Topologically restricted measurements in lattice sigma-models

Irais Bautista¹ Wolfgang Bietenholz¹ Christopher Czaban² Arthur Dromard² Urs Gerber¹ Christoph Hofmann³ Héctor Mejía-Díaz¹ Marc Wagner²

> ¹Universidad Nacional Autónoma de México Instituto de Ciencias Nucleares

²Department of Theoretical Physics Goethe Universitaet, Frankfurt am Main

³Universidad de Colima, México

Outline

2 Correlation Function of the Topological Charge Density

Topological Summation

Topologically restricted measurements in lattice sigma-models

Correlation Function of the Topological Charge Density

Topologically restricted measurements in lattice sigma-models

3 → 4 3

(Simplest) example for topological sectors:

• 1d O(2) model (quantum mechanical scalar particle on a circle).

Functional integral formulation in Euclidean space:

$$Z = \int D\varphi \exp(-S[\varphi]) , \ \langle \mathcal{O}
angle = \frac{1}{Z} \int D\varphi \ \mathcal{O}[\varphi] \exp(-S[\varphi])$$

 $\int D\varphi : \text{sum over closed paths } \varphi(t) \in S^1 , \ \varphi(0) = \varphi(T).$

• Paths occur in disjoint subsets, characterised by the winding number = topological charge $Q = \frac{1}{2\pi} \int_0^T \dot{\varphi} dt \in \mathbb{Z}$.

Continuously deformed paths remain in the same subset = topological sector.

Topological sectors in quantum field theory:

Space with periodic boundary conditions (torus).

• O(N) models in d = N - 1 dimensions spin $\vec{S}(x) \in \mathbb{R}^N$, $|\vec{S}(x)| = 1$.

In this talk: 1d O(2) and 2d O(3).

- 2d CP(N-1) models $\vec{C}(x) \in \mathbb{C}^N, |\vec{C}(x)| = 1.$
- Gauge theories:

• Under continuous deformations the configurations remain in a fixed topological sector.

Lattice regularization:

- All the configurations can be continuously deformed into one another. A priori: No topological sectors.
- Divide lattice field configurations into sectors. In the continuum limit \rightarrow Topological sectors.

Definition of topological charge on the lattice somewhat arbitrary. For sigma-models: Geometric definition seems suitable.

- \rightarrow Integer topological charges on periodic lattices.
- Finer lattice spacing:
 - \rightarrow Formulation becomes more continuum-like.
 - \rightarrow Changing a topological sector is getting harder.
 - \rightarrow Continuous deformations have to pass through a statistically suppressed domain (of large Euclidean action).

Monte Carlo simulation of QCD:

• With chiral quarks:

JLQCD collaboration: Hybrid Monte Carlo trajectory permanently confined to Q=0 (Fukaya et al., '07) .

Non-chiral quarks (e.g. Wilson fermions):

Usually with a lattice spacing *a* in the range 0.05 fm $\lesssim a \lesssim 0.15$ fm. Problem less severe so far, but will show up on even finer lattices.

- Local updates rarely change the topological sector, in particular Hybrid Monte Carlo algorithm for QCD.
- Monte Carlo history tends to be trapped for a very long time in one topological sector

 \rightarrow Extremely long topological autocorrelation time.

• Here we study the 1d O(2) and 2d O(3) models as toy models.

Non-linear σ models 1d O(2) and 2d O(3):

• 1d *O*(2) model:

Angles $\varphi_x \in (-\pi, \pi]$ on sites x of a periodic lattice of size L. Standard action:

 $S_{Standard}[\varphi] = \beta \sum_{x=1}^{L} (1 - \cos(\varphi_{x+1} - \varphi_x)),$ Manton action:

 $S_{Manton}[\varphi] = \frac{\beta}{2} \sum_{x=1}^{L} \left((\varphi_{x+1} - \varphi_x) \mod 2\pi \right)^2,$ Constraint action:

$$S_{Constraint}[\varphi] = \begin{cases} 0 & |\varphi_{x+1} - \varphi_x| < \delta, \ \forall x \\ \infty & \text{ortherwise} \end{cases}$$

with constraint angle δ .

• 2d O(3) model:

Unit vectors $\vec{S}_x \in S^2$ on a periodic lattice of size $V = L \times L$. Standard action:

$$\begin{aligned} S_{Standard}[\vec{S}] &= \beta \sum_{x,\mu} (1 - \vec{S}_x \cdot \vec{S}_{x+\hat{\mu}}), \\ \text{Constraint action:} \end{aligned}$$

If any of the relative angles of neighboring vectors is larger than δ , $S_{Constraint}[\vec{S}] = \infty$, otherwise $S_{Constraint}[\vec{S}] = 0$.

Topological charge in the 1d O(2) model:

Quantum mechanical scalar particle on a circle with periodic Euclidean time.

Topological charge density q_x of the geometrical topological charge Q

$$q_x = rac{\Delta arphi_x}{2\pi}, \ \Delta arphi_x = (arphi_{x+1} - arphi_x) \, ext{mod} \, 2\pi \in (-\pi,\pi], \ \ Q = \sum_{x=1}^L q_x \in \mathbb{Z}.$$

Periodic boundary conditions assure an integer topological charge.

Topological charge in the 2d O(3) **model:** Unit vectors $\vec{S}_x \in S^2$ on sites x of a triangulated $L \times L$ lattice.

Topological charge density: $q_{xyz} = A_{xyz}/4\pi$.

Geometrical topological charge: $Q = \sum_{t_{xyz}} q_{xyz} \in \mathbb{Z}$.

Sar

2 Correlation Function of the Topological Charge Density

Topologically restricted measurements in lattice sigma-models

Method to determine the topological susceptibility:

• How can the topological susceptibility χ_t be determined ?

$$\mathsf{if}\;\langle {\mathcal Q}
angle = \mathsf{0},\; \chi_t = rac{\langle {\mathcal Q}^2
angle}{V}.$$

Measurement of the top. charge density *q* in one top. sector is sufficient! (Aoki/Fukaya/Hashimoto/Onogi '07)

$$\lim_{|x|\gg 1} \langle q_0 q_{|x|} \rangle_{|Q|} \approx -\frac{\chi_t}{V} + \frac{Q^2}{V^2}.$$

• Assumptions:

Q Gauss distributed large $\langle Q^2 \rangle = V \chi_t$ small $\frac{|Q|}{\langle Q^2 \rangle} \rightarrow$ work at small |Q|

• All Monte Carlo results presented here obtained using the very efficient Wolff cluster algorithm (Wolff '89).

Correlation function of the topological charge density:

1d O(2) model (at $L = 100, \beta = 2$):

Standard action with theoretical value $\langle Q^2 \rangle = 1.94$. Manton action with theoretical value $\langle Q^2 \rangle = 1.27$.

The numerical results are consistent with the theoretical values of χ_t .

Topologically restricted measurements in lattice sigma-models

Correlation function of the topological charge density:

2d O(3) model (at $\beta = 1$):

Left: $V = 12 \times 12$, $\langle Q^2 \rangle = 2.46$. Right: $V = 16 \times 16$, $\langle Q^2 \rangle = 4.39$.

The numerical results are consistent with the directly measured values of χ_t . The correlation length is small (≈ 1.3) \rightarrow increasing β and $V \Rightarrow plateau \rightarrow 0$.

Outline

Correlation Function of the Topological Charge Density

Topological Summation

Topologically restricted measurements in lattice sigma-models

3 → 4 3

Topological summation of observables:

Calculation of an observable $\langle \mathcal{O} \rangle$ if only measurements $\langle \mathcal{O} \rangle_{|Q|}$ at fixed topological sectors |Q| are available.

Approximation formula for pion mass in QCD: (Brower/Chandrasekharan/Negele/Wiese '03) Generalization:

$$\langle \mathcal{O} \rangle_{|\mathcal{Q}|} pprox \langle \mathcal{O}
angle + rac{c}{2V\chi_t} igg(1 - rac{Q^2}{V\chi_t}igg), \ c = ext{constant.}$$

1/V expansion; next order: (Dromard/Wagner '14)

Assumptions as in previous method:

 $\begin{array}{l} Q \text{ Gauss distributed} \\ \text{large } \langle Q^2 \rangle = V \chi_t \\ \text{small } \frac{|Q|}{\langle Q^2 \rangle} \rightarrow \text{work at small } |Q| \end{array}$

Measure $\langle \mathcal{O} \rangle_{|Q|}$ for several values of |Q| and V and perform a fit $\rightarrow \langle \mathcal{O} \rangle$, χ_t and c.

Topological summation of observables:

Correlation length in the 1d O(2) model (at $\beta = 4$):

	Standard action			Manton action		
Fitting range for L	250 - 400	300 - 400	Theory	250 - 400	300 - 400	theory
ξ	6.77(5)	6.79(2)	6.815	7.95(5)	7.88(6)	8.000

Topologically restricted measurements in lattice sigma-models

590

Topological summation of observables:

Action density in the 2d O(3) model (at $\beta = 1$ using the standard action):

fitting range for L	16 – 24	16 - 28	16 - 32	directly measured in all sectors at $L = 32$
$\langle \operatorname{action} \rangle / V$	1.24038(12)	1.24027(8)	1.24015(5)	1.24008(5)
$\chi_{ m t}$	0.0173(6)	0.0169(5)	0.0164(5)	0.01721(4)

Topologically restricted measurements in lattice sigma-models

Topological summation of observables:

Magnetic susceptibility in the 2d O(3) model (at $\delta = 0.55\pi$ using the constraint action):

Magnetic susceptibility in the 2d O(3) model at $\delta = 0.55\pi$

			directly measured
fitting range for L	48 - 64	48 - 96	in all sectors at $L = 96$
χm	36.56(4)	36.58(3)	36.616(9)
$\chi_{ m t}$	0.0026(2)	0.0026(2)	0.002794(2)

Outline

2 Correlation Function of the Topological Charge Density

Topological Summation

Topologically restricted measurements in lattice sigma-models

∃ → < ∃</p>

Summary:

- For local update algorithms, Monte Carlo simulations can get confined to one topological sector.
- How can we extract information from measurements $\langle {\cal O} \rangle_{|{\cal Q}|}$ in fixed topological sectors ?
- For very large volume → ⟨O⟩_{|Q|} = ⟨O⟩ (the same for all Q).
 In general for example for QCD simulations not accessible.
- For the 1d O(2) and 2d O(3) models:
 Determination of χ_t from ⟨q₀q_{|×|}⟩_{|Q|} works very well if V is not too large.
- The topological summation works well for observables, less reliable for χ_t .
- We used the conditions: $\langle Q^2
 angle \gtrsim 1.5$, $|Q| \lesssim 2$.
- Application to QCD conceivable, to be explored.
- Next talk by Arthur Dromard: 4d SU(2) Yang-Mills theory.