

Test of the Standard Model description of rare B decays using lattice QCD form factors

R R Horgan，${ }^{a}$ Z Liu，${ }^{b}$ S Meinel，${ }^{c}$ M Wingate ${ }^{a *}$
${ }^{a}$ DAMTP，University of Cambridge，Cambridge，UK ${ }^{{ }^{\text {IHEP }}}$ ，Chinese Academy of Sciences，Beijing，China

1 Abstract

This poster reviews our recent calculation of $B \rightarrow K^{*}, B_{s} \rightarrow \phi$ ，and $B_{s} \rightarrow K^{*}$ form factors using nonrelativistic heavy quarks and improved staggered quarks on MILC lat－ tices［1］．These unquenched calculations，performed in the low－recoil kinematic regime ． Wlts．We use the form factors along with Standard Model determinations of Wilso efficients to give theoretical results for several observables［2］．Noting that the exper mental measurements for the $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$and $B_{s} \rightarrow \phi \mu^{+} \mu^{-}$branching fraction are smaller at low－recoil than the Standard Model predictions，we perform a fit of th levant Wilson coefficients using experimental and lattice results．The favored values int at deviations from the Standard Model that are consistent with fits done by oth authors using complementary theoretical and experimental inputs．

2 Theory

At energies well below the W mass，$b \rightarrow s$ decays are described by the effective Hamiltonian

The operators which dominate short－distance effects i
the Standard Model are obtained as a consequence of
box and penguin diagrams
$O_{7}=\frac{m_{b} e}{16 \pi^{2}} \bar{\sigma}^{\mu \nu} P_{R} b F_{\mu \nu}$
$O_{9}=\frac{e^{2}}{16 \pi^{2}} \bar{s}^{\mu}{ }^{\mu} P_{L} b \bar{\ell} \gamma_{\mu} \ell$
$O_{10}=\frac{e^{2}}{16 \pi^{2}} \overline{\bar{q}}^{\mu} P_{L} b \bar{\ell} \gamma_{\mu} \gamma^{5} \ell$
where $P_{L / R}=\frac{1}{2}\left(1 \mp \gamma^{5}\right)$ and $\sigma^{\mu \nu}=\frac{i}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right]$
In the narrow－width approximation the $B \rightarrow K^{*} \ell^{+} \ell^{-}$amplitude can be written as a sum of local $\left(\mathcal{A}_{\mu} \& \mathcal{B}_{\mu}\right)$ and nonlocal $\left(\mathcal{T}_{\mu}\right)$ terms．
with
$\mathcal{A}_{\mu}=-\frac{2 m_{b}}{q^{2}} q^{\nu} C_{7}\left\langle K^{*}\right| \bar{s} i \sigma_{\mu \nu} P_{R} b|B\rangle+C_{9}\left\langle K^{*}\right| \bar{s} \gamma_{\mu} P_{L} b|B\rangle$
$\mathcal{B}_{\mu}=C_{10}\left\langle K^{*}\right| \bar{\delta} \gamma_{\mu} P_{L} b|B\rangle$
$\mathcal{T}_{\mu}=-\frac{16 i \pi^{2}}{q^{2}} \sum_{i=1, \ldots, 6,8} C_{i} \int d^{4} x e^{i q \cdot x}\left\langle K^{*}\right| \boldsymbol{T} O_{i}(0) j_{\mu}(x)|B\rangle$
Long－distance effects arise from multiple sources，one of
the most important being the production of charmonium
resonances via current－current operators

$$
\begin{aligned}
& O_{1}=\bar{s}^{\alpha} \gamma^{\mu} P_{L} c^{\beta} \bar{c}^{\beta} \gamma_{\mu} P_{L} b^{\alpha} \\
& O_{0}=\bar{s}^{\alpha} \gamma^{\mu} P_{I} c^{\alpha} \bar{c}^{\beta}{ }^{\gamma} \gamma_{H} P_{I} b^{\beta}
\end{aligned}
$$

thigh $q^{2} \beta$ are $1 / a^{2}$ ices．
in q an OPE in $1 / q^{2}$ has been developed to approximate the matix the nonlocal operator by a series of matrix elements of local operators［3］
$\mathcal{T}_{\mu}=-T_{7}\left(q^{2}\right) \frac{2 m_{b}}{q^{2}} q^{\nu}\left\langle\bar{K}^{*}\right| \bar{s} i \sigma_{\mu \nu} P_{R} b|\bar{B}\rangle+T_{9}\left(q^{2}\right)\left\langle\bar{K}^{*}\right| \bar{s} \gamma_{\mu} P_{L} b|\bar{B}\rangle$
$+\mathcal{O}\left(\alpha_{s} \Lambda_{\mathrm{QCD}} / m_{b}, \Lambda_{\mathrm{ecD}}^{2} / m_{b}^{2}, m_{c}^{4} / q^{4}\right)$
The functions $T_{7}\left(q^{2}\right)$ and $T_{9}\left(q^{2}\right)$ are computed perturbatively．

3 Form factors

The $B \rightarrow V$ hadronic matrix elements of $b \rightarrow q$ currents are parameterized by a set of 7 independent form factors．The traditional basis is definied through

$\left\langle V\left(k, \varepsilon\left|\bar{q} q^{\mu} V^{5}\right| B(p)\right\rangle\right)=2 m_{V} A_{0}\left(q^{2}\right) \frac{\varepsilon^{*} \cdot q}{q^{2} q^{\mu}} q^{\mu}+\left(m_{B}+m_{V}\right) A_{1}\left(q^{2}\right)\left(\varepsilon^{* \mu}-\frac{\varepsilon^{*}, q^{\mu}}{q^{2}} q^{\mu}\right)$ $A_{2}\left(q^{2}\right) \frac{\varepsilon^{*} \cdot q}{m_{B}+m_{V}}\left[(p+k)^{\mu}-\frac{m_{B}^{2}-m_{V}^{2}}{q^{2}} q^{4}\right]$

$\left.q^{\nu}\left\langle\left(V(k, \varepsilon) \mid q_{\mu} \sigma_{\mu \nu}\right)^{\sigma}\right||(p)\rangle=i T_{2}\left(q^{2}\right)\left(\varepsilon^{*} \cdot q\right)(p+k) \mu-\varepsilon_{\mu}^{*}\left(m_{B}^{2}-m_{V}^{2}\right)\right]$

We find it more convenient to eliminate A_{2} and T_{3} in favor of 2 form factors from the helicity basis，A_{12} and T_{23}
$A_{12}\left(q^{2}\right)=\frac{\left(m_{B}+m_{V}\right)^{2}\left(m_{B}^{2}-m_{V}^{2}-q^{2}\right) A_{1}\left(q^{2}\right)-\lambda A_{2}\left(q^{2}\right)}{16 m_{B} m^{2}\left(m_{B}+m_{V}\right)}$

5 Details of the lattice calculation

MILC lattices with $2+1$ flavors of AsqTad improved staggered quarks．Meson propaga－ tors computed using the same AsqTad action for the light quarks and an $O\left(v^{4}\right)$ NRQCD action for the b quarks．Parameters of the calculation

Ensemble \＃conf $N_{x}^{3} \times N_{t}$ sea $m_{\ell} / m_{s} \quad$ \＃src valence $m_{\ell} / m_{s} a^{-1}(\mathrm{GeV})$ \begin{tabular}{lllllll}
c007 \& 2109 \& $20^{3} \times 64$ \& $0.007 / 0.05$ \& 16872 \& $0.007 / 0.04$ \& $1.660(12)$

\hline

$\mathrm{C02}$ \& 2052 \& $20^{3} \times 64$ \& $0.02 / 0.05$ \& 16416 \& $0.02 / 0.04$ \& $1.665(12)$

f0062 \& 1910 \& $28^{3} \times 96$ \& $0.0062 / 0.031$ \& 15280 \& $0.0062 / 0.031$ \& $2.330(17)$

\hline
\end{tabular} $\begin{array}{lllllll}\text { f0062 } & 1910 & 28^{3} \times 96 & 0.0062 / 0.031 & 15280 & 0.0062 / 0.031 & 2.330(17)\end{array}$

Results for meson masses：

Ense	$m_{B}(\mathrm{GVV})$	$m_{B_{s}}(\mathrm{GeV})$	$m_{\pi}(\mathrm{MeV})$	$m_{K}(\mathrm{MeV})$	$m_{n_{3}}(\mathrm{MeV})$	$m_{K^{*}}(\mathrm{MeV})$	
c007	5．5439（32）	5．6233（7）	313.44 （1）	563．11）	731．9（1）	1045（6）	11
c02	5．5903（44）	$5.6344(15)$	519．2（1）	$633.4(1)$	$730.6(1)$	1106（4）	$1162(3)$
f0062	5．5785（22）	5．6629（13）	344．3（1）	589．3（2）	$762.0(1)$	1035（4）	134（2）
	5279	536	140	495			

6 Form factor shape

plied series expansion to fit Using $t=q^{2}$ and $t_{ \pm}=\left(m_{B_{(s)}} \pm m_{V}\right)^{2}$ ，one constructs a dimensionless variable which is small，
$z\left(t, t_{0}\right)=\frac{\sqrt{t_{+}-t}-\sqrt{t_{+}-t_{0}}}{\sqrt{t_{--t}}+\sqrt{t_{--t_{0}}}}$

We fit the form factors $F=V, A_{0}, A_{1}, A_{12}, T_{1}, T_{2}, T_{23}$ to the following form
with $\Delta x=\left(m_{\pi}^{2}-m_{\pi, \text { phys }}^{2}\right) /\left(4 \pi f_{\pi}\right)^{2}$ and $\Delta x_{s}=\left(m_{\eta_{s}}^{2}-m_{\eta_{s}, \text { phys }}^{2}\right) /\left(4 \pi f_{\pi}\right)^{2}$
$7 B \rightarrow K^{*}$ form factor results

Black points：Lattice results by ensemble．Solid curve：extrapolation to the physical quark mass limit with statistical（pale）and total（dark）error bands．Hatched band：LCSR results of $[4]$ with a 15% uncertainty［5］．Gray star：LCSR［6］．Gray triangle：quenched lattice QCD［7］．
$8 \quad B_{s} \rightarrow \phi$ form factor results

\square

4 Current matching

Matching between lattice and $\overline{\mathrm{MS}}$ schemes is done perturbatively at $\mathcal{O}\left(\alpha_{s}, \Lambda_{\mathrm{QCD}} / m_{b}\right)$ ， Writing $J^{A}=\left(\bar{\psi}, \Gamma^{A} \Psi^{4}\right) \mid$ and $J^{A}=-1\left(\bar{\psi}, \Gamma^{A} \gamma \cdot \nabla \Psi\right) \mid$ with the abbreviatio $\Gamma^{A} \in\left[\gamma^{\mu}, \gamma^{\mu} \gamma^{5}, \sigma^{\mu \nu}, \sigma^{\mu \nu} \gamma^{5}\right]$ ，the matched current is

