

Dark Nuclei

William Detmold MIT

Lattice 2014, June 27^h 2014

About

- Based on two recent papers
 - Dark Nuclei I: Cosmology and Indirect Detection —1406.2276
 - Dark Nuclei II: Nuclear Spectroscopy in Two-Colour QCD 1406.4116
- Work in collaboration with Matthew McCullough & Andrew Pochinsky

Two-colour QCD

- Composite nature of baryonic matter motivates consideration of composite models for dark matter
- Here focus on two-colour QCD with two flavours of fundamental fermions
 - Numerically feasible (cheaper than QCD)
 - Recently considered in this context by Lewis et al., Neil & Buckley, Hietanen et al.
- Also investigations of quenched N_c=4 QCD and other theories in this context

- Global flavour symmetry $SU(2)_L \times SU(2)_R$ enlarges to SU(4)
 - Pseudo-reality of SU(2) right and left handed quarks can be combined into multiplets

$$\Psi = \begin{pmatrix} u_L \\ d_L \\ -i\sigma_2 C \bar{u}_R^\top \\ -i\sigma_2 C \bar{d}_R^\top \end{pmatrix} \qquad \Psi \xrightarrow{SU(4)} \exp\left(i\sum_{j=1}^{15} \theta_j T_j\right) \Psi$$

- Strong interactions result in condensate that spontaneously breaks the global symmetry: $SU(4) \rightarrow Sp(4) \sim SO(5)$ [Peskin 1980]
- Numerical calculations have significant explicit symmetry breaking: $m_u = m_d \sim \Lambda_{QC_2D}$

Spectrum

- Simplest colour singlets

 - (anti-)''Nucleons'': ud, ūd
 - $\text{``Rhos'': } \pi^{-} \sim \bar{u} \gamma_{\mu} d, \quad \pi^{0} \sim \bar{u} \gamma_{\mu} u + \bar{d} \gamma_{\mu} d, \quad \pi^{+} \sim \bar{d} \gamma_{\mu} u \quad J^{P} = I^{-} \\ \text{SO}(5) \text{ multiplet}$ $\text{(anti-)'`Deltas'': } u \gamma_{\mu} \gamma_{5} d, \quad \bar{u} \gamma_{\mu} \gamma_{5} d \quad I^{P} = I^{+}$
 - (anti-)"Deltas": $u\gamma_{\mu}\gamma_{5}d$, $\overline{u}\gamma_{\mu}\gamma_{5}\overline{d}$
 - Axial vector, scalar, tensor mesons + associated baryons
- Spectrum studied by [Hietanen et al. 1404.2794]
 - Pion multiplet are Goldstone bosons of χ SB: SU(4) \rightarrow Sp(4)

Spectrum

- Colour singlets can combine
 - Two-, three-, ... particle scattering states
 - "Nuclei" for sufficiently attractive interactions—not a priori obvious
- Two "pions" combine to give 25 of states: $5 \otimes 5 = I \oplus I \oplus I 4$
 - J=0 systems, contains B=2,1,0,-1,-2 states
- "'pion"+ "rho": J=1 systems with same flavour breakdown

$$\boldsymbol{D}^{\mu} = \begin{pmatrix} S^{\mu}_{+} & D^{\mu}_{2,0} & D^{\mu}_{1,0} & D^{\mu}_{1,-1} & D^{\mu}_{1,1} \\ \overline{D}^{\mu}_{2,0} & S^{\mu}_{-} & D^{\mu}_{-1,0} & D^{\mu}_{-1,-1} & D^{\mu}_{-1,1} \\ \overline{D}^{\mu}_{1,0} & \overline{D}^{\mu}_{-1,0} & S^{\mu}_{0} & D^{\mu}_{0,-1} & D^{\mu}_{0,1} \\ \overline{D}^{\mu}_{1,-1} & \overline{D}^{\mu}_{-1,1} & \overline{D}^{\mu}_{0,1} & S^{\mu}_{B} & D^{\mu}_{0,2} \\ \overline{D}^{\mu}_{1,1} & \overline{D}^{\mu}_{-1,1} & \overline{D}^{\mu}_{0,1} + & \overline{D}^{\mu}_{0,2} & S^{\mu}_{\overline{B}} \end{pmatrix} \qquad \qquad \boldsymbol{D}^{\mu}_{14} = \frac{1}{2} \left(\boldsymbol{D}^{\mu} + \boldsymbol{D}^{\mu T} \right) - \frac{1}{5} \operatorname{Tr}(\boldsymbol{D}^{\mu}) \mathbb{1}_{5}$$

• Higher body systems: J=0, I, flavour = n, n=2,...,8

Simulations

		Label	β	m_0	$L^3 \times T$	$N_{ m traj}$
		A	1.8	-1.0890	$12^3 \times 72$	5,000
					$16^3 \times 72$	4,120
					$20^3 \times 72$	3,250
1	Wilson gauge and fermion actions	В	2.0	-0.9490	$12^3 \times 48$	10,000
					$16^3 \times 48$	4,000
					$20^3 \times 48$	$3,\!840$
	HMC using modified chroma				$24^3 \times 48$	$2,\!930$
		C	2.0	-0.9200	$12^3 \times 48$	10,000
					$16^3 \times 48$	9,780
	4 β values, 6 masses				$20^3 \times 48$	10,000
		D	2.0	-0.8500	$12^3 \times 48$	9,990
					$16^3 \times 48$	$5,\!040$
	3 or 4 volumes per choice (β ,m ₀)				$16^3 \times 72$	$5,\!000$
					$20^3 \times 48$	$5,\!000$
					$24^3 \times 48$	$5,\!050$
	Long streams of configurations	E	2.1	-0.7700	$12^3 \times 72$	$5,\!000$
					$16^3 \times 72$	$5,\!000$
					$20^3 \times 72$	4,300
		F	2.2	-0.6000	$12^3 \times 72$	$5,\!000$
					$16^3 \times 72$	$5,\!000$
					$20^3 \times 72$	$5,\!000$
					$24^3 \times 72$	$5,\!070$

Multi-baryon spectrum

Extract spectrum of multi-baryon states from correlators

$$C_{nN}(t) = \left\langle 0 \left| \left(\sum_{\mathbf{x}} \mathcal{O}_{N}^{\mathcal{P}}(\mathbf{x}, t) \right)^{n} \left(\mathcal{O}_{N}^{\mathcal{S}\dagger}(\mathbf{x}_{0}, t_{0}) \right)^{n} \right| 0 \right\rangle$$
$$C_{nN,\Delta}^{(i,j)}(t) = \left\langle 0 \left| \left(\sum_{\mathbf{x}} \mathcal{O}_{N}^{\mathcal{P}}(\mathbf{x}, t) \right)^{n} \sum_{\mathbf{x}} \mathcal{O}_{\Delta_{j}}^{\mathcal{P}}(\mathbf{x}, t) \left(\mathcal{O}_{N}^{\mathcal{S}\dagger}(\mathbf{x}_{0}, t_{0}) \right)^{n} \mathcal{O}_{\Delta_{i}}^{\mathcal{S}\dagger}(\mathbf{x}_{0}, t_{0}) \right| 0 \right\rangle$$

$$\mathcal{O}_{\{N,\Delta_i\},s}(\mathbf{x},t) = \psi_u^{\top}(\mathbf{x},t)(-i\sigma_2)C\{1,\gamma_i\gamma_5\}\psi_d(\mathbf{x},t)$$

Local and smeared sources and sinks

- Aim to extract ground state, but need to be careful of thermal effects (use full thermal behaviour of correlator, multiple T's)
- Final method correlated single exp fit of shortened time range

equivalent to maximal isospin multimeson contractions

Clear from degeneracies but explicitly

$$S(y,x) = C^{\dagger}(-i\sigma_2)^{\dagger}S(x,y)^T(-i\sigma_2)C$$

$$S(y,x) = \gamma_5 S^{\dagger}(x,y)\gamma_5$$

- Use algorithms from N_c=3 QCD
 [WD & Savage 2011, WD Orginos, Shi 2012]
- (n-1)NΔ ~ mixed pion-kaon contractions
 [WD & Smigielski 2011]

Ex:: three types of contractions for I=3 $\pi\pi\pi$ and NNN

Example effective mass plots

Example effective mass plots

su2_wl2_20_48_b2p0_m0p9200

Energy shifts for different volumes

Assess support for each hypothesis using the <u>Bayes factor</u>*

$$K = \frac{P(D|H_1)}{P(D|H_2)} = \frac{\int P(D|H_1, p_1) P(p_1|H_1) dp_1}{\int P(D|H_2, p_2) P(p_2|H_2) dp_2}$$

where
$$\log P(D|H_i, p_i) = -\frac{1}{2} \sum_{j=1}^{N} \frac{[d_j - H_i(x_j; p_i)]^2}{\sigma_j^2}$$

and $P(p_i|H_i)$ are broad prior distributions

If 2 In[K] > 6 : "strong evidence" of preference for H₁ over H₂ then ask what are the bounds on the binding energy

 $\beta = 2.2 m_0 = -0.6000 n = 4 2 \ln K = 9.81$

Continuum extrapolations

Simple continuum limit extrapolation of binding momentum, γ

NB: physical scale set by demanding f_{π} =246 GeV (arbitrary)

Dark nuclei

■ J=0 nuclei: very likely unbound (small K, all positively shifted)

- J=I, strong evidence for bound states for B=2,3, perhaps 4 B=5,...,8 seem unbound
 - Bindings decrease with quark mass and increase towards continuum
 - Strength of binding is significant w.r.t. mass
- Nuclear states with other quantum #s may also be bound

The ubiquity of nuclei?

 $N_c=3, m_{\pi}=400-800 \text{ MeV}$

Phenomenology

- Presence of nuclear binding energies: new scale for phenomenology can be significantly different than $\Lambda_{\rm QC2D}$
- New processes in dark sector: dark nucleosynthesis, dark capture processes
 - Modify early universe cosmology (both symmetric & asymmetric scenarios)
- Significant modifications to dark matter capture in astrophysical bodies
- Very rich phenomenology!

