The effective Polyakov loop theory for finite temperature Yang-Mills theory and QCD

Georg Bergner ITP GU Frankfurt

O. Philipsen, J. Langelage, M. Neuman

Lattice: June 23, 2014

1 Effective Polyakov loop theory for QCD thermodynamics

- 2 Results at finite density from the effective theory
- 3 Low temperature heavy-dense regime
- 4 Numerical determination of effective couplings

5 Conclusions

Effective Polyakov loop theory for QCD thermodynamics

heavy-dense

Intro

$$\exp[-S_{\text{eff}}] \equiv \int [dU_k] \exp[-S_g(\beta)] \prod_{f=1}^{N_f} \det\left[Q^f(\kappa)\right] \\ -S_g = \frac{\beta}{2N_c} \sum_p \left[\operatorname{tr} U_p + \operatorname{tr} U_p^{\dagger}\right]$$

• integration of spatial links U_k ; three dimensional theory $U_{\mu}(x,t) \rightarrow U_0(x) \rightarrow$ Polyakov loops L(x)

$$Z = \int [dL] e^{-S_{\rm eff}[L]}$$

⇒ simulations of effective theory allow to circumvent/reduce the sign problem at finite chemical potential

The improved strong coupling approach

 $S_{
m eff} = \lambda_1 S_{
m nearest \ neighbors} + \lambda_2 S_{
m next \ to \ nearest \ neighbors} + \dots$

ordering in expansion parameter u = β/18 + ... < 1
simplest, most relevant contribution:

$$e^{-\mathcal{S}_{ ext{eff}}} pprox \prod_{< i,j > ext{ nearest n.}} \left(1 + 2\lambda_1 \Re(\mathcal{L}_i \mathcal{L}_j^\dagger)
ight)$$

• λ_1 : resummed high orders in *u*

Hopping parameter expansion

- Wilson-Dirac operator: $Q = 1 \kappa H[U]$
- H = T + S with temporal T and spatial S hopping
- static contribution with resummation of windings

$$\det(1 - \kappa T) = \prod_{n} (1 + cL_{n} + c^{2}L_{n}^{\dagger} + c^{3})^{2}(1 + \bar{c}L_{n}^{\dagger} + \bar{c}^{2}L_{n} + \bar{c}^{3})^{2}$$

• chemical potential μ in fugacity factor

$$c = (2\kappa e^{a\mu})^{N_{\tau}} = \exp(rac{\mu - m_{stat}}{T}); \quad ar{c} = (2\kappa e^{-a\mu})^{N_{\tau}}$$

Hopping parameter expansion: kinetic part

$$\det Q = \det(1 - \kappa T) \det(1 - (1 - \kappa T)^{-1}S)$$

- kinetic term det $(1 (1 \kappa T)^{-1}S)$: expansion in κ
- gluonic modifications by plaquette contributions (u)
- \Rightarrow interactions up to $\kappa^n + u^m$, m + n = 4 included
- $\Rightarrow \kappa^n$ contributions can be automatized for higher *n*

"Solution" of the sign problem: Numerical and analytic investigations of the effective theory

- effective theory inherits only mild version of sign problem
- solution 1: standard MC simulations and reweighting
- solution 2: complex Langevin algorithm
- correctness criteria checked, consistent results
- solution 3: perturbative expansion in effective couplings

Low temperature limit in the heavy dense regime

- low temperature: $N_{ au}$ large; heavy: $\kappa \ll 1$; dense: $c \approx 1$; $ar{c} \approx 0$
- \Rightarrow dominated by short range quark line interactions

heavy-dense

• physics of the nuclear liquid-gas transition

Features:

- n_B: silver blaze and saturation by Pauli exclusion principle
- nuclear binding energy $\epsilon = \frac{e n_B m_B}{n_B m_B}$: negative due to attractive quark interaction

Continuum limit in the heavy dense low temperature regime

- continuum limit $a \rightarrow 0$ at fixed $\frac{m_B}{T}$ and $T = \frac{1}{aN_{\tau}}$ requires larger value of κ
- \bullet truncation error: difference of κ^2 and κ^4 results
- main features persist in the continuum limit
- ⇒ higher orders in hopping expansion of particular importance for the continuum limit

Numerical determination of effective couplings

strong coupling motivated form of effective action

$$e^{-S_{\text{eff}}} = \prod_{x,i=1,\dots,3} \left(1 + \lambda_1 (\mathcal{L}(x)\mathcal{L}(x+\hat{i})^{\dagger} + \mathcal{L}(x)^{\dagger}\mathcal{L}(x+\hat{i})) \right)$$
$$\prod_{[x,y]} \left(1 + \lambda_2 (\mathcal{L}(x)\mathcal{L}(y)^{\dagger} + \mathcal{L}(x)^{\dagger}\mathcal{L}(y)) \right) \dots$$

- include in the same way: long range interactions, different representations of Polyakov loops, n-point interactions
- assumptions: effective couplings << 1, long range interactions and higher representations suppressed
- coupling constants of the effective theory can be approximately related to correlators of Polyakov loops
- allows to estimate the couplings and check the strong coupling results

Numerical results for the effective couplings

- next neighbor interaction: strong coupling result good approximation in wide parameter range
- long range interaction: strong coupling result less precise
- interactions of higher representations, higher n-point terms same size as long range interactions of fundamental Polyakov loop

Relevance of the difference to strong coupling approach Depends on observable:

- correlators of fundamental Polyakov loops: significant influence of long range two point fund. interactions
- phase transition: dominated by short range interactions
- thermodynamics: higher rep. as important as long range two point fund. interactions

Conclusions

- effective Polyakov loop theory allows to circumvent the sign problem by analytic and numerical methods
- derivation of effective theory: improved strong coupling and hopping parameter expansion
- advantage of this approach: functional dependence of effective couplings on the bare parameters
- interesting application: heavy quark nuclear liquid-gas transition
- approach can be improved/checked using the effective couplings obtained in numerical simulations of the full theory
- implications of the differences to strong coupling approach depend on the observables
- If the small corrections of long range interactions of fund. loops are considered important for thermodynamics other, more involved, terms should be considered as well.