Flux tubes in the SU(3) vacuum: London penetration depth and coherence length

P. Cea L. Cosmai F. Cuteri* A. Papa

*Università della Calabria and INFN - Gruppo collegato di Cosenza

Lattice 2014 - The 32nd International Symposium on Lattice Field Theory - June 25, 2014

Based on: Phys. Rev. D 89, 094505 - Published 19 May 2014

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

I ntroduction	Flux tubes on the lattice	Numerical data	Penetration depth and coherece length	Conclusions
0000000	000	0000	0000	

- Confinement and the dual superconductor model
- Chromoelectric field on the lattice
- 2 Flux tubes on the lattice
 - Details about simulations
 - The measuring process at a glance
- 3 Numerical data
 - Results from the fit and parameters vs smearing
- Penetration depth and coherece length
 - From lattice to physical units
 - Scaling

Introduction	Flux tubes on the lattice	Numerical data 0000	Penetration depth and coherece length 0000	Conclusions
Outline				

- Confinement and the dual superconductor model
- Chromoelectric field on the lattice
- 2 Flux tubes on the lattice
 - Details about simulations
 - The measuring process at a glance
- 3 Numerical data
 - Results from the fit and parameters vs smearing
- Penetration depth and coherece length
 From lattice to physical units
 - Scaling

Introduction ●000000	Flux tubes on the lattice 000	Numerical data 0000	Penetration depth and coherece length 0000	Conclusions		
Confinement and the dual superconductor model						
The color confinement problem						

Figure: $q\bar{q}$ pair at distance R in the QCD vacuum

Introduction 0●00000	Flux tubes on the lattice 000	Numerical data 0000	Penetration depth and coherece length 0000	Conclusions		
Confinement and the dual superconductor model						
Dual su	perconductivit	V				

Dual superconductor picture of confinement in QCD proposed by Mandelstam and 't Hooft. [G. 't Hooft, in High Energy Physics, EPS International Conference, (1975)] [S. Mandelstam, Phys. Rep. 23, (1976)]

QCD vacuum as a dual superconductor

- Color confinement due to the dual Meissner effect produced by the condensation of chromomagnetic monopoles
- Chromoelectric field connecting a $q\bar{q}$ static pair squeezed inside a tube structure: Abrikosov vortex

Relevance of nonperturbative study of chromoelectric flux tubes at T
eq 0 to clarify the formation of $c\bar{c}$ and $b\bar{b}$ bound states in heavy ion collisions.

(日) (同) (日) (日)

Electric charges condensate (Cooper pairs)

Magnetic Abrikosov flux tubes

Magnetic monopoles condensate

Chromoelectric dual Abrikosov flux tubes

Electric charges condensate (Cooper pairs)

Magnetic Abrikosov flux tubes

Magnetic monopoles condensate

Chromoelectric dual Abrikosov flux tubes

Introduction 00●0000 Flux tubes on the lattice

Numerical data

Penetration depth and coherece length 0000

Conclusions

Confinement and the dual superconductor model

Coherence length and London penetration depth

- λ London penetration depth: characteristic length of the exponential decrease of *B* in a superconductor
- ξ Coherence length: length scale on which the density of Cooper pairs can change appreciably

3.0

イロト イポト イヨト イ

Introduction 000●000 Flux tubes on the lattice

Numerical data

Penetration depth and coherece length Conclusions

◆□ > → ● → → ● > → ● →

Confinement and the dual superconductor model

Fitting functions for $E_l(x_t)$ shape

Here enters the dual superconductor model

- Ordinary superconductivity: magnetic field as function of the distance from a vortex line in the mixed state
- Two different expressions coming, by dual analogy, from the London model or, equivalently, the Ginzburg-Landau theory

Ortex as a line singularity

$$E_l(x_t) = rac{\phi}{2\pi} \mu^2 K_0(\mu x_t), \quad x_t > 0, \quad \lambda \gg \xi \leftrightarrow \kappa \gg 1$$

[P. Cea and L. Cosmai, Phys.Rev. D52 (1995)]

Q Cylindrical vortex

$$E_l(x_t) = \frac{\phi}{2\pi} \frac{1}{\lambda \xi_v} \frac{K_0(R/\lambda)}{K_1(\xi_v/\lambda)} ,$$

[J. R. Clem, J. Low Temp. Phys. 18, 427 (1975)] [P. Cea, L. Cosmai, and A. Papa, Phys. Rev. D 86, (2012)]

Introduction	Flux tubes on the lattice	Numerical data	Penetration depth and coherece length	Conclusions			
Confinement and the dual superconductor model							
Fitting	function in our	work					

$$E_l(x_t) = \frac{\phi}{2\pi} \frac{\mu^2}{\alpha} \frac{\mathcal{K}_0[(\mu^2 x_t^2 + \alpha^2)^{1/2}]}{\mathcal{K}_1[\alpha]} \qquad x_t \ge 0,$$
$$R = \sqrt{x_t^2 + \xi_v^2}, \qquad \mu = \frac{1}{\lambda}, \qquad \frac{1}{\alpha} = \frac{\lambda}{\xi_v}, \qquad \kappa = \frac{\lambda}{\xi} = \frac{\sqrt{2}}{\alpha} \left[1 - \mathcal{K}_0^2(\alpha) / \mathcal{K}_1^2(\alpha)\right]^{1/2}.$$

э

- $\textcircled{0} \phi \text{ external flux}$
- 2 $\mu = 1/\lambda$ London penetration depth inverse
- 3 $1/\alpha = \lambda/\xi_v$ with ξ_v variational core-radius parameter
- $\kappa = \lambda/\xi$ Ginzburg-Landau parameter

Introduction Flux tubes on the lattice 00000●0 000 Numerical data 0000 Penetration depth and coherece length Conclusions

Chromoelectric field on the lattice

Connected correlator from previous studies

$$\rho_{W}^{\text{conn}} = \frac{\left\langle \operatorname{tr} \left(W L U_{P} L^{\dagger} \right) \right\rangle}{\left\langle \operatorname{tr} (W) \right\rangle} - \frac{1}{N} \frac{\left\langle \operatorname{tr} (U_{P}) \operatorname{tr} (W) \right\rangle}{\left\langle \operatorname{tr} (W) \right\rangle}$$

[A. Di Giacomo, M. Maggiore, S. Olejnik, Nucl.Phys. B347 (1990)]
 [P. Cea, L. Cosmai, Phys.Rev. D52 (1995)]

• Continuum limit

$$\rho_W^{\rm conn} \xrightarrow{a \to 0} a^2 g \left[\left\langle F_{\mu\nu} \right\rangle_{q\bar{q}} - \left\langle F_{\mu\nu} \right\rangle_0 \right]$$

• Color field strength tensor

$$F_{\mu
u}(x) = \sqrt{rac{eta}{2N}} \,
ho_W^{
m conn}(x)$$

- W Wilson loop
- L Schwinger line
- U_p Plaquette

(日) (四) (日) (日)

- $E_i(x)$, $B_i(x)$ by changing $U_P = U_{\mu\nu}(x)$ orientation.
- $E_l(x_t)$ component dominates at T=0.

Introduction 000000●

Flux tubes on the lattice

Numerical data

Penetration depth and coherece length Conclusions

Chromoelectric field on the lattice

Connected correlator with Polyakov loops

$$\begin{split} \rho_P^{\text{conn}} &= \frac{\left\langle \operatorname{tr} \left(P\left(x \right) L U_P L^{\dagger} \right) \operatorname{tr} P\left(y \right) \right\rangle}{\left\langle \operatorname{tr} \left(P\left(x \right) \right) \operatorname{tr} \left(P\left(y \right) \right) \right\rangle} \\ &- \frac{1}{3} \frac{\left\langle \operatorname{tr} \left(P\left(x \right) \right) \operatorname{tr} \left(P\left(y \right) \right) \operatorname{tr} \left(U_P \right) \right\rangle}{\left\langle \operatorname{tr} \left(P\left(x \right) \right) \operatorname{tr} \left(P\left(y \right) \right) \right\rangle} \end{split}$$

• Color field strength tensor

$$F_{\mu\nu}\left(x\right) = \sqrt{\frac{\beta}{6}}\rho_P^{\rm conn}\left(x\right).$$

• ρ_P^{conn} suited for the $T \neq 0$ case

 [A. Di Giacomo, M. Maggiore, S. Olejnik, Nucl.Phys. B347 (1990)]
 [P. Skala, M. Faber, and M. Zach, Nucl. Phys. B494 (1997)]

- P(x), P(y) Polyakov lines separated by a distance Δ
- L Schwinger line

イロト イポト イヨト イ

● U_p Plaquette

Introduction 0000000	Flux tubes on the lattice	Numerical data 0000	Penetration depth and coherece length 0000	Conclusions	
Outline					

- Confinement and the dual superconductor model
- Chromoelectric field on the lattice

2 Flux tubes on the lattice

- Details about simulations
- The measuring process at a glance

3 Numerical data

Results from the fit and parameters vs smearing

Penetration depth and coherece length

- From lattice to physical units
- Scaling

Introduction	Flux tubes on the lattice ●○○	Numerical data 0000	Penetration depth and coherece length 0000	Conclusions
Details about	simulations			
Technic	alities			

Lattice and correlator features

- Size 20⁴ and periodic boundary conditions
- Distance between Polyakov loops $\Delta = 4a, 6a, 8a$

LGT and action

• SU(3) pure gauge LGT

• Wilson action
$$S=eta\sum_{x,\mu>
u}[1-rac{1}{3}\mathrm{Re}\mathrm{Tr}\,U_{\mu
u}(x)]$$
, with 5.9 $$

Algorithms

- Cabibbo-Marinari algorithm combined with overrelaxation
- APE smearing procedure to increase signal-to-noise ratio

Flux tubes on the lattice $0 \bullet 0$

Numerical data 0000 Penetration depth and coherece length

(日) (四) (日) (日)

Conclusions

Details about simulations

Smearing procedure: motivations and method

- Replacement of the previously used cooling mechanism
- Possibility to check previous results in many different cases
 - Wilson correlator and Smearing
 - Polyakov correlator and Cooling
 - Polyakov correlator and Smearing

APE smearing procedure

[Albanese et al., Phys. Lett. B 192 (1987)] [Bonnet et al., Phys. Rev. D 62 (2000)]

$$\begin{split} \mathcal{C}_{\mu\nu}(x) &= U_{\nu}(x)U_{\mu}(x+\hat{\nu})U_{\nu}^{\dagger}(x+\hat{\mu}) \\ &+ U_{\nu}^{\dagger}(x-\hat{\nu})U_{\mu}(x-\hat{\nu})U_{\nu}(x-\hat{\nu}+\hat{\mu}) \\ \tilde{U}_{\mu}(x) &= \mathcal{P}_{SU(3)}[(1-\alpha)U_{\mu}(x) + \frac{\alpha}{6}\sum_{\mu\neq\nu}\mathcal{C}_{\mu\nu}(x)], \\ \alpha &= 0.5, \qquad 16 < n_{ape} < 50 \end{split}$$

Flux tubes on the lattice ○○● Numerical data

Penetration depth and coherece length Conclusions

The measuring process at a glance

Our investigation in few steps

For different values of β

- Smearing over a thermalized field configuration
- Measurement of $E_l(x_t)$ through ρ_P^{conn} by varying plaquette position
- Fit of the shape of E_l(x_t) to extract the parameters φ, μ, ^λ/ξ_v, κ
- Analysis of the behavior of ϕ , μ , $\lambda/\xi_{\rm v}$, κ with smearing, looking for a plateau
- Estimate of λ and ξ from a scaling analysis

Flux tubes on the lattice ○○● Numerical data

Penetration depth and coherece length Conclusions

The measuring process at a glance

Our investigation in few steps

For different values of β

- Smearing over a thermalized field configuration
- Measurement of E_l(x_t) through ρ^{conn}_P by varying plaquette position
- Fit of the shape of E_l(x_t) to extract the parameters φ, μ, ^λ/ξ_v, κ
- Analysis of the behavior of ϕ , μ , λ/ξ_v , κ with smearing, looking for a plateau
- Estimate of λ and ξ from a scaling analysis

(日) (四) (日) (日)

Flux tubes on the lattice ○○● Numerical data

Penetration depth and coherece length Conclusions

The measuring process at a glance

Our investigation in few steps

For different values of β

- Smearing over a thermalized field configuration
- Measurement of E_l(x_t) through ρ^{conn}_P by varying plaquette position
- Fit of the shape of $E_l(x_t)$ to extract the parameters ϕ , μ , λ/ξ_v , κ
- Analysis of the behavior of ϕ , μ , λ/ξ_{v} , κ with smearing, looking for a plateau
- Estimate of λ and ξ from a scaling analysis

Flux tubes on the lattice ○○● Numerical data

Penetration depth and coherece length Conclusions

The measuring process at a glance

Our investigation in few steps

For different values of β

- Smearing over a thermalized field configuration
- Measurement of E_l(x_t) through ρ^{conn}_P by varying plaquette position
- Fit of the shape of $E_l(x_t)$ to extract the parameters ϕ , μ , λ/ξ_v , κ
- Analysis of the behavior of ϕ , μ , λ/ξ_v , κ with smearing, looking for a plateau
- Estimate of λ and ξ from a scaling analysis

(日) (四) (日) (日)

Flux tubes on the lattice ○○● Numerical data

Penetration depth and coherece length Conclusions

The measuring process at a glance

Our investigation in few steps

For different values of β

- Smearing over a thermalized field configuration
- Measurement of E_l(x_t) through ρ^{conn}_P by varying plaquette position
- Fit of the shape of $E_l(x_t)$ to extract the parameters ϕ , μ , λ/ξ_v , κ
- Analysis of the behavior of ϕ , μ , λ/ξ_{v} , κ with smearing, looking for a plateau
- Estimate of λ and ξ from a scaling analysis

Introduction 0000000	Flux tubes on the lattice	Numerical data	Penetration depth and coherece length 0000	Conclusions
Outline				

- Confinement and the dual superconductor model
- Chromoelectric field on the lattice

2 Flux tubes on the lattice

- Details about simulations
- The measuring process at a glance

3 Numerical data

• Results from the fit and parameters vs smearing

Penetration depth and coherece length

- From lattice to physical units
- Scaling

Results from the fit and parameters vs smearing

Measurements at integer and noninteger distances

Figure: Longitudinal chromoelectric field E_l versus x_t , in lattice units for $\Delta = 4a$ and after 10 smearing steps

- Nonintegers distances included to check for rotational invariance restoration
- Restriction only to points at integer distances:
 - Smaller χ^2_r
 - CPU time saved

Consistent values for parameters in both cases

(日) (四) (日) (日)

Flux tubes on the lattice

Numerical data 0●00 Penetration depth and coherece length Conclusions

Results from the fit and parameters vs smearing

Parameters vs smearing: looking for a plateau

Flux tubes on the lattice

Numerical data 0000 Penetration depth and coherece length Conclusions

Results from the fit and parameters vs smearing

Parameters vs smearing: looking for a plateau

Plateau values vs β comparing all the sizes

 Δ variation to study contamination effects due to the proximity of the static color sources.

Figure: Plateau values for μ vs β Figure: Plateau values for λ/ξ_v vs β $(\Delta = 4a, 6a, 8a)$ $(\Delta = 4a, 6a, 8a)$

(日) (四) (日) (日)

 $\Delta = 6a$ good compromise between contaminations and signal-to-noise.

Introduction 0000000	Flux tubes on the lattice 000	Numerical data 0000	Penetration depth and coherece length	Conclusions
Outline				
1 Int	reduction			
•	Confinement and th	e dual superc	onductor model	

Flux tubes on the lattice

- Details about simulations
- The measuring process at a glance

3 Numerical data

• Results from the fit and parameters vs smearing

Penetration depth and coherece length

- From lattice to physical units
- Scaling

Scaling of the plateau values of $a\mu$ with the string tension through the parametrization.

$$egin{array}{rcl} \sqrt{\sigma}(g) &=& f_{\mathrm{SU}(3)}(g^2)[1+0.2731~\hat{a}^2(g)\ &-& 0.01545~\hat{a}^4(g)+0.01975~\hat{a}^6(g)]/0.01364 \end{array}$$

$$\hat{a}(g) = \frac{f_{\mathrm{SU}(3)}(g^2)}{f_{\mathrm{SU}(3)}(g^2(\beta = 6))}, \quad \beta = \frac{6}{g^2}, \quad 5.6 \le \beta \le 6.5$$
$$f_{\mathrm{SU}(3)}(g^2) = \left(b_0 g^2\right)^{\frac{-b_1}{2b_0^2}} \exp\left(\frac{-1}{2b_0 g^2}\right), \quad b_0 = \frac{11}{(4\pi)^2}, \quad b_1 = \frac{102}{(4\pi)^4}$$

▲□▶ ▲@▶ ▲ 圖▶ ▲ 圖▶

э

[R. G. Edwards, U. M. Heller, and T. R. Klassen, Nucl. Phys. B 517, (1998)]

Flux tubes on the lattice

Numerical data

Penetration depth and coherece length ○●○○

通り

Conclusions

From lattice to physical units

Field in lattice and physical units

Figure: Longitudinal chromoelectric field E_l versus x_t , in lattice units and in physical units, for $\Delta = 6a$ and after 30 smearing steps

Introduction Flux tubes on the lattice

Numerical data 0000 Penetration depth and coherece length 0000

Conclusions

Scaling

Parameters scaling behavior: sizes compared

▲ロト ▲母 ト ▲目 ト ▲目 ト ○日 - のへの

Introduction Flux tubes on the lattice

Numerical data

Penetration depth and coherece length ○○○●

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Conclusions

Scaling

Parameters scaling behavior: $\Delta = 6a$

Here 'old' means Wilson connected correlator and cooling as in [P. Cea, L. Cosmai, and A. Papa, Phys. Rev. D 86, (2012)]

lr C	n troductio	n Flux tubes on the lattice	Numerical data 0000	Penetration depth and coherece length 0000	Conclusions
	о II				
(Juthr	ne			
	1	Introduction • Confinement and th • Chromoelectric field	e dual superc on the lattic	onductor model e	
	 2 Flux tubes on the lattice Details about simulations The measuring process at a glance 				
	3	Numerical data • Results from the fit	and paramet	ers vs smearing	
	4	Penetration depth and • From lattice to physical effective effect	coherece len sical units	gth	

Scaling

Introduction	Flux tubes on the lattice	Numerical data	Penetration depth and coherece length	Conclusions

Summary and outlook

- SU(3) vacuum as a type-I dual superconductor in agreement with [A. Shibata, K.-I. Kondo, S. Kato, and T. Shinohara, Phys. Rev. D 87, (2013)]
- λ in agreement with [P. Cea, L. Cosmai, and A. Papa, Phys. Rev. D 86, (2012)][P. Bicudo, M. Cardoso, and N. Cardoso, PoS LATTICE2013 (2014) 495]
- Relation to the "intrinsic width" of the flux tube [M. Caselle and P. Grinza, J. High Energy Phys. 11 (2012) 174.] to be investigated
- Finite temperature
- Introduction of dynamical quarks d.o.f. (implementation of $\rho_P^{\rm conn}$ within the MILC code)
- Check of the validity of the model (goodness of the fit): R and x_t ranges

(日) (同) (日) (日)

Introduction	Flux tubes on the lattice	Numerical data	Penetration depth and coherece length	Conclusions

THANK YOU

