Tree level improvement of the gradient flow
1406.0827

Daniel Nogradi

in collaboration with

Zoltan Fodor, Kieran Holland

Julius Kuti, Santanu Mondal, Chik Him Wong

Wuppertal - Stockton - San Diego - Budapest

Our goals

- Systematically understand cut-off effects of gradient flow
- Reduce them by tree level improvement
- Come up with optimal simulation parameters

Gradient flow in a (really small) nutshell:

$$
\frac{d A_{\mu}(t)}{d t}=-\frac{\delta S}{\delta A_{\mu}}, \quad\left\langle t^{2} E(t)\right\rangle, \quad E=-\frac{1}{2} \operatorname{Tr} F_{\mu \nu} F_{\mu \nu}
$$

Why care?

- Tuesday 14:55 - Nathan Brown - Gradient Flow Analysis on MILC HISQ Ensembles
- Tuesday 14:35 - Andrea Shindler - Beyond the Standard Model Matrix Elements with the gradient flow
- Tuesday 14:35 - Liam Keegan - TEK twisted gradient flow running coupling
- Wednesday 09:00 - Anna Hasenfratz - Improved gradient flow for step scaling function and scale setting
- Wednesday 09:20 - Jarno Rantaharju - The gradient flow running coupling in SU2 with 8 flavors
- Wednesday 11:10 - Marco Ce - Testing the WittenVeneziano mechanism with the YangMills gradient flow on the lattice
- Thursday 14:55 - Agostino Patella - Energy-momentum tensor on the lattice and Wilson flow
- Thursday 15:15 - Masanori Okawa - String tension from smearing and Wilson flow methods
- Thursday 15:55 - Stefan Sint - How to reduce $O\left(a^{2}\right)$ effects in gradient flow observables
- Friday 10:15 - Alberto Ramos - Wilson flow and renormalization
- Saturday 09:30 - Kitazawa Masakiyo - Measurement of thermodynamics using Gradient Flow

Why care?

Applications include

- Running coupling
- Topology
- Thermodynamics
- Energy momentum tensor, trace anomaly
- Scale setting
- And more ...

In all these projects $\left\langle t^{2} E(t)\right\rangle$ pops up

What we are after
Continuum:

$$
\left\langle t^{2} E(t)\right\rangle=g^{2} \frac{3\left(N^{2}-1\right)}{128 \pi^{2}}\left(1+O\left(g^{2}\right)\right)
$$

Lattice:

$$
\begin{gathered}
\left\langle t^{2} E(t)\right\rangle=g^{2} \frac{3\left(N^{2}-1\right)}{128 \pi^{2}}\left(C\left(a^{2} / t\right)+O\left(g^{2}\right)\right) \\
C\left(a^{2} / t\right)=1+\sum_{m=1}^{\infty} C_{2 m} \frac{a^{2 m}}{t^{m}}
\end{gathered}
$$

What we are after

Lattice cut-off coefficients $C_{2 m}$ depend on the discretization of 3 ingredients:

- Flow, S_{f}
- Action, S_{g}
- Observable, $E=S_{e}$

In the continuum, all 3 are $F_{\mu \nu} F_{\mu \nu}$. We consider large class of discretizations, 1×1 plaquette, 2×1 plaquette, clover. The 3 ingredients can all be different.

Note

We only consider 2×1 plaquette improvement terms (and clover for observable), c_{1} and only consider one observable $t^{2} E(t)$.

For full tree-level improvement, improvement of all observables, one needs larger set of terms in action (chairs, etc), c_{2}, c_{3}

- In practice, people do use only 2×1 plaquette terms (or clover)
- Calculation is tree level, $g^{2} a^{2}$ will be there anyway, no need to overkill

If interested in general case: \rightarrow Stefan Sint, right after this talk, Alberto Ramos Fri 10:15

Lattice perturbation theory, $c_{1}=c$

Action in momentum space

$$
S_{\mu \nu}(c)=\delta_{\mu \nu}\left(\hat{p}^{2}-a^{2} c \sum_{\rho} \hat{p}_{\rho}^{4}-a^{2} c \widehat{p}_{\mu}^{2} \hat{p}^{2}\right)-\widehat{p}_{\mu} \widehat{p}_{\nu}\left(1-a^{2} c\left(\hat{p}_{\mu}^{2}+\widehat{p}_{\nu}^{2}\right)\right)
$$

Clover in momentum space

$$
K_{\mu \nu}=\left(\delta_{\mu \nu} \tilde{p}^{2}-\tilde{p}_{\mu} \tilde{p}_{\nu}\right) \cos \left(\frac{a p_{\mu}}{2}\right) \cos \left(\frac{a p_{\nu}}{2}\right)
$$

where $\widehat{p}_{\mu}=\frac{2}{a} \sin \left(\frac{a p_{\mu}}{2}\right), \tilde{p}_{\mu}=\frac{1}{a} \sin \left(a p_{\mu}\right)$
$c=0:$ Wilson plaquette, $c=-1 / 12$: tree-level improved Symanzik

The 3 ingredients (Flow, Action, Observable) can have different improvement coefficients: c_{f}, c_{g}, c_{e}.

Or if the observable is clover, only 2 parameters: c_{f}, c_{g}.

$$
\mathcal{S}^{f}=S\left(c_{f}\right) \quad \mathcal{S}^{g}=S\left(c_{g}\right) \quad \mathcal{S}^{e}=S\left(c_{e}\right) \text { or } K
$$

We would like to get $C_{2 m}\left(c_{f}, c_{g}, c_{e}\right)$ or $C_{2 m}\left(c_{f}, c_{g}\right)$ or the full $C\left(a^{2} / t\right)$ similarly as a function of 2 or 3 parameters

Leading order formulae

Gauge fixing term: $\mathcal{G}=\frac{1}{\alpha} \hat{p}_{\mu} \hat{p}_{\nu}$

$$
\begin{gathered}
\frac{d A_{\mu}(t, p)}{d t}=-\left(\mathcal{S}^{f}+\mathcal{G}\right) A_{\mu}(t, p) \\
A_{\mu}(p, t)=\left[e^{-t\left(\mathcal{S}^{f}+\mathcal{G}\right)}\right]_{\mu \nu} A_{\nu}(p, 0) \\
\left\langle A_{\mu}(p, 0) A_{\nu}(p, 0)\right\rangle=\left[\left(\mathcal{S}^{g}+\mathcal{G}\right)^{-1}\right]_{\mu \nu} \\
\left\langle t^{2} E(t)\right\rangle=g_{0}^{2} t^{2} \int_{-\frac{\pi}{a}}^{\frac{\pi}{a}} \frac{d^{4} p}{(2 \pi)^{4}} \mathcal{S}_{\mu \nu}^{e}(p)\left\langle A_{\mu}(p, t) A_{\nu}(p, t)\right\rangle
\end{gathered}
$$

Leading order formulae

$$
\left\langle t^{2} E(t)\right\rangle=g_{0}^{2} t^{2} \int_{-\frac{\pi}{a}}^{\frac{\pi}{a}} \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left(e^{-t\left(\mathcal{S}^{f}+\mathcal{G}\right)}\left(\mathcal{S}^{g}+\mathcal{G}\right)^{-1} e^{-t\left(\mathcal{S}^{f}+\mathcal{G}\right)} \mathcal{S}^{e}\right)
$$

Note: these 4×4 matrices don't necessarily commute

Can be evaluated numerically in finite/infinite volume or can be expanded in a^{2}

Note: with periodic gauge fields zero mode needs to be treated separately (more later)

Expansion in a^{2}

$$
C_{2}=2 c_{f}+\frac{2}{3} c_{g}-\frac{2}{3} c_{e}+\frac{1}{8}, \quad \text { with clover : } C_{2}=2 c_{f}+\frac{2}{3} c_{g}-\frac{1}{24}
$$

Similar polynomial expressions for C_{4}, C_{6}, C_{8}.

Notice that we have 3 or 2 free parameters, we can fix them by imposing 3 or 2 conditions

Example 1: $C_{2}=C_{4}=C_{6}=0$

$$
c_{f}=-0.013993 \quad c_{g}=0.052556 \quad c_{e}=0.198078
$$

$O\left(a^{6}\right)$ improvement at tree-level

If you already have the configurations, c_{g} fixed.
Can set $C_{2}=C_{4}=0$

Example 2: $c_{g}=0$ fixed $\rightarrow \quad c_{f}=0, c_{e}=3 / 16$
Example 3: $c_{g}=-1 / 12$ fixed $\rightarrow c_{f}=0.0388441, c_{e}=0.2206988$
$O\left(a^{4}\right)$ improvement at tree-level

Example 4: with clover, c_{g} fixed $\rightarrow c_{f}=\frac{1}{48}-\frac{1}{3} c_{g}$.
$O\left(a^{2}\right)$ improvement at tree-level

Size of tree-level cut-off effects, $C_{2,4,6,8}$, is thus obtained for all frequently used cases, Wilson-plaquette, tree-level improved Symanzik, clover, and all their combinations.

All the above was about finding optimal simulation/measurement parameters

Another application: improvement of already gathered data with arbitrary simulation/measurement parameters

Improvement of data

If simulation/measurement is already done (with non-optimal parameters):

$$
\left\langle t^{2} E(t)\right\rangle_{i m p}=\frac{\left\langle t^{2} E(t)\right\rangle_{l a t t i c e}}{C\left(a^{2} / t\right)}=g^{2} \frac{3\left(N^{2}-1\right)}{128 \pi^{2}}\left(1+O\left(g^{2}\right)\right)
$$

In this case: evaluate $C\left(a^{2} / t\right)$ in finite L / a volume of the simulation (full a^{2}-dependence, no expansion)

Continuum limit by construction the same as before

Improvement of data

$$
\left\langle t^{2} E(t)\right\rangle=g_{0}^{2} t^{2} \int_{-\frac{\pi}{a}}^{\frac{\pi}{a}} \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left(e^{-t\left(\mathcal{S}^{f}+\mathcal{G}\right)}\left(\mathcal{S}^{g}+\mathcal{G}\right)^{-1} e^{-t\left(\mathcal{S}^{f}+\mathcal{G}\right)} \mathcal{S}^{e}\right)
$$

In finite volume: $d p \rightarrow \sum_{n}$ finite lattice sum $p_{\mu}=2 \pi n_{\mu} / L$
Zero mode (if periodic):
non-Gaussian, can be calculated exactly, lattice $=$ continuum, 1208.1051

Numerical test

We introduced a flow-based finite volume running coupling scheme in 1208.1051
$S U(3)$ with $N_{f}=4$ fundamental fermions, $s=3 / 2$ step scaling, β-function

$S U(3)$ with $N_{f}=4$ fundamental fermions, $s=3 / 2$ step scaling, β-function

$\mathrm{s}=1.5$ step function with tree-level improvement

Summary

- Tree level improvement of $\left\langle t^{2} E(t)\right\rangle$ for a large class of discretizations (frequently used ones among them)
- Application 1: find optimal parameters for simulation/measurement
- Application 2: improve already obtained data with fixed (nonoptimal) simulation/measurement

Our continuum extrapolations will be much better in both cases!

Thank you for your attention!

