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Our goals
e Systematically understand cut-off effects of gradient flow
e Reduce them by tree level improvement
e Come up with optimal simulation parameters

Gradient flow in a (really small) nutshell:

dAu(t) _ 88
dt — 5A,°
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Why care?

Tuesday 14:55 — Nathan Brown — Gradient Flow Analysis on
MILC HISQ Ensembles

Tuesday 14:35 — Andrea Shindler — Beyond the Standard Model
Matrix Elements with the gradient flow

Tuesday 14:35 — Liam Keegan — TEK twisted gradient flow
running coupling

Wednesday 09:00 — Anna Hasenfratz — Improved gradient flow
for step scaling function and scale setting

Wednesday 09:20 — Jarno Rantaharju — T he gradient flow run-
ning coupling in SU2 with 8 flavors



Wednesday 11:10 — Marco Ce — Testing the WittenVeneziano
mechanism with the YangMills gradient flow on the lattice

Thursday 14:55 — Agostino Patella — Energy-momentum tensor
on the lattice and Wilson flow

Thursday 15:15 — Masanori Okawa — String tension from smear-
ing and Wilson flow methods

Thursday 15:55 — Stefan Sint — How to reduce O(a?) effects
in gradient flow observables

Friday 10:15 — Alberto Ramos — Wilson flow and renormaliza-
tion

Saturday 09:30 — Kitazawa Masakiyo — Measurement of ther-
modynamics using Gradient Flow



Why care?

Applications include
e Running coupling
e [opology
e [ hermodynamics
e Energy momentum tensor, trace anomaly
e Scale setting

e And more ...

In all these projects <t2E(t)> POPS up



What we are after

Continuum:
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What we are after

Lattice cut-off coefficients C5,,, depend on the discretization of 3
ingredients:

o Flow, Sf

e Action, Sy

e Observable, £ = 5,

In the continuum, all 3 are F;,F,,. We consider large class of
discretizations, 1 x 1 plaquette, 2 x 1 plaquette, clover. The 3
ingredients can all be different.



Note

We only consider 2 x 1 plaquette improvement terms (and clover
for observable), ¢; and only consider one observable t2E(t).

For full tree-level improvement, improvement of all observables,
one needs larger set of terms in action (chairs, etc), co,c3

e In practice, people do use only 2x 1 plaquette terms (or clover)

e Calculation is tree level, g2a? will be there anyway, no need to
overkill

If interested in general case: — Stefan Sint, right after this talk,
Alberto Ramos Fri 10:15



Lattice perturbation theory, ¢c1 = ¢

Action in momentum space

S,LLI/<C) = 5,LLI/ (2’9‘2 _ CLQCZZ/D\? —Qa Cﬁ§ﬁ2> — ZI)\,LL],?\V (1 a C( _I_ﬁg))
0

Clover in momentum space

a a
Ky = (5Wp —pﬂpy> cos( 129“) cos( 229 )

where B, = 2sin ( pﬂ) Py = Lsin(apy)

c = 0: Wilson plaquette, ¢ = —1/12: tree-level improved Symanzik



The 3 ingredients (Flow, Action, Observable) can have different
improvement coefficients: Cfy Cgy Ce-

Or if the observable is clover, only 2 parameters: cf, Cg.

S = S(cy) S9 = S(cy) S¢ = S(c.) or K

We would like to get Cop,(cf, cg, ce) OF Cop(cy, cg) or the full C(a?/t)
similarly as a function of 2 or 3 parameters



Leading order formulae

Gauge fixing term: G = éﬁuﬁy

dA,u(t? p) — _
dt

(8T +G) Au(t, p)
Au(p,t) = [e_t(SfJ“g)] Au(p,0)

U

(Au(p,0)Au(p,0)) = |(S9 + g)_lhy

s 4
(W) = g3 [, 5 X3S e) A, 0 (D, 0)



Leading order formulae

™ 4
<t2E(t)> — gth a d’'p Tr (e—t(Sf-I-g) (Sg + g)—le—t<8f+g)86)

Note: these 4 x 4 matrices don't necessarily commute

Can be evaluated numerically in finite/infinite volume or can be
expanded in a2

Note: with periodic gauge fields zero mode needs to be treated
separately (more later)



Expansion in a?

2 2 1 2 1
Co =2 —Cqg — — —,  withclover: Cp, =2 Zeg — —
2=t g T gt g 2= 2 3% 0y

Similar polynomial expressions for Cy, Cg, C§g.

Notice that we have 3 or 2 free parameters, we can fix them by
imposing 3 or 2 conditions

Example 1: (o =Cs =Cg =0

cy = —0.013993 cqg = 0.052556 ce = 0.198078

O(a®) improvement at tree-level



If you already have the configurations, ¢4 fixed.

Canset o =C4 =0

Example 2: ¢4 = 0 fixed — cy =0, ce =3/16

Example 3: ¢y = —1/12 fixed — ¢y = 0.0388441, ce = 0.2206988
O(a®) improvement at tree-level

Example 4: with clover, ¢4 fixed — cp=

&
oy
<$

O(a?) improvement at tree-level



Size of tree-level cut-off effects, 02’4,678, IS thus obtained for
all frequently used cases, Wilson-plaguette, tree-level improved
Svymanzik, clover, and all their combinations.
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All the above was about finding optimal simulation/measurement
parameters

Another application: improvement of already gathered data with
arbitrary simulation/measurement parameters



Improvement of data

If simulation/measurement is already done (with non-optimal pa-
rameters):

<t2E(t)>lattice _ 23(N2 — 1)
C(a2/t) 7 T 128x2

<t2E(t)>imp —

(14 0(?))

In this case: evaluate C'(a?/t) in finite L/a volume of the simulation
(full a?-dependence, no expansion)

Continuum limit by construction the same as before



Improvement of data

d4p
(2m)4

(tPE(t)) = ggt* /i Tr (e_t<8f +9) (89 4 g)~LeHS’ +g)86)

In finite volume: dp — %, finite lattice sum p, = 2mn, /L

Zero mode (if periodic):

non-Gaussian, can be calculated exactly, lattice = continuum,
1208.1051



Numerical test

We introduced a flow-based finite volume running coupling scheme
in 1208.1051

SU(3) with Ny = 4 fundamental fermions, s = 3/2 step scaling,
B-function

Nf=4 s=1.5 step function tree-level improved
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SU(3) with Ny = 4 fundamental fermions, s = 3/2 step scaling,
B-function

s=1.5 step function with tree—level improvement
3 T T T T T
O  beta function with tree improvement
1 loop
2 loop
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Summary

e Tree level improvement of (t?E(t)) for a large class of dis-
cretizations (frequently used ones among them)

e Application 1: find optimal parameters for simulation/measurement

e Application 2: improve already obtained data with fixed (non-
optimal) simulation/measurement

Our continuum extrapolations will be much better in both cases!



Thank you for your attention!



