

Dark Nuclei

William Detmold MIT

About

- Based on two recent papers
- Dark Nuclei I: Cosmology and Indirect Detection -I 406.2276
- Dark Nuclei II: Nuclear Spectroscopy in Two-Colour QCD |406.4|l6
- Work in collaboration with Matthew McCullough \& Andrew Pochinsky
- Composite nature of baryonic matter motivates consideration of composite models for dark matter
- Here focus on two-colour QCD with two flavours of fundamental fermions
- Numerically feasible (cheaper than QCD)
- Recently considered in this context by Lewis et al., Neil \& Buckley, Hietanen et al.
- Also investigations of quenched $\mathrm{N}_{c}=4 \mathrm{QCD}$ and other theories in this context
- Global flavour symmetry $\operatorname{SU}(2)\llcorner\times S U(2)$ R enlarges to $S U(4)$
- Pseudo-reality of $S U(2)$ - right and left handed quarks can be combined into multiplets

$$
\Psi=\left(\begin{array}{c}
u_{L} \\
d_{L} \\
-i \sigma_{2} C \bar{u}_{R}^{\top} \\
-i \sigma_{2} C d_{R}^{\top}
\end{array}\right) \quad \Psi \xrightarrow{S U(4)} \exp \left(i \sum_{j=1}^{15} \theta_{j} T_{j}\right) \Psi
$$

- Strong interactions result in condensate that spontaneously breaks the global symmetry: $\mathrm{SU}(4) \rightarrow \mathrm{Sp}(4) \sim \mathrm{SO}(5)$ [Peskin 1980]
- Numerical calculations have significant explicit symmetry breaking: $\mathrm{m}_{\mathrm{u}}=\mathrm{m}_{\mathrm{d}} \sim \Lambda_{\mathrm{QC} 2 \mathrm{D}}$
- Simplest colour singlets
- "Pions": $\left.\pi^{\sim} \sim \bar{u} \gamma_{5} \mathrm{~d}, \quad \pi^{0} \sim \bar{u} \gamma_{5} u+\bar{d} \gamma_{5} \mathrm{~d}, \quad \pi^{+} \sim \bar{d} \gamma_{5} u \quad J^{\mathrm{P}}=0^{-} \quad\right\} \quad$ Degenerate
- (anti-)"Nucleons": ud, ū̄ $\left.\mathrm{J}^{\mathrm{P}=0^{+}}\right\} \mathrm{SO}(5)$ multiplet

- (anti-)"Deltas": $u \gamma_{\mu} \gamma_{5} d, \bar{u} \gamma_{\mu} \gamma_{5} \bar{d}$ $J^{\mathrm{P}}=I^{+}$\}SO(5) multiplet
- Axial vector, scalar, tensor mesons + associated baryons
- Spectrum studied by [Hietanen et al. I 404.2794]
- Pion multiplet are Goldstone bosons of $\chi \mathrm{SB}: \mathrm{SU}(4) \rightarrow \mathrm{Sp}(4)$
- Colour singlets can combine
- Two-, three-, ... particle scattering states
- "Nuclei" for sufficiently attractive interactions-not a priori obvious
- Two "pions" combine to give 25 of states: $\mathbf{5} \otimes \mathbf{5}=\mathbf{I} \oplus \mathbf{I} \mathbf{0} \oplus \mathbf{I} \mathbf{4}$
- J=0 systems, contains B=2, I,, , $1,-2$ states
- "pion"+ "rho": J= | systems with same flavour breakdown
- Higher body systems: $J=0$, , , flavour $=\underbrace{\square \square \square \square \square}_{n}, n=2, \ldots, 8$

Simulations

- Wilson gauge and fermion actions
- HMC using modified chroma
- 4β values, 6 masses
- 3 or 4 volumes per choice (β, mo)
- Long streams of configurations

Label	β	m_{0}	$L^{3} \times T$	$N_{\text {traj }}$
A	1.8	-1.0890	$12^{3} \times 72$	5,000
			$16^{3} \times 72$	4,120
			$20^{3} \times 72$	3,250
B	2.0	-0.9490	$12^{3} \times 48$	10,000
			$16^{3} \times 48$	4,000
			$20^{3} \times 48$	3,840
			$24^{3} \times 48$	2,930
C	2.0	-0.9200	$12^{3} \times 48$	10,000
			$16^{3} \times 48$	9,780
			$20^{3} \times 48$	10,000
D			$12^{3} \times 48$	9,990
			$16^{3} \times 48$	5,040
			$16^{3} \times 72$	5,000
			$20^{3} \times 48$	5,000
			$24^{3} \times 48$	5,050
E			$12^{3} \times 72$	5,000
			$16^{3} \times 72$	5,000
			$20^{3} \times 72$	4,300
F			$12^{3} \times 72$	5,000
			$16^{3} \times 72$	5,000
		$20^{3} \times 72$	5,000	
			$24^{3} \times 72$	5,070

- Extract spectrum of multi-baryon states from correlators

$$
\begin{aligned}
C_{n N}(t) & =\langle 0|\left(\sum_{\mathbf{x}} \mathcal{O}_{N}^{P}(\mathbf{x}, t)\right)^{n}\left(\mathcal{O}_{N}^{S \dagger}\left(\mathbf{x}_{0}, t_{0}\right)\right)^{n}|0\rangle \\
C_{n N, \Delta}^{(i, j)}(t) & =\langle 0|\left(\sum_{\mathbf{x}} \mathcal{O}_{N}^{P}(\mathbf{x}, t)\right)^{n} \sum_{\mathbf{x}} \mathcal{O}_{\Delta_{j}}^{P}(\mathbf{x}, t)\left(\mathcal{O}_{N}^{S \dagger}\left(\mathbf{x}_{0}, t_{0}\right)\right)^{n} \mathcal{O}_{\Delta_{i}}^{S \dagger}\left(\mathbf{x}_{0}, t_{0}\right)|0\rangle \\
& \mathcal{O}_{\left\{N, \Delta_{i}\right\}, s}(\mathbf{x}, t)=\psi_{u}^{\top}(\mathbf{x}, t)\left(-i \sigma_{2}\right) C\left\{1, \gamma_{i} \gamma_{5}\right\} \psi_{d}(\mathbf{x}, t)
\end{aligned}
$$

- Local and smeared sources and sinks
- Aim to extract ground state, but need to be careful of thermal effects (use full thermal behaviour of correlator, multiple T's)
- Final method - correlated single exp fit of shortened time range
- $\mathrm{SU}(2)$ multi-baryon contractions equivalent to maximal isospin multimeson contractions
- Clear from degeneracies but explicitly

$$
\begin{aligned}
& S(y, x)=C^{\dagger}\left(-i \sigma_{2}\right)^{\dagger} S(x, y)^{T}\left(-i \sigma_{2}\right) C \\
& S(y, x)=\gamma_{5} S^{\dagger}(x, y) \gamma_{5}
\end{aligned}
$$

- Use algorithms from $N_{c}=3$ QCD [WD \& Savage 201I,WD Orginos, Shi 2012]
- ($\mathrm{n}-\mathrm{I}$) N $\Delta \sim$ mixed pion-kaon contractions [WD \& Smigielski 201 I]

Ex:: three types of contractions for $\mathrm{I}=3 \pi \pi \pi$ and NNN

Example effective mass plots

su2_wl2_16_72_b2p1_m0p7700

Example effective mass plots

su2_wl2_20_48_b2p0_m0p9200

Energy shifts for different volumes

su2_wl2_12_48_b2p0_m0p9200

Increasing volume

- If bound/scattering state, expect

$$
\begin{array}{ll}
H_{1}: & \Delta E_{\mathrm{bound}}(L)=-\Delta E_{\infty}\left[1+C \frac{e^{-\kappa L}}{L}\right], \\
H_{2}: & \Delta E_{\text {scater }}(L)=\frac{2 \pi A}{\mu L^{3}}\binom{n}{2}\left[1-\left(\frac{A}{\pi L}\right) \mathcal{I}+\left(\frac{A}{\pi L}\right)^{2}\left[\mathcal{I}^{2}+(2 n-5) \mathcal{J}\right]\right]+\frac{B}{L^{6}}
\end{array}
$$

- Assess support for each hypothesis using the Bayes factor*

$$
K=\frac{P\left(D \mid H_{1}\right)}{P\left(D \mid H_{2}\right)}=\frac{\int P\left(D \mid H_{1}, p_{1}\right) P\left(p_{1} \mid H_{1}\right) d p_{1}}{\int P\left(D \mid H_{2}, p_{2}\right) P\left(p_{2} \mid H_{2}\right) d p_{2}}
$$

where $\log P\left(D \mid H_{i}, p_{i}\right)=-\frac{1}{2} \sum_{j=1}^{N} \frac{\left[d_{j}-H_{i}\left(x_{j} ; p_{i}\right)\right]^{2}}{\sigma_{j}^{2}}$
and $\mathrm{P}\left(\mathrm{pi}_{\mathrm{i}} \mathrm{H}_{\mathrm{i}}\right)$ are broad prior distributions

- If $2 \ln [K]>6$:"strong evidence" of preference for H_{1} over H_{2} then ask what are the bounds on the binding energy

Infinite volume extrapolations

Continuum extrapolations

- Simple continuum limit extrapolation of binding momentum, γ

NB: physical scale set by demanding $f_{\pi}=246 \mathrm{GeV}$ (arbitrary)

- J=0 nuclei: very likely unbound (small K, all positively shifted)
- J=I, strong evidence for bound states for $B=2,3$, perhaps 4 $B=5, . ., 8$ seem unbound
- Bindings decrease with quark mass and increase towards continuum
- Strength of binding is significant w.r.t. mass
- Nuclear states with other quantum \#s may also be bound

The ubiquity of nuclei?

- Presence of nuclear binding energies: new scale for phenomenology can be significantly different than $\Lambda_{\mathrm{QC} 2 \mathrm{D}}$
- New processes in dark sector: dark nucleosynthesis, dark capture processes

- Modify early universe cosmology (both symmetric \& asymmetric scenarios)
- Significant modifications to dark matter capture in astrophysical bodies
- Very rich phenomenology!

