red dashed curve above gives

the theory predictions for our preferred values.

11 Beyond the Standard Model

Fit to data, allowing Wilson coefficients to differ from their SM values

CNP
0 is the deviation from the SM

C9. C
′
9 multiplies the matrix ele-

ment of the chirality-flipped oper-

ator

O′
9 =

e2

16π2
s̄γµPRb ℓ̄γµℓ

No deviation from SM was seen

for O7(
′) or O10(

′).

12 Comparison to other analyses

68.3! C.L

95.5! C.L

99.7! C.L

Includes Low Recoil data

Only !1,6" bins
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Figures from [8] (left) and [9] (right). A Bayesian analysis of b → s data treating

theoretical uncertianties as nuisance parameters finds values for Wilson coefficients

which are consistent with the Standard Model and with our best fit values [10].
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