Hadron masses from fixed topological simulations: parity partners and SU(2) Yang-Mills results

Irais Bautista ${ }^{1}$ Wolfgang Bietenholz ${ }^{1}$ Christopher Czaban ${ }^{2}$
Arthur Dromard ${ }^{2} \quad$ Urs Gerber ${ }^{1} \quad$ Christoph Hofmann ${ }^{3}$ Héctor Mejía ${ }^{1} \quad$ Marc Wagner ${ }^{2}$
${ }^{1}$ Universidad Nacional Autónoma de México
Instituto de Ciencias Nucleares
${ }^{2}$ Department of Theoretical Physics Goethe Universität, Frankfurt am Main
${ }^{3}$ Universidad de Colima, México

Outline

(1) Introduction

- BCNW-equation for the mass
- Improvement of BCNW-equation
(2) Considering parity mixing
- Parity mixing : $\theta \neq 0$ and fixed topology
- Consequences on mass extractions
(3) Application to SU(2) Yang-Mills theory
- Test method and parameters
- Results

Outline

(1) Introduction

- BCNW-equation for the mass
- Improvement of BCNW-equation
(2) Considering parity mixing
- Parity mixing : $\theta \neq 0$ and fixed topology
- Consequences on mass extractions
(3) Application to SU(2) Yang-Mills theory
- Test method and parameters
- Results

Mass relation

- Relation between mass in topological sector Q and mass of QCD $(\theta=0)^{1}$.

$$
M_{Q}=M(0)+\frac{M^{(2)}(0)}{2 \chi_{t} V}\left(1-\frac{Q^{2}}{\chi_{t} V}\right)+\mathscr{O}\left(\frac{1}{\left(\chi_{t} V\right)^{2}}\right)
$$

Conditions:

(C1) $1 / \chi_{t} V \ll 1$ and $|Q| / \chi_{t} V \ll 1$: Taylor expansion and saddle point approximation.
(C2) $\left|M_{H}^{(2)}(0) t\right| / \chi_{t} V \ll 1$: Taylor expansion.

[^0]
Extracting the mass

- Relation between mass in topological sector Q and mass of QCD $(\theta=0)$

$$
M_{Q}=M(0)+\frac{M^{(2)}(0)}{2 \chi_{t} V}\left(1-\frac{Q^{2}}{\chi_{t} V}\right)+\mathscr{O}\left(\frac{1}{\left(\chi_{t} V\right)^{2}}\right)
$$

Method to extract the mass from fixed topological simulation.

- Compute $M_{Q, V}$ or equivalently $C_{Q, V}$ for different physical volumes and topological sectors ($C_{Q, V}$ two-point function at fixed topology and volume V)
- Fit the BCNW-Equation to those results
(3 parameters $M(0), M^{(2)}(0)$ and χ_{t})
- Extracting $M(\theta=0)$ and χ_{t}

Outline

(1) Introduction

- BCNW-equation for the mass
- Improvement of BCNW-equation
(2) Considering parity mixing
- Parity mixing : $\theta \neq 0$ and fixed topology
- Consequences on mass extractions
(3) Application to SU(2) Yang-Mills theory
- Test method and parameters
- Results

Motivations for improvements up to $1 /\left(\chi_{t} V\right)^{3}$

Motivation to improve by $\mathscr{O}\left(1 /\left(\chi_{t} V\right)^{2}\right)$ and $\mathscr{O}\left(1 /\left(\chi_{t} V\right)^{3}\right)$
(1) Complete $\mathscr{O}\left(1 /\left(\chi_{t} V\right)^{2}\right)$ order in BCNW-equation.
(2) Increase precision
(3) Important when $\chi_{t} V$ is not to large e.g $\chi_{t} V \gtrsim 1$.
(3) Helpful to estimate the error of $\mathscr{O}\left(1 /\left(\chi_{t} V\right)^{2}\right)$ expansion.

Literature: General discussion of n-point functions at fixed topology including also higher orders in $1 / \mathrm{V}$. ${ }^{2}$

Our contribution: Expansion of two-point correlation function up to $\mathscr{O}\left(1 /\left(\chi_{t} V\right)^{3}\right)$

[^1]
Improvement

Improved equation ${ }^{3}$

$$
\begin{aligned}
& C_{Q, V}(t)=\alpha(0) \exp \left(-M_{H}(0) t-\frac{1}{\mathscr{E}_{2} V} \frac{x_{2}}{2}-\frac{1}{\left(\mathscr{E}_{2} V\right)^{2}}\left(\frac{x_{4}-2\left(\mathscr{E}_{4} / \mathscr{E}_{2}\right) x_{2}-2 x_{2}^{2}}{8}-\frac{x_{2}}{2} Q^{2}\right)\right. \\
&-\frac{1}{\left(\mathscr{E}_{2} V\right)^{3}}\left(\frac{16\left(\mathscr{E}_{4} / \mathscr{E}_{2}\right)^{2} x_{2}+x_{6}-3\left(\mathscr{E}_{6} / \mathscr{E}_{2}\right) x_{2}-8\left(\mathscr{E}_{4} / \mathscr{E}_{2}\right) x_{4}-12 x_{2} x_{4}}{48}\right. \\
&\left.\left.+\frac{18\left(\mathscr{E}_{4} / \mathscr{E}_{2}\right) x_{2}^{2}+8 x_{2}^{3}}{48}-\frac{x_{4}-3\left(\mathscr{E}_{4} / \mathscr{E}_{2}\right) x_{2}-2 x_{2}^{2}}{4} Q^{2}\right)\right) \\
&+ \mathscr{O}\left(\frac{1}{\left(\mathscr{E}_{2} V\right)^{4}}, \frac{1}{\left(\mathscr{E}_{2} V\right)^{4}} Q^{2}, \frac{1}{\left(\mathscr{E}_{2} V\right)^{4}} Q^{4}\right)
\end{aligned}
$$

Improvement cost

- Increasing the number of parameters (3 for BCNW-equations, 8 for $1 /\left(\chi_{t} V\right)^{2}, 11$ for $\left.1 /\left(\chi_{t} V\right)^{3}\right)$

[^2]
Improvement (2)

Problem for limited statistical accuracy
Possibility to benefit of the improvement while keeping the number of parameters small. \Rightarrow New parameters set to zero
$C_{Q, V}(t)=\frac{\alpha(0)}{\sqrt{1+M_{H}^{(2)}(0) t / \chi_{t} V}} \exp \left(-M_{H}(0) t-\frac{1}{\chi_{t} V}\left(\frac{1}{1+M_{H}^{(2)}(0) t / \chi_{t} V}-1\right) \frac{1}{2} Q^{2}\right)$

- Evidence of the improvement in a toy-model ${ }^{4}$ (quantum mechanics on a circle with well potential)

[^3]
Outline

(1) Introduction

- BCNW-equation for the mass
- Improvement of BCNW-equation
(2) Considering parity mixing
- Parity mixing : $\theta \neq 0$ and fixed topology
- Consequences on mass extractions
(3) Application to SU(2) Yang-Mills theory
- Test method and parameters
- Results

Parity mixing due to the θ-term

$$
S_{E}(\theta)=S_{E}-i \theta Q=S_{E}-i \theta \frac{1}{32 \pi^{2}} \int d^{4} x F_{\mu \nu} \tilde{F}_{\mu \nu}
$$

- The second term violates parity symmetry P
- Fixed topology superposition (Fourier transform) of theories with $\theta \neq 0 \Rightarrow$ not P invariant

Consequences

- Consider two states, which are parity partners:

The heavier state has to be considered as an excitation, while the lighter is the ground state.

- A single correlator is generally not sufficient to determine the mass of an excited state precisely:
\Rightarrow use a correlation matrix.

Outline

(1) Introduction

- BCNW-equation for the mass
- Improvement of BCNW-equation
(2) Considering parity mixing
- Parity mixing : $\theta \neq 0$ and fixed topology
- Consequences on mass extractions
(3) Application to SU(2) Yang-Mills theory
- Test method and parameters
- Results

Parity mixing at fixed Q

- Consider O_{1} and O_{2} with opposite parity.

$$
C_{Q}=\left(\begin{array}{cc}
\left\langle O_{1}^{\dagger}(t) O_{1}(0)\right\rangle_{Q} & \left\langle O_{1}^{\dagger}(t) O_{2}(0)\right\rangle_{Q} \\
\left\langle O_{2}^{\dagger}(t) O_{1}(0)\right\rangle_{Q} & \left\langle O_{2}^{\dagger}(t) O_{2}(0)\right\rangle_{Q}
\end{array}\right)
$$

If we neglect terms of order $\sigma\left(\frac{1}{\left(x_{\mathrm{t}} \boldsymbol{V}\right)^{2}}\right)$
$\left\langle O_{1}^{\dagger}(t) O_{1}(0)\right\rangle_{Q} \approx a_{11} e^{-M_{H_{1}}(0) t}\left(1-\frac{M_{H_{1}}^{(2)}(0) t}{2 \chi_{t} V}\right)+\frac{b_{22}}{\chi_{t} V} e^{-M_{H_{2}}(0) t}$
$\left\langle O_{1}^{\dagger}(t) O_{2}(0)\right\rangle_{Q} \approx \frac{i Q_{12}}{\chi_{t} V} e^{-M_{H_{1}}(0) t}+\frac{i Q b_{12}}{\chi_{t} V} e^{-M_{H_{2}}(0) t}$
$\left\langle O_{2}^{\dagger}(t) O_{1}(0)\right\rangle_{Q} \approx \frac{i Q_{21}}{\chi_{t} V} e^{-M_{H_{1}}(0) t}+\frac{i Q b_{21}}{\chi_{t} V} e^{-M_{H_{2}}(0) t}$
$\left\langle O_{2}^{\dagger}(t) O_{2}(0)\right\rangle_{Q} \approx \frac{\partial_{22}}{\chi_{t} V} e^{-M_{H_{1}}(0) t}+b_{22} e^{-M_{H_{2}}(0) t}\left(1-\frac{M_{H_{2}}^{(2)}(0) t}{2 \chi_{t} V}\right)$

Masses at fixed Q

Now let us assume that $M_{H_{1}}(\theta=0)<M_{H_{2}}(\theta=0)$:
The previous results yield:

- For H_{1} :
$\left\langle O_{1}^{\dagger}(t) O_{1}(0)\right\rangle_{Q}=$
$a_{11} e^{\left(-M_{H_{1}}(0) t\right)}\left(1-\frac{M_{H_{1}}^{(2)}(0) t}{2 \chi_{t} V}\right)+\mathscr{O}\left(\frac{e^{-M_{H_{2}} t}}{\chi_{t} V}, \frac{1}{\left(\chi_{t} V\right)^{2}}\right)$
\Rightarrow For large t, we can use what we have done in previous works
- For H_{2} :
$\left\langle O_{2}^{\dagger}(t) O_{2}(0)\right\rangle_{Q}=\frac{a_{22}}{\chi_{t} V} e^{\left(-M_{H_{1}}(0) t\right)}+\mathscr{O}\left(e^{-M_{H_{2}} t}, \frac{1}{\left(\chi_{t} V\right)^{2}}\right)$
\Rightarrow Extremely difficult to extract M_{2}, needs a lot of statistics
\Rightarrow Use the correlation matrix \rightarrow fit all four expansions $\left\langle O_{i}^{\dagger}(t) O_{j}(0)\right\rangle$ at once.

Outline

(1) Introduction

- BCNW-equation for the mass
- Improvement of BCNW-equation
(2) Considering parity mixing
- Parity mixing : $\theta \neq 0$ and fixed topology
- Consequences on mass extractions
(3) Application to SU(2) Yang-Mills theory
- Test method and parameters
- Results

Parameters and method

Parameters:

- Action: $S_{E}=\frac{1}{4} \int d^{4} x F_{\mu \nu} F_{\mu \nu}$, use standard plaquette action
- Observable: static potential $\mathscr{V}_{Q \bar{Q}}(R)$ for $R=1$ to 6
- $\beta=2.5$
- Volumes: $a^{4} V=(a L)^{4}$ with $L \in\{14,15,16,18\}$
- Number of configurations: 4000 per volume

Method to test the mass extraction from fixed topology:

- Compute $C_{Q, V}(t)$ for different Q and V
- Fit the BCNW-equation or improvement
- Compare results to unfixed topology simulation

Systematic comparison:
(1) Using different number of volumes and different volumes
(2) Using weaker criterion $\frac{|Q|}{\chi_{t} V}<1$ or stronger one $\frac{|Q|}{\chi_{t} V}<0.5$ to admit topological sectors and volumes in the fit.

Outline

(1) Introduction

- BCNW-equation for the mass
- Improvement of BCNW-equation
(2) Considering parity mixing
- Parity mixing : $\theta \neq 0$ and fixed topology
- Consequences on mass extractions
(3) Application to SU(2) Yang-Mills theory
- Test method and parameters
- Results

Fitting

$a V_{q \bar{q}}$ for different top.sectors as a function of $1 / \mathrm{V}$ for $\mathrm{R} / a=6$

String Tension

$a V_{q \bar{q}}$ as a function of R / a

Topological susceptibility

Examples:

For $a^{4} V=15^{4}$ and 16^{4}

eq.	$\mathscr{V}_{Q \bar{Q}}(\mathrm{a})$	$\mathscr{V}_{Q \bar{Q}}(2 \mathrm{a})$	Q \bar{Q} (3a)	$\mathscr{V}_{Q \bar{Q}}$ (4a)	$\mathscr{V}_{Q \bar{Q}}(5 a)$	$\mathscr{V}_{Q \bar{Q}}(6 \mathrm{a}$
	from P. de Forcrand, M. Garcia Perez, I. Stamatescu in Nucl.Phys. B499 (1997) 409-449					
	$\chi_{t}=7.0(0.9)$					
	fixed topology, a single combined fit for all separations r/a					
BCNW	6.7(3.3)					
improved	7.0(3.5)					
	fixed topology, a separate fit for each separation r/a					
BCNW	8.2(5.8)	5.9(5.0)	7.6(4.7)	7.5(5.0)	7.8(4.9)	7.6(5.0)
improved	8.2(5.7)	6.6(5.1)	7.5(4.7)	7.7(4.8)	8.3(5.0)	8.2(4.9)

For $a^{4} V=15^{4}, 16^{4}$ and 18^{4}

eq.	$\mathscr{V}_{Q}^{\text {Q }}$ (a)	$V_{Q \bar{Q}}(2 a)$	$\mathscr{V}_{Q \bar{Q}}(3 \mathrm{a})$	$\mathscr{V}_{Q \bar{Q}}(4 a)$	$V_{Q}^{Q} \bar{Q}^{(5 a)}$	${ }^{1} Q \bar{Q}$	(6a)
	from P. de Forcrand, M. Garcia Perez, I. Stamatescu in Nucl.Phys. B499 (1997) 409-449						
	$\chi_{t}=7.0(0.9)$						
	fixed topology, a single combined fit for all separations r/a						
BCNW	10.4(5.2)						
improved	7.2(1.5)						

- Large statistical errors

Summary of results for SU(2)

- Clear Discrepancy between topological sectors observed \rightarrow motivates our work (need to have a method to extract masses from fixed topological sectors)
- Rather precise to determine masses: $\left(\frac{|Q|}{\chi_{t} V}<1\right)$
- Improvements when using more volumes (still works reasonably well with two volumes)
- Reducing statistical errors using larger number of points for the fit (more topological sectors, more volumes)
- Topological susceptibility: large statistical error!
- Improved by increasing the number of topological sectors or number of volumes
- Not possible to determine χ_{t} with high precision.
- Improved equation is slightly better or as good as BCNW-equation

Outlook

Outlook
 (1) Apply to QCD
 (2) Apply it for the heaviest parity partner

Thank you for your attention!

[^0]: ${ }^{1}$ R. Brower, S. Chandrasekharan, J.W. Negele, U.-J. Wiese, Phys. Lett. B560 (2003) 64

[^1]: ${ }^{2}$ S. Aoki, H. Fukaya, S. Hashimoto and T. Onogi, Phys. Rev. D 76, 054508 (2007)

[^2]: ${ }^{3}$ A.D, M. Wagner: arXiv:1404.0247

[^3]: ${ }^{4}$ A.D, M. Wagner: arXiv:1404.0247

