Resonances in πK scattering

David Wilson
for the Hadron Spectrum Collaboration

based on work with J. J. Dudek, R. G. Edwards and C. E. Thomas, arXiv:1406.4158

Old Dominion University

Resonances from QCD

- We want to understand the spectrum of hadrons directly from QCD.
- Most excited hadrons are resonant enhancements in the scattering of lighter stable particles: ρ resonance in $I=1 \pi \pi$ scattering.
- Many excited hadrons decay to the lightest pseudoscalar octet (π, K, η), which are long-lived.
- Excited states are often resonances in multiple channels: need to use the coupled-channel formalism.
- Several options, one choice is $\boldsymbol{I}=\mathbf{1} / \mathbf{2} \boldsymbol{\pi} K-\boldsymbol{\eta} K$ scattering.
- Physical amplitudes have resonant states in several partial waves:
J. J. Dudek, R. G. Edwards and C. E. Thomas Phys. Rev. D 87, 034505

$$
\begin{aligned}
J^{P}=0^{+} & \kappa, K_{0}{ }^{*}(1430), \ldots \\
J^{P}=1^{-} & K^{*}(892), \ldots \\
\hline J^{P}=2^{+} & K_{2}^{*}(1430), \ldots
\end{aligned}
$$

Calculation method

- Anisotropic lattices with 2+1 dynamical flavours. $3.5 \times$ finer spacing in time: better energy resolution. Wilson clover action, Symanzik-improved gauge action.
- Distillation method for quark smearing.
- 3 volumes

$L(\mathrm{fm})$	$\left(L / a_{s}\right)^{3} \times\left(T / a_{t}\right)$	$N_{\text {cfgs }}$	$N_{t_{\text {srcs }}}$	$N_{\text {vecs }}$
1.9	$16^{3} \times 128$	479	$4-8$	64
2.4	$20^{3} \times 128$	603	$2-6$	128
2.9	$24^{3} \times 128$	553	$2-6$	162
$m_{\pi}=391 \mathrm{MeV}, \quad m_{K}=549 \mathrm{MeV}, \quad m_{\eta}=589 \mathrm{MeV}$				

- Large basis of operators including:
"Single-meson" like operators: $\bar{\psi} \Gamma \psi, \bar{\psi} \Gamma \overleftrightarrow{D} \ldots \overleftrightarrow{D} \psi$
"Meson-meson" like operators with definite momentum: $\pi\left(\vec{p}_{1}\right) K\left(\vec{p}_{2}\right), \quad \eta\left(\vec{p}_{1}\right) K\left(\vec{p}_{2}\right)$
- Include all Wick contractions, all disconnected contributions.
- All relevant irreps with boosts

$$
p^{2}=\left|\vec{p}_{1}+\vec{p}_{2}\right|^{2} \leq 4\left(\frac{2 \pi}{L}\right)^{2}
$$

Spectrum extraction

- Use variational method to obtain the spectrum in each irrep.
- A typical irrep: $\mathrm{A}_{1}{ }^{+}$. Contains $\pi K-\eta K$ with $J^{P}=0^{+}, 4^{+}, \ldots$
- Large shifts from non-interacting levels: strong interactions between hadrons. $E=\left(m_{1}^{2}+\left|\vec{p}_{1}\right|^{2}\right)^{\frac{1}{2}}+\left(m_{2}^{2}+\left|\vec{p}_{2}\right|^{2}\right)^{\frac{1}{2}}$

Many irreps

$p=[000]$

$p=[001]$

- >100 energy levels obtained
- 73 used for $S+P$ wave analysis
- 24 used for D-wave analysis

$$
p=[011],[111],[002]
$$

Coupled-channel scattering

- Use coupled-channel extension of Lüscher formalism:

$$
\begin{gathered}
\rho_{i}=\frac{2 p_{i}}{E_{\text {cm }}} \\
q_{i}^{2}=p_{i}^{2}(L / 2 \pi)^{2}
\end{gathered}
$$

Couples channels $i j$, diagonal in ℓ

- t-matrix in ∞-volume \longrightarrow finite volume energies.
- Actual problem: Finite volume energy levels $\longrightarrow t$-matrix.
- Many unknowns for each energy level: channel-coupling, partial wave mixing.

A solution:
\rightarrow Parameterise $t_{i j}$ using a few free parameters.
\rightarrow Given many energy levels, the problem is constrained.

S-wave amplitudes from \mathbf{A}_{1}^{+}

$$
\operatorname{det}\left[\delta_{i j} \delta_{\ell \ell^{\prime}} \delta_{n n^{\prime}}+i \rho_{i} t_{i j}^{(\ell)}\left(\delta_{\ell \ell^{\prime}} \delta_{n n^{\prime}}+i \mathcal{M}_{\ell n ; \ell^{\prime} n^{\prime}}^{\vec{d}, \Lambda}\left(q_{i}^{2}\right)\right)\right]=0
$$

- Expect $J^{P}=\mathrm{O}^{+}$dominant. Neglect $J^{P}=4^{+}$and higher.
- Use K-matrix, respects unitarity and has the flexibility needed for resonances.

$$
t_{i j}^{-1}(s)=K_{i j}^{-1}(s)+I_{i j}(s) \quad K=\frac{1}{m^{2}-s}\left[\begin{array}{cc}
g_{\pi K}^{2} & g_{\pi K} g_{\eta K} \\
g_{\pi K} g_{\eta K} & g_{\eta K}^{2}
\end{array}\right]+\left[\begin{array}{cc}
\gamma_{\pi K, \pi K} & \gamma_{\pi K, \eta K} \\
\gamma_{\pi K, \eta K} & \gamma_{\eta K, \eta K}
\end{array}\right]
$$

- Minimise a χ^{2} by varying m, g 's and γ 's to obtain best possible description of the lattice energies.

S-wave amplitudes from \mathbf{A}_{1}^{+}

$$
\operatorname{det}\left[\delta_{i j} \delta_{\ell \ell^{\prime}} \delta_{n n^{\prime}}+i \rho_{i} t_{i j}^{(\ell)}\left(\delta_{\ell \ell^{\prime}} \delta_{n n^{\prime}}+i \mathcal{M}_{\ell n ; \ell^{\prime} n^{\prime}}^{\overrightarrow{,},}\left(q_{i}^{2}\right)\right)\right]=0
$$

- Expect $J^{P}=0^{+}$dominant. Neglect $J^{P}=4^{+}$and higher.
- Use K-matrix, respects unitarity and has the flexibility needed for resonances.

$$
t_{i j}^{-1}(s)=K_{i j}^{-1}(s)+I_{i j}(s) \quad K=\frac{1}{m^{2}-s}\left[\begin{array}{cc}
g_{\pi K}^{2} & g_{\pi K} g_{\eta K} \\
g_{\pi K} g_{\eta K} & g_{\eta K}^{2}
\end{array}\right]+\left[\begin{array}{cc}
\gamma_{\pi K, \pi K} & \gamma_{\pi K, \eta K} \\
\gamma_{\pi K, \eta K} & \gamma_{\eta K, \eta K}
\end{array}\right]
$$

- Minimise a χ^{2} by varying m, g 's and γ 's to obtain best possible description of the lattice energies.

S-wave amplitudes

- $\quad t_{i j}$ represented as phase and inelasticity

$$
t_{i j}=\left\{\begin{array}{cc}
\frac{\eta e^{2 i \delta_{i}}-1}{2 i \rho_{i}} & (i=j) \\
\frac{\sqrt{1-\eta^{2}} e^{i\left(\delta_{i}+\delta_{j}\right)}}{2 \sqrt{\rho_{i} \rho_{j}}} & (i \neq j)
\end{array}\right.
$$

- Discrete phase shift points obtained in decoupling ($\eta \rightarrow 1$) limit.
- Broad resonance in S-wave πK.
- $\quad \eta K$ coupling is small.
- 3 subthreshold points, naturally included in an energy-level fit.

P-wave near-threshold state

In irreps with P-wave overlap:
T_{1}^{-}, [001] A_{1}, [001] E_{2}, [011] A_{1}, [011] $B_{1,2},[111] A_{1},[111] E_{2}$, [002] A_{1}
"extra" level near πK threshold.
Fitting the energy levels using an elastic Breit-Wigner in $\pi K: k^{3} \cot \delta_{1}=\left(m_{R}^{2}-s\right) \frac{6 \pi s^{\frac{1}{2}}}{g_{R}^{2}}$

$$
\times 10^{-4}
$$

-

In t there is a pole on the real axis just below πK threshold:

Bound state in $J^{P}=1^{-}$

$S+P$-waves from 73 energy levels

- Makes use of in-flight A_{1} energies to constrain S-wave.
- \quad Partial wave mixing \rightarrow obtain both S and P simultaneously
- Use in-flight and P-wave energy levels below $\pi \pi K$ threshold ($a_{t} E_{c m}=0.235$).
- D-wave and higher are negligible in this region.

$S+P$-waves from 73 energy levels

- Makes use of in-flight A_{1} energies to constrain S-wave.
- \quad Partial wave mixing \rightarrow obtain both S and P simultaneously
- Use in-flight and P-wave energy levels below $\pi \pi K$ threshold ($a_{t} E_{c m}=0.235$).
- D-wave and higher are negligible in this region.

Narrow D-wave resonance

- No time for full discussion.
- Many other energy levels containing scattering amplitude information.
- Using only irreps with $J=2$ and higher ($E^{+}, T_{2}{ }^{+}$, [100] $B_{1,2}$) we find a narrow resonance:
- Fit to energies. Discrete points obtained in $\eta \rightarrow 1$ limit.
- $\operatorname{In} J \geq 1$ scattering $\pi \pi K$ can contribute (for $a_{t} E_{c m}>0.235$).

Scattering amplitude poles

- t-matrix singularities have similar pattern to experiment.
- Unitarised $\chi \mathrm{PT}: \kappa(800) \rightarrow$ virtual bound state (for $m_{\pi} \gtrsim 2.5 m_{\pi}{ }^{\text {(phys) }}$) Pole found below threshold on the unphysical sheet.
- A pole on the physical sheet below threshold found in $J^{P}=1^{-}$. Similar to $K^{*}(892)$, but just bound at $m_{\pi}=391 \mathrm{MeV}$.

Poles are found on unphysical sheets:

- Poles in S-wave, large width. Dominant coupling to πK. Similar to the $K_{0}{ }^{*}(1430)$.
- Narrow poles found in D-wave. Dominant coupling to πK. Similar to the $K_{2}{ }^{*}(1430)$.

Summary

- Parameterise energy dependence
\rightarrow determine coupled-channel $\pi K-\eta K$ scattering amplitudes.
- Thorough analysis of ~ 100 energy levels
\rightarrow obtain tight constraints on the amplitudes
- Methods appear to work quite generally for a wide range of interactions.
- Very different scattering features found:
(a) Broad resonance (in coupled channels)
(b) Bound state
(c) Narrow resonance
- Approximate decoupling between $\pi K-\eta K$
- Applicable to scattering in many other coupled-channels.

Backup Slides

Energy level fitting

$$
\operatorname{det}\left[\delta_{i j} \delta_{\ell \ell^{\prime}} \delta_{n n^{\prime}}+i \rho_{i} t_{i j}^{(\ell)}\left(\delta_{\ell \ell^{\prime}} \delta_{n n^{\prime}}+i \mathcal{M}_{\ell n ; \ell^{\prime} n^{\prime}}^{\vec{d}, \Lambda}\left(q_{i}^{2}\right)\right)\right]=0
$$

A convenient unitarity-preserving coupled-channel parameterisation is the K-matrix:

$$
\begin{aligned}
t_{i j}^{-1}(s) & =\frac{1}{\left(2 k_{i}\right)^{\ell}} K_{i j}^{-1}(s) \frac{1}{\left(2 k_{j}\right)^{\ell}}+I_{i j}(s) . \\
K_{i j}(s) & =\sum_{p} \frac{g_{i}^{(p)} g_{j}^{(p)}}{m_{p}^{2}-s}+\sum_{n} \gamma_{i j}^{(n)} s^{n}
\end{aligned}
$$

- Unitarity of the S-matrix is preserved when the parameters m, g and γ are real, and

$$
\operatorname{Im} I_{i j}(s)=-\rho_{i} \delta_{i j}
$$

Principal Correlators - [100] \mathbf{A}_{1}

Elastic Region

Scattering length and K-matrix in S-wave.

Breit-Wigner and K-matrix in P-wave.

Partial wave contributions in each irrep

\vec{P}	LG($\vec{P})$	Λ	$\begin{gathered} J^{P}(\vec{P}=0) \\ \|\lambda\|^{(\tilde{\eta})}(\vec{P} \neq 0) \end{gathered}$	$(K \pi) \ell^{N}$
[$0,0,0$]	O_{h}^{D}	A_{1}^{+}	$0^{+}, 4^{+}$	$0^{1}, 4^{1}$
		T_{1}^{-}	$1^{-}, 3^{-},\left(4^{-}\right)$	$1^{1}, 3^{1}$
		T_{1}^{+}	$\left(1^{+}\right),\left(3^{+}\right), 4^{+}$	4^{1}
		T_{2}^{-}	(2-), 3^{-}, (4-)	
		T_{2}^{+}	$2^{+},\left(3^{+}\right), 4^{+}$	$2^{1}, 4^{1}$
		E^{+}	$2^{+}, 4^{+}$	$2^{1}, 4^{1}$
		A_{2}^{-}	3^{-}	3^{1}
$[0,0, n]$	Dic ${ }_{4}$	A_{1}	$0^{+}, 4$	$0^{1}, 1^{1}, 2^{1}, 3^{1}, 4^{2}$
		A_{2}	(0^{-}), 4	
		E_{2}	1, 3	$1^{1}, 2^{1}, 3^{2}, 4^{2}$
		B_{1}	2	$2^{1}, 3^{1}, 4^{1}$
		B_{2}	2	$2^{1}, 3^{1}, 4^{1}$
[0, n, n]	Dic_{2}	A_{1}	$0^{+}, 2,4$	$0^{1}, 1^{1}, 2^{2}, 3^{2}, 4^{3}$
		A_{2}	(0^{-}), 2, 4	$2^{1}, 3^{1}, 4^{2}$
		B_{1}	1, 3	$1^{1}, 2^{1}, 3^{2}, 4^{2}$
		B_{2}	1, 3	$1^{1}, 2^{1}, 3^{2}, 4^{2}$
[n, n, n]	Dic_{3}	A_{1}	$0^{+}, 3$	$0^{1}, 1^{1}, 2^{1}, 3^{2}, 4^{2}$
		A_{2}	(0^{-}), 3	$3^{1}, 4^{1}$
		E_{2}	1, 2, 4	$1^{1}, 2^{2}, 3^{2}, 4^{3}$

Table 2: The separation of $K \pi$ spins, helicities and partial waves in each lattice irrep, with $J \leq 4$. The first three columns are taken from Refs. [13, 8, 7]. The final column is derived by considering how the helicity components are projected on each ℓ. The brackets around $\left(J^{P}\right)$ donote a J^{P} at rest that does not contribute to elastic $K \pi$ scattering (e.g. $0^{-}, 1^{+}, 2^{-}, \ldots$) and also $|\lambda|^{\tilde{\eta}}=0^{-}$.

