Considering parity mixing

Application to SU(2) Yang-Mills theory 00000000

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

# Hadron masses from fixed topological simulations: parity partners and SU(2) Yang-Mills results

Irais Bautista<sup>1</sup> Wolfgang Bietenholz<sup>1</sup> Christopher Czaban<sup>2</sup> Arthur Dromard<sup>2</sup> Urs Gerber<sup>1</sup> Christoph Hofmann<sup>3</sup> Héctor Mejía<sup>1</sup> Marc Wagner<sup>2</sup>

> <sup>1</sup>Universidad Nacional Autónoma de México Instituto de Ciencias Nucleares

<sup>2</sup>Department of Theoretical Physics Goethe Universität, Frankfurt am Main

<sup>3</sup>Universidad de Colima, México

Considering parity mixing

Application to SU(2) Yang-Mills theory 00000000

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

# Outline

### Introduction

- BCNW-equation for the mass
- Improvement of BCNW-equation

## 2 Considering parity mixing

- Parity mixing :  $\theta \neq 0$  and fixed topology
- Consequences on mass extractions

- Test method and parameters
- Results

Considering parity mixing

Application to SU(2) Yang-Mills theory 00000000

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

# Outline

### Introduction

- BCNW-equation for the mass
- Improvement of BCNW-equation

## Considering parity mixing

- Parity mixing :  $\theta \neq 0$  and fixed topology
- Consequences on mass extractions

- Test method and parameters
- Results

| Introduction  | Considering parity mixing | Application to SU(2) Yang-Mills theory |
|---------------|---------------------------|----------------------------------------|
| 000000        |                           |                                        |
| Mass relation |                           |                                        |

• Relation between mass in topological sector Q and mass of QCD ( $\theta = 0$ ) <sup>1</sup>.

$$M_Q = M(0) + \frac{M^{(2)}(0)}{2\chi_t V} \left(1 - \frac{Q^2}{\chi_t V}\right) + \mathcal{O}\left(\frac{1}{(\chi_t V)^2}\right)$$

#### Conditions:

(C1)  $1/\chi_t V \ll 1$  and  $|Q|/\chi_t V \ll 1$ : Taylor expansion and saddle point approximation.

(C2) 
$$\left| M_{H}^{(2)}(0)t \right| / \chi_{t} V \ll 1$$
: Taylor expansion.

 Introduction 00●0000 Considering parity mixing

Application to SU(2) Yang-Mills theory 0000000

## Extracting the mass

• Relation between mass in topological sector Q and mass of QCD ( $\theta = 0$ )

$$M_Q = M(0) + \frac{M^{(2)}(0)}{2\chi_t V} \left(1 - \frac{Q^2}{\chi_t V}\right) + \mathcal{O}\left(\frac{1}{(\chi_t V)^2}\right)$$

Method to extract the mass from fixed topological simulation.

- Compute  $M_{Q,V}$  or equivalently  $C_{Q,V}$  for different physical volumes and topological sectors ( $C_{Q,V}$  two-point function at fixed topology and volume V)
- Fit the BCNW-Equation to those results (3 parameters M(0),  $M^{(2)}(0)$  and  $\chi_t$ )
- Extracting M( heta=0) and  $\chi_t$

Introduction ○○○●○○○ Considering parity mixing

Application to SU(2) Yang-Mills theory 00000000

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

# Outline

### Introduction

- BCNW-equation for the mass
- Improvement of BCNW-equation

### Considering parity mixing

- Parity mixing :  $\theta \neq 0$  and fixed topology
- Consequences on mass extractions

- Test method and parameters
- Results

Introduction ○○○○●○○ Considering parity mixing 00000

Application to SU(2) Yang-Mills theory

Motivations for improvements up to  $1/(\chi_t V)^3$ 

Motivation to improve by  $\mathscr{O}(1/(\chi_t V)^2)$  and  $\mathscr{O}(1/(\chi_t V)^3)$ 

- Complete  $\mathscr{O}(1/(\chi_t V)^2)$  order in BCNW-equation.
- Increase precision
- **③** Important when  $\chi_t V$  is not to large e.g  $\chi_t V \gtrsim 1$ .
- Helpful to estimate the error of  $\mathscr{O}(1/(\chi_t V)^2)$  expansion.

Literature: General discussion of n-point functions at fixed topology including also higher orders in 1/V.<sup>2</sup>

Our contribution: Expansion of two-point correlation function up to  $\mathscr{O}(1/(\chi_t \, V)^3)$ 

<sup>&</sup>lt;sup>2</sup>S. Aoki, H. Fukaya, S. Hashimoto and T. Onogi, Phys.=Rev. ⊕ 76, 054508 (200≩) ∽ <.

| Introduction |  |
|--------------|--|
| 0000000      |  |

Considering parity mixing

Application to SU(2) Yang-Mills theory 00000000

## Improvement

### Improved equation <sup>3</sup>

$$\begin{split} \mathcal{C}_{Q,V}(t) &= \alpha(0) \exp\left(-M_{H}(0)t - \frac{1}{\mathscr{E}_{2}V}\frac{x_{2}}{2} - \frac{1}{(\mathscr{E}_{2}V)^{2}} \left(\frac{x_{4} - 2(\mathscr{E}_{4}/\mathscr{E}_{2})x_{2} - 2x_{2}^{2}}{8} - \frac{x_{2}}{2}Q^{2}\right) \\ &- \frac{1}{(\mathscr{E}_{2}V)^{3}} \left(\frac{16(\mathscr{E}_{4}/\mathscr{E}_{2})^{2}x_{2} + x_{6} - 3(\mathscr{E}_{6}/\mathscr{E}_{2})x_{2} - 8(\mathscr{E}_{4}/\mathscr{E}_{2})x_{4} - 12x_{2}x_{4}}{48} \right. \\ &+ \frac{18(\mathscr{E}_{4}/\mathscr{E}_{2})x_{2}^{2} + 8x_{2}^{3}}{48} - \frac{x_{4} - 3(\mathscr{E}_{4}/\mathscr{E}_{2})x_{2} - 2x_{2}^{2}}{4}Q^{2}\right) \right) \\ &+ \mathscr{O}\left(\frac{1}{(\mathscr{E}_{2}V)^{4}} , \frac{1}{(\mathscr{E}_{2}V)^{4}}Q^{2} , \frac{1}{(\mathscr{E}_{2}V)^{4}}Q^{4}\right). \end{split}$$

#### Improvement cost

• Increasing the number of parameters (3 for BCNW-equations, 8 for  $1/(\chi_t V)^2$ , 11 for  $1/(\chi_t V)^3$ )

<sup>&</sup>lt;sup>3</sup>A.D, M. Wagner: arXiv:1404.0247

# Improvement (2)

## **Problem** for limited statistical accuracy

Possibility to benefit of the improvement while keeping the number of parameters small.  $\Rightarrow$  New parameters set to zero

$$C_{Q,V}(t) = \frac{\alpha(0)}{\sqrt{1 + M_H^{(2)}(0)t/\chi_t V}} \exp\left(-M_H(0)t - \frac{1}{\chi_t V} \left(\frac{1}{1 + M_H^{(2)}(0)t/\chi_t V} - 1\right)\frac{1}{2} Q^2\right)$$

• Evidence of the improvement in a toy-model <sup>4</sup> (quantum mechanics on a circle with well potential)

<sup>&</sup>lt;sup>4</sup>A.D, M. Wagner: arXiv:1404.0247

Considering parity mixing ●○○○○ Application to SU(2) Yang-Mills theory 00000000

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

# Outline

### Introduction

- BCNW-equation for the mass
- Improvement of BCNW-equation

### 2 Considering parity mixing

- Parity mixing : heta 
  eq 0 and fixed topology
- Consequences on mass extractions

- Test method and parameters
- Results

Considering parity mixing

Application to SU(2) Yang-Mills theory

# Parity mixing due to the $\theta$ -term

$$S_E(\theta) = S_E - i\theta Q = S_E - i\theta \frac{1}{32\pi^2} \int d^4 x F_{\mu\nu} \tilde{F}_{\mu\nu}$$

- The second term violates parity symmetry P
- Fixed topology superposition (Fourier transform) of theories with  $\theta \neq 0 \Rightarrow$  not P invariant

### Consequences

- Consider two states, which are parity partners: The heavier state has to be considered as an excitation, while the lighter is the ground state.
- A single correlator is generally not sufficient to determine the mass of an excited state precisely:
   ⇒ use a correlation matrix.

Considering parity mixing

Application to SU(2) Yang-Mills theory 00000000

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

# Outline

### Introduction

- BCNW-equation for the mass
- Improvement of BCNW-equation

### 2 Considering parity mixing

- Parity mixing :  $\theta \neq 0$  and fixed topology
- Consequences on mass extractions

- Test method and parameters
- Results

Considering parity mixing ○○○●○ Application to SU(2) Yang-Mills theory

# Parity mixing at fixed Q

• Consider  $O_1$  and  $O_2$  with opposite parity.

$$C_{Q} = \begin{pmatrix} \langle O_{1}^{\dagger}(t) O_{1}(0) \rangle_{Q} & \langle O_{1}^{\dagger}(t) O_{2}(0) \rangle_{Q} \\ \langle O_{2}^{\dagger}(t) O_{1}(0) \rangle_{Q} & \langle O_{2}^{\dagger}(t) O_{2}(0) \rangle_{Q} \end{pmatrix}$$

If we neglect terms of order 
$$\mathscr{A}\left(\frac{1}{(\chi_{t}V)^{2}}\right)$$
  
 $\langle O_{1}^{\dagger}(t)O_{1}(0)\rangle_{Q} \approx a_{11}e^{-M_{H_{1}}(0)t}\left(1-\frac{M_{H_{1}}^{(2)}(0)t}{2\chi_{t}V}\right)+\frac{b_{22}}{\chi_{t}V}e^{-M_{H_{2}}(0)t}$   
 $\langle O_{1}^{\dagger}(t)O_{2}(0)\rangle_{Q} \approx \frac{iQa_{12}}{\chi_{t}V}e^{-M_{H_{1}}(0)t}+\frac{iQb_{12}}{\chi_{t}V}e^{-M_{H_{2}}(0)t}$   
 $\langle O_{2}^{\dagger}(t)O_{1}(0)\rangle_{Q} \approx \frac{iQa_{21}}{\chi_{t}V}e^{-M_{H_{1}}(0)t}+\frac{iQb_{21}}{\chi_{t}V}e^{-M_{H_{2}}(0)t}$   
 $\langle O_{2}^{\dagger}(t)O_{2}(0)\rangle_{Q} \approx \frac{a_{22}}{\chi_{t}V}e^{-M_{H_{1}}(0)t}+b_{22}e^{-M_{H_{2}}(0)t}\left(1-\frac{M_{H_{2}}^{(2)}(0)t}{2\chi_{t}V}\right)$ 

▲□▶ ▲課▶ ▲理▶ ★理▶ = 目 - の��

Considering parity mixing

Application to SU(2) Yang-Mills theory

# Masses at fixed Q

Now let us assume that  $M_{H_1}(\theta = 0) < M_{H_2}(\theta = 0)$ : The previous results yield:

• For 
$$H_1$$
:  
 $\langle O_1^{\dagger}(t)O_1(0)\rangle_Q =$   
 $a_{11}e^{\left(-M_{H_1}(0)t\right)}\left(1-\frac{M_{H_1}^{(2)}(0)t}{2\chi_t V}\right) + \mathcal{O}\left(\frac{e^{-M_{H_2}t}}{\chi_t V}, \frac{1}{(\chi_t V)^2}\right)$ 

 $\Rightarrow$  For large *t*, we can use what we have done in previous works

• For  $H_2$ :

$$\langle O_2^{\dagger}(t)O_2(0)\rangle_Q = \frac{a_{22}}{\chi_t V} e^{\left(-M_{H_1}(0)t\right)} + \mathscr{O}\left(e^{-M_{H_2}t}, \frac{1}{(\chi_t V)^2}\right)$$

⇒ Extremely difficult to extract  $M_2$ , needs a lot of statistics ⇒ Use the correlation matrix → fit all four expansions  $\langle O_i^{\dagger}(t) O_j(0) \rangle$  at once.

Considering parity mixing

Application to SU(2) Yang-Mills theory

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

# Outline

### Introduction

- BCNW-equation for the mass
- Improvement of BCNW-equation

## Considering parity mixing

- Parity mixing :  $\theta \neq 0$  and fixed topology
- Consequences on mass extractions

- Test method and parameters
- Results

# Parameters and method

Parameters:

- Action:  $S_E = rac{1}{4} \int d^4 x F_{\mu 
  u} F_{\mu 
  u}$ , use standard plaquette action
- Observable: static potential  $\mathscr{V}_{Q\bar{Q}}(R)$  for R=1 to 6
- $\beta = 2.5$
- Volumes:  $a^4 V = (aL)^4$  with  $L \in \{14, 15, 16, 18\}$
- Number of configurations: 4000 per volume

Method to test the mass extraction from fixed topology:

- Compute  $C_{Q,V}(t)$  for different Q and V
- Fit the BCNW-equation or improvement
- Compare results to unfixed topology simulation

## Systematic comparison:

- Using different number of volumes and different volumes
- Substitution  $\frac{|Q|}{\chi_t V} < 1$  or stronger one  $\frac{|Q|}{\chi_t V} < 0.5$  to admit topological sectors and volumes in the fit.

Considering parity mixing

Application to SU(2) Yang-Mills theory

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

# Outline

### Introduction

- BCNW-equation for the mass
- Improvement of BCNW-equation

## Considering parity mixing

- Parity mixing :  $\theta \neq 0$  and fixed topology
- Consequences on mass extractions

- Test method and parameters
- Results

Considering parity mixing

Application to SU(2) Yang-Mills theory ○○●○○○○

# Fitting



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Considering parity mixing

Application to SU(2) Yang-Mills theory ○○○●●○○○

# String Tension

 $a \mathscr{V}_{q\bar{q}}$  as a function of R/a



Considering parity mixing

Application to SU(2) Yang-Mills theory

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

# Topological susceptibility

Examples: For  $a^4V = 15^4$  and  $16^4$ 

| eq.      | $\mathscr{V}_{Q\bar{Q}}(a)$                                                           | $\mathscr{V}_{Q\bar{Q}}(2a)$ | $\gamma_{Q\bar{Q}}(3a)$ | $\mathcal{V}_{Q\bar{Q}}$ (4a) | $\mathscr{V}_{Q\bar{Q}}(5a)$ | $\mathcal{V}_{Q\bar{Q}}(6a)$ |
|----------|---------------------------------------------------------------------------------------|------------------------------|-------------------------|-------------------------------|------------------------------|------------------------------|
|          | from P. de Forcrand, M. Garcia Perez, I. Stamatescu in Nucl.Phys. B499 (1997) 409-449 |                              |                         |                               |                              |                              |
|          | $\chi_{\mathbf{f}} = 7.0(0.9)$                                                        |                              |                         |                               |                              |                              |
|          | fixed topology, a single combined fit for all separations r/a                         |                              |                         |                               |                              |                              |
| BCNW     | 6.7(3.3)                                                                              |                              |                         |                               |                              |                              |
| improved |                                                                                       | 7.0(3.5)                     |                         |                               |                              |                              |
|          | fixed topology, a separate fit for each separation r/a                                |                              |                         |                               |                              |                              |
| BCNW     | 8.2(5.8)                                                                              | 5.9(5.0)                     | 7.6(4.7)                | 7.5(5.0)                      | 7.8(4.9)                     | 7.6(5.0)                     |
| improved | 8.2(5.7)                                                                              | 6.6(5.1)                     | 7.5(4.7)                | 7.7(4.8)                      | 8.3(5.0)                     | 8.2(4.9)                     |

## For $a^4 V = 15^4, 16^4$ and $18^4$

| eq.      | $\mathscr{V}_{Q\bar{Q}}$ (a) $\mathscr{V}_{Q\bar{Q}}$ (2a) $\mathscr{V}_{Q\bar{Q}}$ (3a) $\mathscr{V}_{Q\bar{Q}}$ (4a) $\mathscr{V}_{Q\bar{Q}}$ (5a) $\mathscr{V}_{Q\bar{Q}}$ (6a) |  |  |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|          | from P. de Forcrand, M. Garcia Perez, I. Stamatescu in Nucl.Phys. B499 (1997) 409-449                                                                                              |  |  |
|          | $\chi_{\mathbf{f}} = 7.0(0.9)$                                                                                                                                                     |  |  |
|          | fixed topology, a single combined fit for all separations r/a                                                                                                                      |  |  |
| BCNW     | 10.4(5.2)                                                                                                                                                                          |  |  |
| improved | 7.2(1.5)                                                                                                                                                                           |  |  |

Large statistical errors

Considering parity mixing

Application to SU(2) Yang-Mills theory ○○○○○●○

# Summary of results for SU(2)

- Clear Discrepancy between topological sectors observed
   → motivates our work (need to have a method to extract
   masses from fixed topological sectors)
- Rather precise to determine masses:  $\left(\frac{|Q|}{\chi_t V} < 1\right)$ 
  - Improvements when using more volumes (still works reasonably well with two volumes)
  - Reducing statistical errors using larger number of points for the fit (more topological sectors, more volumes)
- Topological susceptibility: large statistical error!
  - Improved by increasing the number of topological sectors or number of volumes
  - Not possible to determine  $\chi_t$  with high precision.
- Improved equation is slightly better or as good as BCNW-equation

Considering parity mixing

Application to SU(2) Yang-Mills theory 00000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ の Q @

# Outlook

## Outlook

- Apply to QCD
- Apply it for the heaviest parity partner

## Thank you for your attention!