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Based on two recent papers	


Dark Nuclei I: Cosmology and Indirect Detection —1406.2276	


Dark Nuclei II: Nuclear Spectroscopy in Two-Colour QCD —
1406.4116	


Work in collaboration with Matthew McCullough & Andrew 
Pochinsky



Two-colour QCD

Composite nature of baryonic matter motivates consideration 
of composite models for dark matter	


Here focus on two-colour QCD with two flavours of 
fundamental fermions 	


Numerically feasible (cheaper than QCD)	


Recently considered in this context by Lewis et al., Neil & 
Buckley, Hietanen et al.	


Also investigations of quenched Nc=4 QCD and other theories 
in this context



Symmetries of two-colour QCD

Global flavour symmetry SU(2)LxSU(2)R enlarges to SU(4)	


Pseudo-reality of SU(2) - right and left handed quarks can be 
combined into multiplets 
 
 
 

Strong interactions result in condensate that spontaneously 
breaks the global symmetry: SU(4)→ Sp(4)~SO(5)  [Peskin 1980]	


Numerical calculations have significant explicit symmetry 
breaking: mu=md~ΛQC2D
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Spectrum

Simplest colour singlets	


“Pions”: π–~uγ5d,   π0~uγ5u + dγ5d,   π+~dγ5u   JP=0-	


(anti-)“Nucleons”:  ud,  ud                               JP=0+	


“Rhos”: π–~uγµd,   π0~uγµu + dγµd,   π+~dγµu   JP=1-	


(anti-)“Deltas”:  uγµγ5d,  uγµγ5d                         JP=1+	


Axial vector, scalar, tensor mesons + associated baryons	


Spectrum studied by [Hietanen et al. 1404.2794 ] 	


Pion multiplet are Goldstone bosons of χSB: SU(4)→ Sp(4)

}
}

Degenerate	

SO(5) multiplet

Degenerate	

SO(5) multiplet

– – – –

––

– – – –

– –

http://arxiv.org/abs/arXiv:1404.2794


Spectrum

Colour singlets can combine	


Two-, three-, … particle scattering states	


“Nuclei” for sufficiently attractive interactions–not a priori obvious	


Two “pions” combine to give 25 of states: 5⨂5=1⨁10⨁14 

J=0 systems, contains B=2,1,0,-1,-2 states	


“pion”+ “rho”: J=1 systems with same flavour breakdown  
 
 
 
 

Higher body systems: J=0,1, flavour =                        , n=2,…,8

complex vector fields which have varying baryon number. This representation is

Dµ =

0

BBBBB@

Sµ
+

Dµ
2,0 Dµ

1,0 Dµ
1,�1

Dµ
1,1

D
µ
2,0 Sµ

� Dµ
�1,0 Dµ

�1,�1

Dµ
�1,1

D
µ
1,0 D

µ
�1,0 Sµ

0

Dµ
0,�1

Dµ
0,1

D
µ
1,�1

D
µ
�1,�1

D
µ
0,�1

Sµ
B Dµ

0,2

D
µ
1,1 D

µ
�1,1 D

µ
0,1+ D

µ
0,2 Sµ

B

1

CCCCCA
, (3.9)

where all diagonal elements are real and the subscript denotes the states that the diagonal
elements couple to in the notation of the pion fields. The o↵-diagonal elements are complex
vectors for which the first subscript denotes the global U(1)D charge and the second subscript
the dark U(1)B baryon number in the same units as the pions. In this notation the various
real SO(5) representations may be written as
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The lattice calculation considered the nuclei in the symmetric representation, D14,
finding bound states for a range of quark masses, but did not investigate the singlet or anti-
symmetric representations. To simplify the calculations relevant for phenomenology, we will
assume that all nuclei representations are stable and equally massive. This is purely for the
sake of simplifying the phenomenology, however if it turned out that the antisymmetric repre-
sent were unstable this would only result in minor modifications. There is some contribution
to the mass of the dark nuclei from the masses of the constituent hadrons, and some from
their interactions. For the regime in which it makes sense to call D a ‘nucleus’, the bind-
ing energy should be small, BD ⌧ M⇡, M⇢, and the first contribution from the constituent
masses should to be dominant. Since the nuclei are ultimately built from quarks, there is a
coupling to the Higgs field which we may write (under the assumption of equal masses) as

L
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where again AD is taken as a free parameter of O(0.1 ⇥ ⇤QC2D). Also, consistent with the
remaining symmetries in the real-field basis the 1, 10, and 14 of SO(5) may couple to the
mesons as

L⇢⇡D ⇠ ⇡†(�̄1D
µ
1 + �̄10D

µ
10 + �̄14D

µ
14)⇢µ . (3.14)

The remaining symmetry does not constrain these interactions any further, however to sim-
plify the calculation of annihilation and semi-annihilation cross sections we make the further
additional assumption that �̄1 = �̄10 = �̄14 = �̄, thus the coupling written in terms of the
real degrees of freedom may be simply expressed as L⇡⇢D = �̄⇡†

R ·Dµ
R · ⇢µR where DR is a

5 ⇥ 5 matrix of real fields. This trilinear coupling, combined with the dark Higgs couplings,
leads to dark nucleosynthesis, ⇡ + ⇢ ! D + hD, by dressing one of the external propa-
gators in three-body scattering with a dark Higgs vertex. If all parameters were known,
then these additional couplings and diagrams should be included in a full treatment of semi-
annihilation. However, as the energy carried away by hD in the semi-annihilation process
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Simulations

Wilson gauge and fermion actions	


HMC using modified chroma	


4 β values, 6 masses	


3 or 4 volumes per choice (β ,m0)	


Long streams of configurations

Label � m
0

L3 ⇥ T N
traj

A 1.8 �1.0890 123 ⇥ 72 5,000
163 ⇥ 72 4,120
203 ⇥ 72 3,250

B 2.0 �0.9490 123 ⇥ 48 10,000
163 ⇥ 48 4,000
203 ⇥ 48 3,840
243 ⇥ 48 2,930

C 2.0 �0.9200 123 ⇥ 48 10,000
163 ⇥ 48 9,780
203 ⇥ 48 10,000

D 2.0 �0.8500 123 ⇥ 48 9,990
163 ⇥ 48 5,040
163 ⇥ 72 5,000
203 ⇥ 48 5,000
243 ⇥ 48 5,050

E 2.1 �0.7700 123 ⇥ 72 5,000
163 ⇥ 72 5,000
203 ⇥ 72 4,300

F 2.2 �0.6000 123 ⇥ 72 5,000
163 ⇥ 72 5,000
203 ⇥ 72 5,000
243 ⇥ 72 5,070

TABLE I: The parameters of the main ensembles used in this work.

At certain parameter values, a direct comparison with the results (specifically, plaquette
values and pion masses) of Refs. [7, 9] has been made; these works use di↵erent software
bases and the agreement that is found provides a useful validation of the simulations.

For the primary studies presented in this work, we investigate the theory in parameter
ranges where it is computationally feasible (as a model for dark matter, there is no strong
preference for particular values of the fermion masses). While the regime of very light quark
masses compared to the scale of the theory is interesting [8], it is not viable to perform
quantitative studies at this point without using large scale computational resources that
are of similar magnitude to those used in Nc = 3 QCD phenomenology. We focus on
somewhat heavier masses that are also of phenomenological interest and aim separately to
explore the � and m

0

dependence for a range of di↵erent spatial and temporal extents. The
lattice spacing and single hadron spectroscopy are primarily determined (up to exponentially
small corrections) by � and m

0

provided that the lattice volume is su�ciently large, and
the correspondence between lattice parameters and physical parameters can be made in
the single hadron sector alone. Once this has been accomplished, multi-body spectroscopy
requires careful analysis of volume dependence and hence is more computationally expensive.
The parameters of the primary simulations are shown in Table I.

For each ensemble, we run the Monte-Carlo evolution for a large number of trajectories
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Multi-baryon spectrum

Extract spectrum of multi-baryon states from correlators 
 
 
 
 
 
 

Local and smeared sources and sinks	


Aim to extract ground state, but need to be careful of thermal 
effects (use full thermal behaviour of correlator, multiple T’s)	


Final method - correlated single exp fit of shortened time range

ciently, we make use of the methods developed in Refs. [18, 24–27] for the study of multi-
meson systems in Nc = 3 QCD. These directly translate to the current situation because
of the Nc = 2 specific identification of the n N correlator with the n ⇡+ correlator and the
(n � 1) N� correlator with the (n � 1) ⇡+⇢+ correlator, as discussed above. To this end,
we study the correlators
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where (x
0

, t
0

) is the chosen source location and Os
N,�j

are the interpolating operators for the
nucleon and � states defined in Eq. (4). In our study, we average over all polarisations of the
� correlators. In the limit of very large time separations and with an infinite temporal extent
of the lattice geometry, these correlators are dominated by the energies of the nN and nN�
ground states, EnN and EnN,�, respectively. The factorially large numbers of contractions
that these correlators encompass are performed using the methods of Refs. [18, 26, 27]. Since
the number of quark degrees of freedom that can be sourced at a single space-time point is
NsNc = 8, the construction of propagators from a single source limits our calculations to
n  8 in the present calculation.

As we are interested in the hadronic interactions, it is also useful to define the ratios

RnN(t) ⌘ CnN(t)

[C
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, (16)

that fall o↵ at late times with characteristic exponential dependence on the energy shifts,
�EnN = EnN �nEN and �EnN,� = EnN,��nEN �E

�

, respectively. Provided we consider
Euclidean times large enough that the numerators and denominators in these ratios have
been separately saturated by their ground states, these ratios potentially allow us to take
advantage of correlations between the di↵erent terms in extracting the energy shifts.

Since the systems that we are interested in easily factorise into multiple colour singlet
states, the finite temporal extent of the lattice geometries that we work with has an impor-
tant consequence [25, 26]. The interpolating operators that we use are designed to produce a
particular set of quantum numbers propagating over the time-slices that separate the source
and the sink. However, they can also produce the same overall quantum numbers by having
some part of the system propagate around the temporal boundary. The expected forms of
the J = 0 correlators are then

CnN(t) =
nX

m=0

Zn;m cosh (�En;mtT ) + Zn;n2
�n mod 2,0 + · · · , (17)

where tT = t � T/2, �En;m = E
(n�m)N � EmN and m counts the number of forward going

N ’s (more precisely the forward going baryon number) and the ellipsis denotes excited state
contributions either in the forward going signal, or in the thermal contributions. The second
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as shown in Table I. After allowing O(400) trajectories for thermalisation, we use every
10th trajectory for measurements.

III. SINGLE HADRON SPECTROSCOPY AND PROPERTIES

On each configuration we generate 8 smeared sources (after 10 repetitions of stout smear-
ing of the gauge links [16] with smearing factor 0.08, we perform 80 iterations of APE [17]
smearing of width 4.0), equally separated in time, but randomly placed in space. For each
source, we solve the Dirac equation using either the conjugate gradient (CG) or stabilised
biCG algorithms, demanding convergence to a residual of 10�10 in the resulting quark prop-
agator (we have checked on a subset of measurements that solving to machine precision does
not change our results). On a subset of ensembles, we also generate propagators from point
sources at the same locations in order to enable the extraction of the pseudoscalar decay
constant.

In order to study the single hadron spectrum, we use the propagators computed on
each ensemble of gauge configurations to measure correlation functions with the quantum
numbers of the various states we are interested in. Because of the relations between meson
(  ) and baryon (  ) systems, we focus on isovector mesonic operators

O{S,P,Vµ,Aµ},s(x, t) =  u(x, t){1, �5, �µ, �µ�5} d(x, t) . (2)

The subscript s = {P ,S} on the operators corresponds to whether it is constructed from lo-
cal (P) or smeared (S) quark fields. From these interpolating operators, we build correlation
functions
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e�HT

X

x
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#

=
X
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X

x

hn|eip·xe�HTOX(x, t)O†
Y (0, 0)|ni , (3)

for the various combinations of X, Y = S, P, Vµ, Aµ and choices of smearing of source and
sink, s and s0. The sum over n is a sum over a complete set of states {|ni}. In the limit of
large temporal extent of the lattice geometry, T ! 1, the vacuum state, |⌦i, dominates the
correlation function, but we are careful to explore the e↵ects of the finite temporal extent
that allow additional contributions to multi-hadron correlation functions in particular [18].

Correlators for scalar and axial-vector baryons (di-quarks) are similarly constructed from
operators

O{N,�i},s(x, t) =  >
u (x, t)(�i�

2

)C{1, �i�5} d(x, t) , (4)

where (�i�
2

) is the antisymmetric tensor of SU(Nc = 2) and C is the charge conjugation
matrix. However, as mentioned above these baryons are degenerate with pseudoscalar and
vector mesons and so these correlators contain no new information.

In the limit of large temporal extent, these correlators decay with time dependence that
is characterised by the energies of the eigenstates of the appropriate quantum numbers and
by computing that dependence, the eigen-energies can be extracted. That is, assuming X
and Y are commensurate,
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T!1�!

X

n

Z
(n)†
X,s Z

(n)
Y,s0e

�Ent , (5)
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Multi-baryon contractions

SU(2) multi-baryon contractions 
equivalent to maximal isospin multi-
meson contractions 	


Clear from degeneracies but explicitly 
 
 

Use algorithms from Nc=3 QCD  
[WD & Savage 2011, WD Orginos, Shi 2012]	


(n-1)NΔ ~ mixed pion-kaon contractions 
[WD & Smigielski 2011] Ex:: three types of contractions  

for I=3 πππ and NNN

FIG. 7: Relationship between |I| = Iz = n multi-meson contractions and B = n multi-baryon
contractions for n = 3. On the left, we consider the three topologies of quark contractions that
contribute to the |I| = Iz = n = 3 multi-meson correlator, with lines with arrows point right(left)
corresponding to up quark (anti-down quark) propagators. On the right, the contractions that
result from replacing the anti-down propagators by down quark propagators which correspond to
the contractions for n baryons of opposite parity to the mesons.

systems require, it is clear that these meson states are degenerate with corresponding multi-
baryon states as indicated in Fig. 7. These systems have no disconnected/annihilation type
contractions and so have corresponding degenerate multi-baryon partners. The relation is
made exact by using the identities for the quark propagator [7]

S(y, x) = C†(�i�
2

)†S(x, y)T (�i�
2

)C , (12)

S(y, x) = �
5

S†(x, y)�
5

(13)

where (�i�
2

) is the antisymmetric tensor of SU(Nc = 2) and C is the charge conjugation
matrix (the first relation is specific to the two colour theory). Multiple applications of these
relations replace the multi-meson correlator by the multi-baryon correlator for baryons that
are of opposite parity to the mesons.

Group theoretically, we consider the nth tensor product of fundamental representations
of Sp(4)⇠SO(5) and consider only states in the totally symmetric flavour irrep., which form
multiplets of size (n+ 1)(n+ 2)(2n+ 3)/6 [23]. In what follows, we will refer to the I = 0,
B = n component of each multiplet, noting that it is degenerate with states with baryon
number �n  B  n of varying multiplicities. We will focus on angular momentum J = 0
and J = 1 systems which can be thought of as nN and (n�1)N� states, respectively (more
properly, the eigenstates have a Fock component of this form).

In order to construct two-point correlators of the appropriate quantum numbers e�-
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Example effective mass plots
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FIG. 9: E↵ective mass plots for the J = 1 correlators of Eq. (15) for the 163 ⇥ 72 E ensemble for
a single � and n = 0, . . . , 5 nucleons. The horizontal band shows the energy extracted from fits to
the correlator, while the vertical band indicates the range of time-slices used in the fits.

states (unbound), the parameter A corresponds to the two-body scattering length and B
receives contributions from e↵ective range corrections and three-body interactions [34, 35].

By analysing the performance of the two di↵erent models in fits to data for multiple
volumes, we can ascertain whether particular states are likely bound states or finite volume
scattering states for the particular quark masses and lattice spacing under consideration.
To assess this, we define the Bayes factor [39]

K =
P (D|H
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)

P (D|H
2

)
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R
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1
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1

)P (p
1
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1
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1R

P (D|H
2

, p
2

)P (p
2

|H
2

)dp
2

, (21)

which is the ratio of likelihoods of the hypotheses given the data, D, each of which can be
computed as the integral over the parameters of the model, pi, of the likelihood of the data
given the model for those parameters weighted by the prior probability of the parameters
given the model. This last factor is input, and we choose Gaussian priors for A, B and Ĉ and
an exponential distribution for � with widths 10, 105, 0.1, 10, respectively (the extracted
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Energy shifts for different volumes
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FIG. 12: Same as Fig. 10 for the C ensembles.

Establishing an infinite volume binding is not the final result; to extract physical infor-
mation we then need to extrapolate to the continuum limit3 and investigate the dependence
on the quark mass.

3 In principle, the continuum extrapolation should be performed for a number of fixed physical volumes,

and only then should the resulting energy shifts be extrapolated to the infinite volume limit. However

this would require extensive careful tuning of lattice geometries and lattice spacings and a more prosaic

approach is adopted here. It would also be possible to perform a single coupled fit to the a, L and mq

dependence, but this is technically challenging.
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To be bound or not to be bound…

If bound/scattering state, expect 
 
 
 

Assess support for each hypothesis using the Bayes factor*  
 
 
 
where  
 
and P(pi|Hi) are broad prior distributions	


If 2 ln[K] > 6 : “strong evidence” of preference for H1 over H2 
then ask what are the bounds on the binding energy
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FIG. 9: E↵ective mass plots for the J = 1 correlators of Eq. (15) for the 163 ⇥ 72 E ensemble for
a single � and n = 0, . . . , 5 nucleons. The horizontal band shows the energy extracted from fits to
the correlator, while the vertical band indicates the range of time-slices used in the fits.

states (unbound), the parameter A corresponds to the two-body scattering length and B
receives contributions from e↵ective range corrections and three-body interactions [34, 35].

By analysing the performance of the two di↵erent models in fits to data for multiple
volumes, we can ascertain whether particular states are likely bound states or finite volume
scattering states for the particular quark masses and lattice spacing under consideration.
To assess this, we define the Bayes factor [39]

K =
P (D|H

1

)

P (D|H
2

)
=

R
P (D|H

1

, p
1

)P (p
1

|H
1

)dp
1R

P (D|H
2

, p
2

)P (p
2

|H
2

)dp
2

, (21)

which is the ratio of likelihoods of the hypotheses given the data, D, each of which can be
computed as the integral over the parameters of the model, pi, of the likelihood of the data
given the model for those parameters weighted by the prior probability of the parameters
given the model. This last factor is input, and we choose Gaussian priors for A, B and Ĉ and
an exponential distribution for � with widths 10, 105, 0.1, 10, respectively (the extracted
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FIG. 8: E↵ective mass plots for the J = 0 correlators of Eq. (14) for the 163 ⇥ 48 B ensemble for
n = 1, . . . , 6 nucleons. The horizontal band shows the energy extracted from fits to the correlator,
while the vertical band indicates the range of time-slices used in the fits.

fits to the volume dependence using two hypotheses with functional forms corresponding to
scattering and bound state systems. Specifically

H
1

: �E
bound

(L) = ��E1


1 + C

e�L

L

�
, (19)

H
2

: �E
scatter

(L) =
2⇡A

µL3

✓
n
2

◆"
1�

✓
A

⇡L

◆
I +

✓
A

⇡L

◆
2

[I2 + (2n� 5)J ]

#
+

B

L6

,(20)

where A, B, C, �E1 and  are in general free parameters and the geometric constant I =
�8.9136329, J = 16.532316. For two-body systems the bound state hypothesis simplifies as
�E

inf

= �2

2µ
,  = � and C = 12

�
Ĉ, where µ = m1m2

m1+m2
is the reduced mass for a system involving

particles of masses m
1

and m
2

and � ⌘ p
2µ �E1 is the infinite volume binding momentum

[36, 38], leaving two fit parameters, � and Ĉ. In order to allow bound state hypothesis
fits with only three volumes, we make the same substitutions for higher body systems (the
relationships between the parameters are now assumptions), although this means that the
conclusions for n > 2 are less definitive. For the case of weakly-interacting n body scattering
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FIG. 10: Extracted energy shifts for the J = 0, 1 systems for the A ensembles. For each baryon
number, B, the left (blue) region corresponds to the J = 0 system and the right (red) region
corresponds to the J = 1 system.

Bayes factors are insensitive to these choices). The likelihood function is defined by

logP (D|Hi, pi) = �1

2

NX

j=1

[dj �Hi(xj; pi)]
2

�2

j

, (22)

for a set of N data points, D = {(x
1

, d
1

, �
1

), . . . (xN , dN , �N)}, with coordinates, xi, values,
di, and uncertainties, �i. The integrals defining the Bayes factor, Eq. (21), are calculated as
follows. The H

1

model is linear in Ĉ, which allows the corresponding Gaussian integral to
be computed exactly. The remaining integral over � is computed numerically. Similarly, in
the H

2

model, the integral over B is Gaussian, but the integral over A requires numerical
computation.
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Infinite volume extrapolations
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FIG. 16: Infinite volume extrapolations of energy shifts for the 1N� systems.

N ’s increases. It is also possible that our interpolating operators are not su�ciently close to
the ground state eigenstates for larger B but instead overlap more strongly onto scattering
states. More sophisticated choices of interpolating operators may be necessary to identify
the bound states if they are present.

C. Other nuclei

In our investigations, we have focused on the J = 0, 1 systems of the highest possible
flavour symmetry. It is possible that J � 2 systems, or states in other flavour representations
could also be bound nuclei. However, investigating this is beyond our current scope. While
a complete investigation of the nuclear spectrum of this theory is far beyond the needs of
current dark matter phenomenology, a number of interesting questions could be investigated
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the ground state eigenstates for larger B but instead overlap more strongly onto scattering
states. More sophisticated choices of interpolating operators may be necessary to identify
the bound states if they are present.

C. Other nuclei

In our investigations, we have focused on the J = 0, 1 systems of the highest possible
flavour symmetry. It is possible that J � 2 systems, or states in other flavour representations
could also be bound nuclei. However, investigating this is beyond our current scope. While
a complete investigation of the nuclear spectrum of this theory is far beyond the needs of
current dark matter phenomenology, a number of interesting questions could be investigated
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FIG. 19: Infinite volume extrapolations of energy shifts for the 4N� systems.

for a quark flavour, q, and a hadron, H. Through the Feynman-Hellman theorem, this can
be recast as

f (H)

q =
mq

MH

@MH

@mq

, (25)

which can then be evaluated by using lattice calculations of hadron energies over a range of
quark masses.

Ideally, precise calculations for many closely spaced quark masses, volumes and lattice
spacings would be performed, but this would be a very computationally demanding task.
Instead, we shall perform a less intensive calculation and aim to understand the typical size of
these couplings rather than precise values. To do so, we focus on a single representative set of
gauge configurations, the 163⇥48 C ensemble, and perform partially-quenched measurements
of the hadron masses for many values of the valence quark mass around the single sea quark
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FIG. 18: Infinite volume extrapolations of energy shifts for the 3N� systems.

A. Scalar couplings

The couplings of dark sector hadrons or nuclei to scalar currents can be extracted from
the quark mass variation of the masses of the hadronic or nuclear states, making use of
the Feynman-Hellman theorem. For the case of single baryons, this approach has been
used to extract the relevant light- and strange-quark �-terms in QCD (see Ref. [40] for a
recent overview), but also in the dark matter context for SU(Nc = 4) baryons in Ref. [41].
Following the standard parameterisation of these quantities, we define the dimensionless,
renormalisation-scale invariant quantity

f (H)

q =
hH|mqqq|Hi

MH

, (24)
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FIG. 20: Continuum limit fit to the binding momentum of the JP = 1+, B = 2 nucleus as a
function of a (in attometers) and m2

⇡ (in TeV2). The shaded region on the box wall corresponds
to the uncertainty on the extrapolation.

mass and assume that the partial quenching e↵ects are small.6 The PCAC quark mass for
this ensemble is amq = 0.0823(4) and we use valence masses amv = 0.07, 0.072, . . . , 0.09.
An important advantage of this approach is that there are strong correlations between the
measurements of the hadron masses for the various valence quark masses, allowing for precise
estimates of the di↵erences with considerably smaller statistical sample sizes than would be
needed if we were using independent ensembles for each mass.

In Fig. 26, the extracted values of the quantities f (N)

u+d and f
(�)

u+d are shown as a function
of the valence quark mass, using the finite di↵erence approximation @MH

@mq
! [MH(mq) �

MH(mq � �mq)]/�mq. The extracted values of the couplings at the unitary point are

f
(N)

u+d = f
(⇡)
u+d = 0.276(4), f

(�)

u+d = f
(⇢)
u+d = 0.14(1), (26)

where only statistical uncertainties are shown. These values are consistent with the expec-
tations of naive dimensional analysis. As discussed above, these values are only estimates
and are subject to uncertainties from the e↵ects of partial quenching (and also from dis-
cretisation and finite volume e↵ects) which we estimate to be O(30%). The values of the

6 If the quark masses were light enough such that chiral perturbation theory were a controlled expansion,

these partially quenched lattice calculations would determine a subset of the low energy constants of

partially quenched chiral perturbation theory that govern the �-terms.
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FIG. 21: Continuum limit fit to the binding momentum of the JP = 1+, B = 3 nucleus as a
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couplings will also depend on the quark mass in a non-trivial way.
For Nc = 3 light nuclei, the nuclear �-terms (scalar current matrix elements in a nu-

cleus) have also recently been studied for the first time [5]. Because of correlated two- and
higher-body interactions, nuclear �-terms will di↵er from the sum of the �-terms of their
constituents, but such e↵ects were seen to be small in Ref. [5]. Nuclear e↵ects may be larger
for Nc = 2, but we leave such calculations for future work.

B. Electroweak-analog interactions

The couplings of single hadrons and tightly bound nuclei to additional weakly-coupled
gauge sectors through quark bilinear operators can be straightforwardly determined using
the same methods by which hadron form factors [42] and polarisabilities [43] are studied in
QCD. In the current context, the two-colour quarks could be charged under a U(1) symmetry,
resulting in either charged nuclei (depending on the U(1) that is gauged), or nuclei whose
internal structure gives rise to higher multiple moment couplings, or higher order couplings
(polarisabilities), to the U(1) interactions.
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Continuum extrapolations

Simple continuum limit extrapolation of binding momentum, γ

For the J = 1+, nN� systems, we focus on cases where the largest volume energy shift
is negative and then compute the Bayes factor to determine whether a bound state or an
attractive scattering state is preferred. The values of 2 ln[K] are shown in Table V; a value
of 2 ln[K] > 6 is considered strong evidence [39] that hypothesis H

1

is preferred to H
2

,
while 2 ln[K] > 10 is very strong evidence. For states with a positive value of 2 ln[K], we
extract the 67% credible interval on the binding momentum, �, and these values are also
displayed in Table V. In Figures 16–19, we show the resulting fits of the binding energies of
the (n� 1)N� systems for the various ensembles for n = 2, . . . , 5. We show both the bound
state fit (solid line) and scattering fit (dashed line) and also display the Bayes factor and
the 67% credible interval of the bound state fit (the shaded region). To assess systematics
of these fits, we remove the smallest volume ensembles from the analysis and re-perform
the fits. However there are only minor shifts in most cases that are consistent with the
extrapolation uncertainty. One can speculate on causes of positive and negative values of
2 logK listed in Table V. It appears that data favour H

2

if either the system is unbound
at both largest volumes, or if there is only moderate curvature in the fit to the H

2

model
as happens for (� = 2.0, m

0

= �0.9490, N = 2) ensemble. It is also worth noting that for
(� = 2.0, m

0

= �0.9200, n = 2) we observe 2 logK = 0.21, indicating close to even odds
between H

1

and H
2

. It it is possible that more precise data would have lead to di↵erent
conclusions in both cases. The continuum limit fits discussed below also indicate that the
binding momenta are expected to be rather small on these ensembles.

Having extracted the binding energies of these states on each ensemble, we can investigate
the continuum limit by comparing the various ensembles. We focus on the B = 2, 3, 4,
JP = 1+ states (B > 4 states are very likely unbound — the scattering state fit is preferred
on most sets of ensembles) and assume a simple functional form for the dependence of the
binding momenta on the lattice spacing and pion mass,

�nN,�

f⇡
(a,m) = �

(0)

nN,� + a �(a)n +m⇡
2�(m)

n . (23)

The infinite volume extrapolated binding momenta are fitted with this form using least-
squares minimisation (additional fits involving higher order terms have also been investigated

but were not well-constrained). Note that the parameters �
(a,m
n are dimensionful. We find

that the B = 2 and 3 states are clearly bound relative to (B � 1)MN +M
�

for a significant
range of quark masses with the binding momenta tending to decrease with the quark mass.
For the B = 3 state at heavier masses, the significance of the binding is particularly high.
These bound states are protected against decay intoB nucleons by the combination of baryon
number and baryonic equivalent of G-parity (these nuclei are partners of the (B � 1)⇡ + ⇢
systems which di↵er in G-parity from B⇡ systems). At the current level of statistics, we
cannot cleanly determine if the B = 4 state is bound or not in the continuum limit as, unlike
B = 2, 3, the B = 4 extrapolation is very sensitive to removing a single data point.5 The
B = 2, 3, 4 JP = 1+ fits, along with the projections to the continuum limit (in which the �(a)n

are set to zero), are shown in Fig. 20 – 22 as a function of m⇡ and a. We present the results
using physical units, attometers for the lattice spacing and TeV for the pion mass (these
arise from the arbitrary choice of f⇡ = 246 GeV). For clarity, we again show the continuum

5 Note that for the higher body systems to be identified as bound states, they must also have energies that

stabilise them against break up into any combination of sub-components, for example we would require

E3N,� < min(E3N + E0N,�, E2N + E1N,�, E1N + E2N,�,. . . .
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NB: physical scale set by demanding fπ=246 GeV (arbitrary)



Dark nuclei

J=0 nuclei: very likely unbound (small K, all positively shifted)	


J=1, strong evidence for bound states for B=2,3, perhaps 4 
B=5,..,8 seem unbound	


Bindings decrease with  
quark mass and increase  
towards continuum	


Strength of binding is  
significant w.r.t. mass	


Nuclear states with other  
quantum #s may also be  
bound
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FIG. 25: Binding momenta in units of the nuclear mass of the various JP = 1+ nuclei as a function
of m2

⇡. The shaded regions correspond to the uncertainties.
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FIG. 26: The numerical extractions of the quantities f (N)
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u+d as a function of the valence
quark mass. The sea quark mass is indicated by the dashed line.

other strongly interacting dark matter scenarios. For Nc = 2 QCD as a possible dark sector
candidate, the existence of nuclei leads to a range of interesting and novel phenomenology
that we explore in a companion paper [6].

In the context of real world QCD (Nc = 3), there is currently an intense focus on inves-
tigating light nuclei from first principles, both to understand how nuclei emerge from the
underlying quark and gluon degrees of freedom, and also to be able to make reliable predic-
tions for nuclear matrix elements of electroweak and other currents that are important for
a range of ongoing and future experiments. Performing a study analogous to the one pre-
sented here for more complex theories such as SU(Nc = 4), while interesting, is prohibitively
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The ubiquity of nuclei?
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Phenomenology

Presence of nuclear binding energies: 
new scale for phenomenology can be 
significantly different than ΛQC2D	


New processes in dark sector: dark 
nucleosynthesis, dark capture processes	


Modify early universe cosmology 
(both symmetric & asymmetric 
scenarios)	


Significant modifications to dark matter 
capture in astrophysical bodies	


Very rich phenomenology!
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Figure 9: Capture of asymmetric DM in astrophysical bodies such as planets, the Sun,
white dwarfs, and neutron stars (left panel). Dark nucleosynthesis in these astrophysical
bodies is catalyzed by the enhanced density of DM (right panel). Dark nucleosynthesis may
lead to observable signatures if the end-products produce neutrinos either through decay or
rescattering. Even if the binding energy fraction is small, the produced dark nucleus may
be ejected from the astrophysical body because the resulting semi-relativistic velocity of the
dark nucleus would typically be greater than the escape velocity. This may drastically alter
the phenomenology of asymmetric DM capture in comparison to standard asymmetric DM
models, and the ejected dark nuclei could be searched for in new laboratory experiments.

There is also a very pleasing synergy between DM and the visible sector in this case as
the capture of asymmetric DM in stars leads to the dark nucleons being processed into dark
nuclei, in a tenuous analogy with the processes which occur in the visible sector. If there
are additional dark nuclei with larger dark baryon number, further dark nucleosynthesis may
also occur, processing the dark nucleons into more massive dark nuclei. In essence, the
star would lead to a co-located dark protostar, burning dark nucleons into dark nuclei. All
of these features require a detailed study for a full exploration of the capture and ejection
processes, and a dedicated study of the experimental requirements for detecting the ejected
dark nuclei is also required. However, our brief discussion is suggestive of a very rich and
novel phenomenology which could lead to experimental signatures significantly di↵erent from
those expected of standard DM candidates.

6 Conclusions

To ensure that possible experimental signatures of DM are not missed, it is crucial to consider
the broad scope of possible realizations of DM, in addition to the more well-studied DM
candidates. From a theoretical perspective, the possibility of dark nuclear physics is well
motivated. In fact, in the two strongly-coupled theories for which nuclear states have been
studied, the SM and two-color two-flavor QCD, nuclei are seen to exist. For QCD, nuclei
have also been shown to occur for heavier-than-physical quark masses [38–40]. As far as
quantitatively studied strongly-coupled composites are concerned, this hints towards the
ubiquity of nuclei. Thus, if DM consists of composites of a strongly coupled gauge sector,
then it is very possible that there is an entire dark nuclear sector.

In this work, motivated by the lattice results to be presented in a companion paper, and
by analogy with the SM, some aspects of dark nuclear phenomenology have been explored.
For symmetric and asymmetric DM, it is possible that the abundance may be composed of
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