Critical behavior and continuum scaling of 3D Z(N) lattice gauge theories

Oleg Borisenko^a, Volodymyr Chelnokov^a, Mario Gravina^b, Alessandro Papa^b

^aBogolyubov Institute for Theoretical Physics, Kiev, Ukraine ^b Dipartimento di Fisica, Università della Calabria & INFN-Cosenza, Italy

Introduction

Z(N) lattice gauge theories (LGTs), at T = 0 and T > 0, are interesting on their own and can provide for useful insights into the universal properties of SU(N)LGTs, being Z(N) the center subgroup of SU(N).

The most general action for the Z(N) LGT is

 $S = \sum_{n \in \mathbb{N}} \sum_{k=1}^{N-1} \beta_k \cos\left(\frac{2\pi k}{N} (s_n(x) + s_m(x + e_n))\right)$ $-s_n(x+e_m)-s_m(x))),$ with fields defined on links, $s_n(x) = 0, 1, \dots, N-1$. **Potts model**: all β_k equal; Vector model: otherwise; *Conventional* vector model: $\beta_1 \neq 0$, $\beta_2 = \cdots = \beta_{N-1} = 0$

Duality transformation

General 3D Z(N) gauge theory on an anisotropic lattice: $Z(\beta_t, \beta_s;) = \prod_{l \in \Lambda} \left(\frac{1}{N} \sum_{s(l)=0}^{N-1} \right) \prod_{p_s} Q(s(p_s)) \prod_{p_t} Q(s(p_t)) ,$ $Q(s) = \exp \left| \sum_{k=1}^{N-1} eta_p(k) \cos rac{2\pi k}{N} s
ight| ,$ $\Lambda = L^2 \times N_t$ is the 3D lattice; s(p) the plaquette angle $(p_{t,s} \text{ stands for temporal/spatial}),$ $s(p) = s_n(x) + s_m(x + e_n) - s_n(x + e_m) - s_m(x)$. Wilson action: $\beta_p(1) = \beta$, $\beta_p(k > 1) = 0$; isotropic lattice, $\beta_s = \beta_t = \beta$

Critical indices at the two transitions

The scaling laws at the critical couplings,

 $M_{R,L} = AL^{-\beta/\nu}$, $\chi_I^{(M_{R,L})} = AL^{-\gamma/\nu}$ are used to extract $\beta^{(1,2)}/\nu$ and $\gamma^{(1,2)}/\nu \equiv 2 - \eta^{(1,2)}$ at the two transitions.

The reference value for $\eta^{(1)}$ is $4/N^2$.

N	N _t	$\beta_{\rm c}^{(2)}$	$\beta^{(1)}/\nu$	$\chi^2_{ m r}$	$\gamma^{(1)}/ u$	$\chi^2_{ m r}$	d	$\eta^{(1)}$	$4/N^{2}$
5	2	1.617(2)	0.097(6)	0.101	1.847(5)	0.561	2.04(2)	0.153(5)	
5	4	1.943(2)	0.11(1)	1.25	1.841(1)	0.70	2.07(3)	0.159(1)	0.16
5	8	2.085(2)	0.09(2)	0.77	1.844(1)	0.78	2.01(4)	0.156(1)	
8	4	2.544(8)	-0.26(2)	1.79	1.930(3)	1.58	1.41(5)	0.070(3)	0.0625
8	8	3.422(9)	-0.52(5)	0.21	1.959(1)	0.21	0.9(1)	0.040(1)	
13	2	1.795(4)	0.07(5)	1.28	1.968(9)	0.97	2.1(1)	0.032(9)	
13	4	2.74(5)	-0.26(2)	1.81	1.976(3)	1.80	1.5(1)	0.024(3)	0.0236
13	8	3.358(7)	-0.9(1)	1.17	1.973(4)	1.25	0.3(2)	0.027(4)	
20	Л	2 E7(1)	$0.0 \Gamma(0)$	0.27	1 001(2)	1 01	1 40(E)	0.000(2)	0.01

\blacktriangleright *T* = 0:

Potts models: one phase transition (PT) from confinement to phase with zero string tension [1, 2, 3], 2nd order for N = 2, 1st order for N > 3Vector models: old numerical study for $N = 5, \ldots, 20$; one single PT, disappearing for $N \to \infty$ [4]; 3D Ising class for N = 2, 3, 4 and 3D XY class for $N \ge 5$, but critical index α on one side of the PT compatible with 3D lsing (cusp?) [5]

T > 0:

Deconfinement PT for N = 2, 3: same class of 2D Z(N)spin, 2nd order, in agreement with Svetitsky-Yaffe [6] Potts models: N > 4 expected 1st order, as 2D spin Potts Vector models: N = 4, 2nd order, as 2D Z(4) spin [7]; N > 4, not much was known until recently

> 3D vector Z(N > 4) on anisotropic lattices with $\beta_s = 0$, $\beta_t \equiv \beta \neq 0$ [8]:

reduce to a 2D generalized vector spin Z(N) model, with the Polyakov loop as Z(N) spin and exhibit two Berezinskii-Kosterlitz-Thouless (BKT) [9] PTs

 $\beta < \beta_{c}^{(1)}$, low-temperature, confining phase; non-zero string tension σ ; linear potential

 $\triangleright \beta_{c}^{(1)} < \beta < \beta_{c}^{(2)}$, intermediate phase;

Duality: generalized 3D spin Z(N) model,

<i>S</i> =	$\sum_{x} \sum_{n=1}^{3} \sum_{k=1}^{N-1} \beta_{k} \cos\left(\frac{2\pi k}{N}(s(x) - s(x + e_{n}))\right)$
	$eta_k = rac{1}{N} \sum_{p=0}^{N-1} \ln \left[rac{Q_d(p)}{Q_d(0)} ight] \cos \left(rac{2\pi pk}{N} ight) \; .$

lacktriangly ordered β_k , near criticality; 3D vector spin model with only $\beta_1 \neq 0$ is a good approximation;

weak and strong coupling regimes are interchanged (for Z(5), see figure below)

Critical couplings

 $\beta_{\rm c}^{(2)}$ determined through Binder cumulants of *standard* magnetization $M_L = |M_L|e^{i\psi}$, with $L = 128 \div 768$; $\beta_{c}^{(1)}$ through Binder cumulants of the *rotated* magnetization, $M_R = |M_L| \cos(N\psi)$, with $L = 128 \div 2048$ $|N| N_t | \beta_c^{(1)} | \beta_c^{(2)}$

20 | 4 | 2.37(1) | -0.23(2) | 0.37 | 1.991(3) | 1.91 | 1.49(3) | 0.009(3) |20 8 3.42(5) -0.72(6) 0.41 1.9790(16) 0.33 0.55(13) 0.0210(16)

The reference value for $\eta^{(2)}$ is 1/4.

N	Nt	$\beta_{\rm c}^{(2)}$	$\beta^{(2)}/\nu$	$\chi^2_{ m r}$	$\gamma^{(2)}/\nu$	χ^2	d	$\eta^{(2)}$
5	2	1.6972(14)	0.1259(2)	1.22	1.750(3)	0.50	2.001(4)	0.250(3)
5	4	1.9885(15)	0.1061(3)	2.67	1.758(9)	2.45	1.971(9)	0.242(9)
5	8	2.1207(9)	0.1376(6)	2.04	1.747(15)	1.62	2.022(16)	0.253(15)
6	2	2.3410(15)	0.26(3)	1.8	1.6(6)	1.21	2.1(6)	0.4(6)
6	4	2.725(12)	0.1056(13)	1.84	1.76(7)	2.05	1.97(8)	0.24(7)
6	8	2.899(4)	0.0949(4)	1.67	1.731(8)	0.71	1.920(9)	0.269(8)
8	2	3.8640(10)	0.1336(4)	0.36	1.743(15)	0.73	2.010(16)	0.257(15)
8	4	4.6864(15)	0.1278(4)	3.85	1.753(6)	1.34	2.009(7)	0.247(6)
8	8	4.9808(5)	0.1379(5)	0.77	1.745(18)	1.82	2.020(19)	0.255(18)
12	2	8.3745(5)	0.1283(16)	1.22	1.73(4)	0.78	1.99(4)	0.27(4)
12	4	10.240(7)	0.1303(4)	1.52	1.746(9)	0.87	2.007(10)	0.254(9)
12	8	10.898(5)	0.149(3)	0.64	1.78(16)	1.19	2.07(17)	0.22(16)
13	2	9.735(4)	0.1251(2)	0.22	1.744(5)	0.09	1.995(5)	0.256(5)
13	4	11.959(6)	0.1265(2)	1.43	1.746(3)	0.48	1.999(4)	0.254(3)
13	8	12.730(2)	0.1357(18)	3.55	1.75(2)	0.82	2.02(2)	0.25(2)
20	2	22.87(4)	0.1322(14)	1.06	1.78(3)	0.68	2.04(4)	0.22(3)
20	4	28.089(3)	0.1384(4)	0.17	1.748(14)	0.17	2.025(15)	0.252(14)
20	8	29.758(6)	0.1278(7)	1.60	1.713(17)	1.15	1.968(18)	0.287(17)

Conclusions

- All 3D vector Z(N > 4) LGTs at T > 0 considered in Ref. [10] and in the present study feature two BKT-like phase transitions.
- Critical indices suggest that these models belong to the universality class of 2D Z(N) vector spin models, in

- Z(N) symmetry is enhanced to U(1) symmetry string tension $\sigma = 0$; logarithmic (confining) potential
- $\triangleright \beta_{c}^{(2)} < \beta$, high-temperature, deconfining phase; spontaneous breaking of the Z(N) symmetry
- \blacktriangleright critical indices as in 2D vector spin Z(N) models, $\eta(\beta_{\rm c}^{(1)}) = 1/4, \ \nu^{(1)} = 1/2, \ {\rm as \ in \ } 2D \ XY$ $\eta(\beta_{\rm c}^{(2)}) = 4/N^2, \ \nu^{(2)} = 1/2$
- > 3D vector Z(N > 4) on isotropic lattices with $\beta_s = \beta_t \equiv \beta$ [10]:

confirmed scenario as for $\beta_s = 0$ (small influence of spatial plaquettes on the Polyakov loop dynamics) Aim of this study:

- to extend to other values of N and N_t our previous study on 3D vector Z(N > 4) LGTs on isotropic lattices at T > 0
- to check the scaling near the continuum limit and establish the scaling with N of the critical couplings

Strategy

- BKT transition hard to study analytically, by, say, the RG of Ref. [11]
- Numerical simulations plagued by very slow, logarithmic convergence to the thermodynamic limit near the transition (large-scale simulations needed, together with FSS methods)

5	2	1.617(2)	1.6972(14)	
5	4	1.943(2)	1.9885(15)	
5	6	2.05(1)	2.08(1)	
5	8	2.085(2)	2.1207(9)	
5	12	2.14(1)	2.16(1)	
6	2		2.3410(15)	
6	4		2.725(12)	
6	8		2.899(4)	
8	2		3.8640(10)	
8	4	2.544(8)	4.6864(15)	
8	8	3.422(9)	4.9808(5)	

N	N _t	$eta_{ m c}^{(1)}$	$\beta_{\rm c}^{(2)}$
12	2		8.3745(5)
12	4		10.240(7)
12	8		10.898(5)
13	2	1.795(4)	9.735(4)
13	4	2.74(5)	11.959(6)
13	8	3.358(7)	12.730(2)
20	2		22.87(4)
20	4	2.57(1)	28.089(3)
20	8	3.42(5)	29.758(6)

At fixed N_t , $\beta_c^{(2)}(N)$ well fitted by $A/(1 - \cos 2\pi/N) + B(1 - \cos 2\pi/N)$ (the plots below refer to $N_t = 2, 4, 8$, respectively, for the latter function)

Continuum limit of the two transitions

At the $\beta_{c}^{(1,}$ $(\beta_{c}^{(2)} T = indefinition for the second seco$	fixed N , β scaling fu $\beta^{(2)}(N_t) = \beta^{(1,2)}$ should = 0; also ν ex)	${}^{(1,2)}_{ m c}$ (N_t) for N_t ${}^{(1,2)}_{ m c}$ $-(N_t)$ ${}^{(1,2)}_{ m c}$ $-(N_t)$ match $\beta_{ m c}$ γ is the T	itted by $(T_c)^{-1/\nu}$ of = 0	N , 5	<i>aT</i> _c 0.790(5) 0.764(14) 0.758(16) 0.786(7) 0.722(16) 0.709(19)	$eta^{(1)}_{ m c}$ 2.198(9) 2.144(9) 2.135(11) 2.17961 2.17961 2.17961		χ 1.2 23 33 2.6 10 17	
N	aT _c	$\beta_{\rm c}^{(2)}$	ν	χ^2_r					
	0.810(13)	2.17961	0.670	81.8	-				
5	0.776(31)*	2.17961	0.670	74.2*					
	0.731(18)*	2.17961	0.640	31.4*					
	0.6769(76)	2.977(10)	0.674	5.02					
	0.6740(85)	2.969(12)	0.642	6.90					
6	0.6832(46)	3.00683	0.768(15)	1.14	No error bar me				
	0.572(13)*	3.00683	0.674	1.44*			means		
	0.542(21)*	3.00683	0.642	4.48*			1		
	0.42378(12)	8(12) 5.14299(25)		0.19	"tixeo	"fixed parameter"			
8	0.4294(12)	5.12829	0.648(6)	33.0	mark * means only				
	0.4216(10)*	5.12829	0.637	2.21*	$\Lambda = \Lambda \circ$ included in				
	0.24559(13)	11.2640(23)	0.670	0.22	$N_t = 4, \delta$ included				
12	0.2602(32)	11.1962	0.630(11)	14.2	fit				
	0.25742(10)	11.1962	0.640	12.7					
	0.21872(53)	13.1656(56)	0.671	5.88					
13	0.22851(40)	13.1199(42)	0.642	3.40					
	0.22928(67)	13.1077	0.642	16.0	_				
20	0.1357(26)	30.6729	0.642(19)	58.2					
	$0.13199(13)^*$	30.6729	0.673	1.57*					
	0.13519(49)*	30.6729	0.647	23.9*					

agreement with the Svetitsky-Yaffe conjecture.

- We proposed and checked a formula for the scaling with N of the critical coupling of the second phase transition.
- Using the value of the index ν obtained by us at T = 0, we checked the continuum scaling and predicted an approximate value for aT_c in the continuum limit.

Acknowledgments

This work has been partially supported by the INFN SUMA project.

References

- D. Horn, M. Weinstein and S. Yankielowicz, Phys. Rev. D 19 (1979) [1] 3715.
- A. Ukawa, P. Windey, A.H. Guth, Phys. Rev. D 21 (1980) 1013. [2]
- M.B. Einhorn, R. Savit, and E. Rabinovici, Nucl. Phys. B 170 (1980) [3] 16.
- G. Bhanot and M. Creutz, Phys. Rev. D 21 (1980) 2892. [4]
- O. Borisenko, V. Chelnokov, G. Cortese, R. Fiore, M. Gravina, [5] A. Papa, I. Surzhikov, Nucl. Phys. B 879 (2014) 80; PoS(Lattice 2013)347, [arXiv:1311.0471 [hep-lat]].
- B. Svetitsky, L. Yaffe, Nucl. Phys. B 210 (1982) 423. 6
- M. Caselle, P. Giudice, F. Gliozzi, P. Grinza, S. Lottini, PoS [7]

Standard approach: use Binder cumulants and susceptibilities of the Polyakov loop to determine critical couplings and critical indices

- Our strategy: move to a dual formulation and use Binder cumulants and susceptibilities of dual Z(N) spins
 - critical behavior of dual spins reversed with respect to that of Polyakov loops:
 - spontaneously-broken ordered phase mapped to symmetric phase and vice versa
 - \blacktriangleright critical indices η interchanged
 - index ν expected to be the same (=1/2) at both transitions

(see Ref. [10] for further details)

cluster algorithms available

LAT2007 (2007) 306 [arXiv:0710.0488 [hep-lat]].

- O. Borisenko, V. Chelnokov, G. Cortese, R. Fiore, M. Gravina, 8 A. Papa, I. Surzhikov, Phys. Rev. E 86 (2012) 051131; PoS(Lattice 2012)270 [arXiv:1212.1051 [hep-lat]].
- V.L. Berezinskii, Sov. Phys. JETP 32 (1971) 493; J. Kosterlitz, [9] D. Thouless, J. Phys. C 6 (1973) 1181; J. Kosterlitz, J. Phys. 7 (1974) 1046.
- O. Borisenko, V. Chelnokov, G. Cortese, R. Fiore, M. Gravina, [10] A. Papa, I. Surzhikov, Nucl. Phys. Rev. B 870 (2013) 159; PoS(Lattice 2013)463 [arXiv:1310.1039 [hep-lat]].
- [11] S. Elitzur, R.B. Pearson, J. Shigemitsu, Phys. Rev. D 19 (1979) 3698.

Lattice 2014 - New York, June 22-28, 2014

