Hadron masses from fixed topological simulations: parity partners and SU(2) Yang-Mills results

Irais Bautista1
Wolfgang Bietenholz1
Christopher Czaban2
Arthur Dromard2
Urs Gerber1
Christoph Hofmann3
Héctor Mejía1
Marc Wagner2

1Universidad Nacional Autónoma de México
Instituto de Ciencias Nucleares

2Department of Theoretical Physics
Goethe Universität, Frankfurt am Main

3Universidad de Colima, México
Outline

1. Introduction
 - BCNW-equation for the mass
 - Improvement of BCNW-equation

2. Considering parity mixing
 - Parity mixing: $\theta \neq 0$ and fixed topology
 - Consequences on mass extractions

3. Application to SU(2) Yang-Mills theory
 - Test method and parameters
 - Results
Outline

1 Introduction
 - BCNW-equation for the mass
 - Improvement of BCNW-equation

2 Considering parity mixing
 - Parity mixing: $\theta \neq 0$ and fixed topology
 - Consequences on mass extractions

3 Application to SU(2) Yang-Mills theory
 - Test method and parameters
 - Results
Mass relation

- Relation between mass in topological sector Q and mass of QCD ($\theta = 0$) \(^1\).

\[
M_Q = M(0) + \frac{M^{(2)}(0)}{2\chi_t V} \left(1 - \frac{Q^2}{\chi_t V} \right) + \mathcal{O} \left(\frac{1}{(\chi_t V)^2} \right)
\]

Conditions:

(C1) \(1/\chi_t V \ll 1\) and \(|Q|/\chi_t V \ll 1\): Taylor expansion and saddle point approximation.

(C2) \(\left| M^{(2)}_H(0) t \right|/\chi_t V \ll 1\): Taylor expansion.

Extracting the mass

- Relation between mass in topological sector \(Q \) and mass of QCD \((\theta = 0) \)

\[
M_Q = M(0) + \frac{M^{(2)}(0)}{2\chi_t V} \left(1 - \frac{Q^2}{\chi_t V} \right) + \mathcal{O} \left(\frac{1}{(\chi_t V)^2} \right)
\]

Method to extract the mass from fixed topological simulation.

- Compute \(M_Q, V \) or equivalently \(C_Q, V \) for different physical volumes and topological sectors \((C_Q, V \text{ two-point function at fixed topology and volume } V) \)
- Fit the BCNW-Equation to those results (3 parameters \(M(0), M^{(2)}(0) \) and \(\chi_t \))
- Extracting \(M(\theta = 0) \) and \(\chi_t \)
Outline

1. **Introduction**
 - BCNW-equation for the mass
 - Improvement of BCNW-equation

2. **Considering parity mixing**
 - Parity mixing: $\theta \neq 0$ and fixed topology
 - Consequences on mass extractions

3. **Application to SU(2) Yang-Mills theory**
 - Test method and parameters
 - Results
Motivations for improvements up to $1/((\chi_t V)^3)$

Motivation to improve by $\mathcal{O}(1/(\chi_t V)^2)$ and $\mathcal{O}(1/(\chi_t V)^3)$

1. Complete $\mathcal{O}(1/(\chi_t V)^2)$ order in BCNW-equation.
2. Increase precision
3. Important when $\chi_t V$ is not to large e.g. $\chi_t V \gtrsim 1$.
4. Helpful to estimate the error of $\mathcal{O}(1/(\chi_t V)^2)$ expansion.

Literature: General discussion of n-point functions at fixed topology including also higher orders in $1/V$. ²

Our contribution: Expansion of two-point correlation function up to $\mathcal{O}(1/(\chi_t V)^3)$

Improvement

Improved equation \(^3\)

\[C_{Q, \nu}(t) = \alpha(0) \exp \left(-M_H(0)t - \frac{1}{\mathcal{E}_2 V} \frac{x_2}{2} - \frac{1}{(\mathcal{E}_2 V)^2} \left(\frac{x_4 - 2(\mathcal{E}_4/\mathcal{E}_2)x_2 - 2x_2^2}{8} - \frac{x_2}{2} Q^2 \right) \right. \]

\[\left. - \frac{1}{(\mathcal{E}_2 V)^3} \left(\frac{16(\mathcal{E}_4/\mathcal{E}_2)^2 x_2 + x_6 - 3(\mathcal{E}_6/\mathcal{E}_2)x_2 - 8(\mathcal{E}_4/\mathcal{E}_2)x_4 - 12x_2x_4}{48} \right. \right. \]

\[\left. + \frac{18(\mathcal{E}_4/\mathcal{E}_2)x_2^2 + 8x_2^3}{48} - \frac{x_4 - 3(\mathcal{E}_4/\mathcal{E}_2)x_2 - 2x_2^2}{4} Q^2 \right) \left(\frac{1}{(\mathcal{E}_2 V)^4}, \frac{1}{(\mathcal{E}_2 V)^4} Q^2, \frac{1}{(\mathcal{E}_2 V)^4} Q^4 \right). \]

Improvement cost

- Increasing the number of parameters (3 for BCNW-equations, 8 for \(1/(\chi_t V)^2\), 11 for \(1/(\chi_t V)^3\))

\(^3\)A.D., M. Wagner: arXiv:1404.0247
Problem for limited statistical accuracy

Possibility to benefit of the improvement while keeping the number of parameters small. ⇒ New parameters set to zero

\[C_{Q,V}(t) = \frac{\alpha(0)}{\sqrt{1 + M_H^{(2)}(0)t/\chi t V}} \exp \left(-M_H(0)t - \frac{1}{\chi t V} \left(\frac{1}{1 + M_H^{(2)}(0)t/\chi t V} - 1 \right) \frac{1}{2} Q^2 \right) \]

- Evidence of the improvement in a toy-model \(^4\) (quantum mechanics on a circle with well potential)

1 Introduction
 - BCNW-equation for the mass
 - Improvement of BCNW-equation

2 Considering parity mixing
 - Parity mixing: $\theta \neq 0$ and fixed topology
 - Consequences on mass extractions

3 Application to SU(2) Yang-Mills theory
 - Test method and parameters
 - Results
Parity mixing due to the θ-term

$$S_E(\theta) = S_E - i \theta Q = S_E - i \theta \frac{1}{32\pi^2} \int d^4xF_{\mu\nu}\tilde{F}_{\mu\nu}$$

- The second term violates parity symmetry P
- Fixed topology superposition (Fourier transform) of theories with $\theta \neq 0 \Rightarrow$ not P invariant

Consequences

- Consider two states, which are parity partners:
 - The heavier state has to be considered as an excitation, while the lighter is the ground state.
- A single correlator is generally not sufficient to determine the mass of an excited state precisely:
 \Rightarrow use a correlation matrix.
Outline

1. Introduction
 - BCNW-equation for the mass
 - Improvement of BCNW-equation

2. Considering parity mixing
 - Parity mixing: $\theta \neq 0$ and fixed topology
 - Consequences on mass extractions

3. Application to SU(2) Yang-Mills theory
 - Test method and parameters
 - Results
Parity mixing at fixed Q

- Consider O_1 and O_2 with opposite parity.

$$C_Q = \begin{pmatrix} \langle O_1^\dagger(t)O_1(0) \rangle_Q & \langle O_1^\dagger(t)O_2(0) \rangle_Q \\ \langle O_2^\dagger(t)O_1(0) \rangle_Q & \langle O_2^\dagger(t)O_2(0) \rangle_Q \end{pmatrix}$$

If we neglect terms of order $\mathcal{O}\left(\frac{1}{(\chi_t V)^2}\right)$

$$\langle O_1^\dagger(t)O_1(0) \rangle_Q \approx a_{11} e^{-M_{H_1}(0)t} \left(1 - \frac{M_{H_1}^{(2)}(0)t}{2\chi_t V}\right) + \frac{b_{22}}{\chi_t V} e^{-M_{H_2}(0)t}$$

$$\langle O_1^\dagger(t)O_2(0) \rangle_Q \approx \frac{iQa_{12}}{\chi_t V} e^{-M_{H_1}(0)t} + \frac{iQb_{12}}{\chi_t V} e^{-M_{H_2}(0)t}$$

$$\langle O_2^\dagger(t)O_1(0) \rangle_Q \approx \frac{iQa_{21}}{\chi_t V} e^{-M_{H_1}(0)t} + \frac{iQb_{21}}{\chi_t V} e^{-M_{H_2}(0)t}$$

$$\langle O_2^\dagger(t)O_2(0) \rangle_Q \approx a_{22} e^{-M_{H_1}(0)t} + b_{22} e^{-M_{H_2}(0)t} \left(1 - \frac{M_{H_2}^{(2)}(0)t}{2\chi_t V}\right)$$
Masses at fixed Q

Now let us assume that $M_{H_1}(\theta = 0) < M_{H_2}(\theta = 0)$:

The previous results yield:

- For H_1:
 \[
 \langle O_1^\dagger(t)O_1(0) \rangle_Q = a_{11}e^{(-M_{H_1}(0)t)} \left(1 - \frac{M_{H_1}^{(2)}(0)t}{2\chi_t V} \right) + \mathcal{O} \left(\frac{e^{-M_{H_2}t}}{\chi_t V}, \frac{1}{(\chi_t V)^2} \right)
 \]
 \(\Rightarrow \) For large t, we can use what we have done in previous works.

- For H_2:
 \[
 \langle O_2^\dagger(t)O_2(0) \rangle_Q = \frac{a_{22}}{\chi_t V} e^{(-M_{H_1}(0)t)} + \mathcal{O} \left(e^{-M_{H_2}t}, \frac{1}{(\chi_t V)^2} \right)
 \]
 \(\Rightarrow \) Extremely difficult to extract M_2, needs a lot of statistics.
 \(\Rightarrow \) Use the correlation matrix \rightarrow fit all four expansions
 \[
 \langle O_i^\dagger(t)O_j(0) \rangle \text{ at once.}
 \]
Outline

1 Introduction
 - BCNW-equation for the mass
 - Improvement of BCNW-equation

2 Considering parity mixing
 - Parity mixing: $\theta \neq 0$ and fixed topology
 - Consequences on mass extractions

3 Application to SU(2) Yang-Mills theory
 - Test method and parameters
 - Results
Parameters and method

Parameters:

- Action: \(S_E = \frac{1}{4} \int d^4 x F_{\mu \nu} F_{\mu \nu} \), use standard plaquette action
- Observable: static potential \(\psi_{Q\bar{Q}}(R) \) for \(R = 1 \) to 6
- \(\beta = 2.5 \)
- Volumes: \(a^4 V = (aL)^4 \) with \(L \in \{14, 15, 16, 18\} \)
- Number of configurations: 4000 per volume

Method to test the mass extraction from fixed topology:

- Compute \(C_{Q,V}(t) \) for different \(Q \) and \(V \)
- Fit the BCNW-equation or improvement
- Compare results to unfixed topology simulation

Systematic comparison:

1. Using different number of volumes and different volumes
2. Using weaker criterion \(\frac{|Q|}{\chi t V} < 1 \) or stronger one \(\frac{|Q|}{\chi t V} < 0.5 \) to admit topological sectors and volumes in the fit.
Outline

1. Introduction
 - BCNW-equation for the mass
 - Improvement of BCNW-equation

2. Considering parity mixing
 - Parity mixing: $\theta \neq 0$ and fixed topology
 - Consequences on mass extractions

3. Application to SU(2) Yang-Mills theory
 - Test method and parameters
 - Results
Fitting

\(a^Y q\bar{q} \) for different top.sectors as a function of \(1/V \) for \(R/a=6 \)
String Tension

\(a\sqrt{q\bar{q}} \) as a function of \(R/a \)

- fixed topology
- unfixed topology \(V/a^4 = 18^4 \)
Topological susceptibility

Examples:
For \(a^4 V = 15^4 \) and \(16^4 \)

<table>
<thead>
<tr>
<th>eq.</th>
<th>(\gamma_{Q\bar{Q}}) (a)</th>
<th>(\gamma_{Q\bar{Q}}) (2a)</th>
<th>(\gamma_{Q\bar{Q}}) (3a)</th>
<th>(\gamma_{Q\bar{Q}}) (4a)</th>
<th>(\gamma_{Q\bar{Q}}) (5a)</th>
<th>(\gamma_{Q\bar{Q}}) (6a)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>from P. de Forcrand, M. Garcia Perez, I. Stamatescu in Nucl.Phys. B499 (1997) 409-449</td>
<td>(\chi_t = 7.0(0.9))</td>
<td>fixed topology, a single combined fit for all separations (r/a)</td>
<td>6.7(3.3)</td>
<td>7.0(3.5)</td>
<td>fixed topology, a separate fit for each separation (r/a)</td>
</tr>
</tbody>
</table>

For \(a^4 V = 15^4, 16^4 \) and \(18^4 \)

<table>
<thead>
<tr>
<th>eq.</th>
<th>(\gamma_{Q\bar{Q}}) (a)</th>
<th>(\gamma_{Q\bar{Q}}) (2a)</th>
<th>(\gamma_{Q\bar{Q}}) (3a)</th>
<th>(\gamma_{Q\bar{Q}}) (4a)</th>
<th>(\gamma_{Q\bar{Q}}) (5a)</th>
<th>(\gamma_{Q\bar{Q}}) (6a)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>from P. de Forcrand, M. Garcia Perez, I. Stamatescu in Nucl.Phys. B499 (1997) 409-449</td>
<td>(\chi_t = 7.0(0.9))</td>
<td>fixed topology, a single combined fit for all separations (r/a)</td>
<td>10.4(5.2)</td>
<td>7.2(1.5)</td>
<td></td>
</tr>
</tbody>
</table>

- Large statistical errors
Summary of results for SU(2)

- **Clear Discrepancy** between topological sectors observed → motivates our work (need to have a method to extract masses from fixed topological sectors)

- **Rather precise to determine masses**: \(\left(\frac{|Q|}{\chi_t V} < 1 \right) \)

 - Improvements when using more volumes (still works reasonably well with two volumes)
 - Reducing statistical errors using larger number of points for the fit (more topological sectors, more volumes)

- **Topological susceptibility**: large statistical error!

 - Improved by increasing the number of topological sectors or number of volumes
 - Not possible to determine \(\chi_t \) with high precision.

- Improved equation is slightly better or as good as BCNW-equation
Outlook

1. Apply to QCD
2. Apply it for the heaviest parity partner

Thank you for your attention!