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Resonances from QCD
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• We want to understand the spectrum 
of hadrons directly from QCD.

• Most excited hadrons are resonant 
enhancements in the scattering of 
lighter stable particles:                            
ρ resonance in I=1 ππ scattering.

• Many excited hadrons decay to the 
lightest pseudoscalar octet (π, K, η), 
which are long-lived.

• Excited states are often resonances in 
multiple channels: need to use the 
coupled-channel formalism.

• Several options, one choice is         
I=1/2 πK-ηK scattering.

• Physical amplitudes have resonant 
states in several partial waves:

JP=0+ κ, K0
✶(1430), ...

JP=1- K✶(892), ...
JP=2+ K2

✶(1430), ...
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Calculation method
• Anisotropic lattices with 2+1 dynamical flavours.                                                                        

3.5× finer spacing in time: better energy resolution.                                                 
Wilson clover action, Symanzik-improved gauge 
action.

• Distillation method for quark smearing.

• 3 volumes

• Large basis of operators including:

“Single-meson” like operators:           ,

“Meson-meson” like operators with definite 
momentum: 

• Include all Wick contractions, all disconnected 
contributions.

• All relevant irreps with boosts

L (fm) (L/as)3 ⇥ (T/at) Ncfgs Ntsrcs Nvecs

1.9 163 ⇥ 128 479 4-8 64
2.4 203 ⇥ 128 603 2-6 128
2.9 243 ⇥ 128 553 2-6 162

m⇡ = 391MeV, mK = 549MeV, m⌘ = 589MeV

p2 = |~p1 + ~p2|2  4
�
2⇡
L

�2

 �  �
 !
D ...
 !
D  

⇡(~p1)K(~p2), ⌘(~p1)K(~p2)
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Spectrum extraction

• Use variational method to obtain the spectrum in each irrep.

• A typical irrep: A1+. Contains πK-ηK with JP=0+, 4+, ...

• Large shifts from non-interacting levels: strong interactions 
between hadrons. E =

�
m2

1 + |~p1|2
� 1

2 +
�
m2

2 + |~p2|2
� 1

2

⇡[000]K[000]

⇡[001]K[001]

⌘[001]K[001]

⌘[000]K[000]

⌘[011]K[011]

⇡[011]K[011]
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Many irreps

p = [001]

p = [000]
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p = [011], [111], [002]

• >100 energy levels obtained

• 73 used for S+P wave analysis

• 24 used for D-wave analysis



David Wilson Resonances in πK Scattering 6

0.16

0.20

0.24

0.28

 16  20  24

0.16

0.20

0.24

0.28

 16  20  24

0.16

0.20

0.24

0.28

 16  20  24

0.16

0.20

0.24

0.28

 16  20  24

0.16

0.20

0.24

0.28

 16  20  24

0.16

0.20

0.24

0.28

 16  20  24

}

}
• Overlaps ~ guide to resonant content

• Shifted πK-like and ηK-like states

• JP=1- state near to πK threshold, 
JP=2+ state, extra JP=0+.

• Considerable partial-wave mixing.                         
[011] A1 contains JP=0+, 1, 2, ...

⇠ JP = 1�

⇠ JP = 2+ Zn
i = hn| O†

i |0i

⇠ JP
= 0

+

+ interactions

! Mostly ⇡KMostly ⌘K  
i
n
t
e
r
a
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i
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g
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’
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interacting ⇡K’s +

single particle overlaps

interacting ⇡K’s +

single particle overlaps
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Coupled-channel scattering

det
h
�ij�``0�nn0 + i⇢i t

(`)
ij

⇣
�``0�nn0 + iM~d,⇤

`n;`0n0(q2i )
⌘ i

= 0

• Use coupled-channel extension of Lüscher formalism:

• t-matrix in ∞-volume                   finite volume energies.

• Actual problem: Finite volume energy levels                 t-matrix.

• Many unknowns for each energy level: channel-coupling, partial wave mixing.

A solution:

       ➔    Parameterise tij using a few free parameters.

       ➔    Given many energy levels, the problem is constrained.

Couples channels i j, diagonal in 𝓁 Couples partial waves 𝓁

7

⇢i =
2pi

Ecm

q2i = p2i (L/2⇡)
2
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S-wave amplitudes from A1+
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• Expect JP=0+ dominant. Neglect JP=4+ and higher.

• Use K-matrix, respects unitarity and has the flexibility needed for resonances.

K =
1

m2 � s


g2⇡K g⇡K g⌘K

g⇡K g⌘K g2⌘K

�
+


�⇡K,⇡K �⇡K,⌘K

�⇡K,⌘K �⌘K,⌘K

�
t�1
ij (s) = K�1

ij (s) + Iij(s)

det
h
�ij�``0�nn0 + i⇢i t

(`)
ij

⇣
�``0�nn0 + iM~d,⇤

`n;`0n0(q2i )
⌘ i

= 0

• Minimise a χ2 by varying m, g’s and γ’s to obtain best possible description of the lattice energies.
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�2/N
dof

= 9.56
15�6

= 1.06

S-wave amplitudes from A1+

• Minimise a χ2 by varying m, g’s and γ’s to obtain best possible description of the lattice energies.

• Expect JP=0+ dominant. Neglect JP=4+ and higher.

• Use K-matrix, respects unitarity and has the flexibility needed for resonances.

K =
1

m2 � s


g2⇡K g⇡K g⌘K

g⇡K g⌘K g2⌘K

�
+


�⇡K,⇡K �⇡K,⌘K

�⇡K,⌘K �⌘K,⌘K

�
t�1
ij (s) = K�1

ij (s) + Iij(s)

det
h
�ij�``0�nn0 + i⇢i t

(`)
ij

⇣
�``0�nn0 + iM~d,⇤

`n;`0n0(q2i )
⌘ i

= 0



• tij represented as phase and inelasticity

• Discrete phase shift points obtained in 
decoupling (η→1) limit.

• Broad resonance in S-wave πK.

• ηK coupling is small.

• 3 subthreshold points, naturally 
included in an energy-level fit.

tij =

8
<

:

⌘ e2i�i�1
2i ⇢i

(i = j)
p

1�⌘2 ei(�i+�j)

2
p
⇢i ⇢j

(i 6= j)
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S-wave amplitudes
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P-wave near-threshold state

 0.162

1.0
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 0.164  0.166  0.168

In irreps with P-wave overlap:
T1-, [001] A1, [001] E2, [011] A1, [011] B1,2, [111] A1, [111] E2, [002] A1 
“extra” level near πK threshold.

Fitting the energy levels using an elastic Breit-Wigner in πK: k3 cot �1 = (m2
R � s)

6⇡s
1
2

g2R

In t there is a pole 
on the real axis just 
below πK threshold:

Bound state in JP=1-
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S+P-waves from 73 energy levels

-10

 0

 10

 20

 30

0.16 0.18 0.20 0.22 0.24

0.7

0.8

0.9

1.0 0.16 0.18 0.20 0.22 0.24
16
20
24

-30

 0

 30

 60

 90

 120

 150

 180

0.16 0.18 0.20 0.22 0.24 0.26 0.28

0.7

0.8

0.9

1.0 0.16 0.18 0.20 0.22 0.24 0.26 0.28
16
20
24

�2/N
dof

= 0.88

• Makes use of in-flight A1 energies to 
constrain S-wave.

• Partial wave mixing ➔ obtain both S and P 
simultaneously

• Use in-flight and P-wave energy levels 
below ππK threshold (atEcm=0.235).

• D-wave and higher are negligible in this 
region.
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S+P-waves from 73 energy levels
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• Makes use of in-flight A1 energies to 
constrain S-wave.

• Partial wave mixing ➔ obtain both S and P 
simultaneously

• Use in-flight and P-wave energy levels 
below ππK threshold (atEcm=0.235).

• D-wave and higher are negligible in this 
region.
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Narrow D-wave resonance

• No time for full discussion.

• Many other energy levels 
containing scattering amplitude 
information.

• Using only irreps with J=2 and 
higher (E+, T2+, [100]B1,2) we 
find a narrow resonance:

• Fit to energies. Discrete points 
obtained in η→1 limit.

• In J≥1 scattering ππK can 
contribute (for atEcm > 0.235).

• Ideally requires 3-body 
formalism. Although not strictly 
rigorous, we can apply the 2→2 
formalism anyway. 
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Scattering amplitude poles

-300

-200

-100

0

 800  1000  1200  1400

• t-matrix singularities have similar pattern to experiment.

• Unitarised χPT:  κ(800) ➔ virtual bound state (for mπ ≳ 2.5 mπ(phys))              
Pole found below threshold on the unphysical sheet.

• A pole on the physical sheet below 
threshold found in JP=1-.         
Similar to K✶(892), but just bound 
at mπ = 391 MeV.

Poles are found on unphysical sheets:

• Poles in S-wave, large width.  
Dominant coupling to πK.      
Similar to the K0

✶(1430).

• Narrow poles found in D-wave. 
Dominant coupling to πK.     
Similar to the K2

✶(1430).
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Summary
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• Parameterise energy dependence                   
➔ determine coupled-channel πK-ηK 
scattering amplitudes.

• Thorough analysis of ~100 energy levels      
➔ obtain tight constraints on the amplitudes

• Methods appear to work quite generally for a 
wide range of interactions.

• Very different scattering features found:            
(a) Broad resonance (in coupled channels)                                            
(b) Bound state                                                      
(c) Narrow resonance                                          

• Approximate decoupling between πK-ηK

• Applicable to scattering in many other 
coupled-channels.
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Backup Slides



David Wilson Resonances in πK Scattering 18

Energy level fitting

Resonances in πK Scattering

t�1
ij (s) =

1

(2ki)`
K�1

ij (s)
1

(2kj)`
+ Iij(s).

Kij(s) =
X

p

g(p)i g(p)j

m2
p � s

+
X

n

�(n)
ij sn

Im Iij(s) = �⇢i�ij

• Unitarity of the S-matrix is preserved when the parameters m, g and γ are real, and

A convenient unitarity-preserving coupled-channel parameterisation is the K-matrix:

det
h
�ij�``0�nn0 + i⇢i t

(`)
ij

⇣
�``0�nn0 + iM~d,⇤

`n;`0n0(q2i )
⌘ i

= 0
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Principal Correlators - [100] A1

Resonances in πK Scattering

0.8

1.0

1.2

1.4

 5  10  15  20  25  30

0.8

1.0

1.2

1.4

 5  10  15  20  25  30

0.8

1.0

1.2

1.4

 5  10  15  20  25  30

0.8

1.0

1.2

1.4

 5  10  15  20  25  30

0.8

1.0

1.2

1.4

 5  10  15  20  25  30

0.8

1.0

1.2

1.4

 5  10  15  20  25  30

0.8

1.0

1.2

1.4

 5  10  15  20  25  30

0.8

1.0

1.2

1.4

 5  10  15  20  25  30

0.6

0.9

1.2

1.5

 5  10  15  20  25  30

0.8

1.0

1.2

1.4

 5  10  15  20  25  30

0.8

1.0

1.2

1.4

 5  10  15  20  25  30

0.15

0.18

0.21

0.24

0.27

0.30

 5  10  15  20  25  30



David Wilson Resonances in πK Scattering 20

Elastic Region

Resonances in πK Scattering

 0

 15

 30

 45

 60

 75

 90

0.170 0.175 0.180 0.185 0.190 0.195 0.200

-4

-2

 0

 2

Scattering length and 
K-matrix in S-wave.

Breit-Wigner and    
K-matrix in P-wave.



David Wilson Resonances in πK Scattering 21Resonances in πK Scattering

Partial wave contributions in each irrep

~P LG(~P ) ⇤ JP

(

~P = 0) (K⇡) `N

|�|(⌘̃) (~P 6= 0)

A+
1 0

+, 4+ 0

1, 41

T�
1 1

�, 3�, (4�) 1

1, 31

T+
1 (1

+
), (3+), 4+ 4

1

[0, 0, 0] OD

h

T�
2 (2

�
), 3�, (4�) 3

1

T+
2 2

+, (3+), 4+ 2

1, 41

E+
2

+, 4+ 2

1, 41

A�
2 3

�
3

1

A1 0

+, 4 0

1, 11, 21, 31, 42

A2 (0

�
), 4 4

1

[0, 0, n] Dic4 E2 1, 3 1

1, 21, 32, 42

B1 2 2

1, 31, 41

B2 2 2

1, 31, 41

A1 0

+, 2, 4 0

1, 11, 22, 32, 43

[0, n, n] Dic2 A2 (0

�
), 2, 4 2

1, 31, 42

B1 1, 3 1

1, 21, 32, 42

B2 1, 3 1

1, 21, 32, 42

A1 0

+, 3 0

1, 11, 21, 32, 42

[n, n, n] Dic3 A2 (0

�
), 3 3

1, 41

E2 1, 2, 4 1

1, 22, 32, 43

Table 2: The separation of K⇡ spins, helicities and partial waves in each lattice irrep, with J  4.
The �rst three columns are taken from Refs. [13, 8, 7]. The �nal column is derived by considering
how the helicity components are projected on each `. The brackets around (JP

) donote a JP at rest
that does not contribute to elasticK⇡ scattering (e.g. 0�, 1+, 2�, ...) and also |�|⌘̃ = 0

�.

In Fig. 3 we show the data and an e�ective range �t to the ensembles of Lattice data. For ` = 1,
�1 < 12

� and for ` = 2, �2 < 6

� which are much smaller than the S-wave. The D-wave is
heavily suppressed and almost consistent with zero.

We now perform a number of �ts to the data we have obtained and investigate the interde-
pendence of the partial waves. Assuming higher waves are negligible, the S-wave provides 23
well-determined phases which may justify using two parameters in the e�ective range param-
eterisation Eq. 1,

a
`=0 = (�3.66± 0.16) a

t


1 0.93

1

�

r
`=0 = (�0.75± 2.26) a

t

with �2/N
dof

= 35.39/21. We �nd that the two parameters are highly correlated which sug-
gests a one-parameter (scattering length) �t may be su�cient, the result using the same data
points is

a
`=0 = (�3.612± 0.044) a

t

with �2/N
dof

= 35.51/22, which is indeed a small improvement. We note that this result is
similar that obtained in the ⇡⇡ I = 2 study performed on the same Lattice con�gurations [7].

The �2 suggests that the higher-wave assumption is reasonable so we proceed by �tting the
` = 1 and ` = 2 waves in isolation, before we investigate any correlations. The following �ts
are performed on the ensembles of energies that are best determined in terms of phase shift �
when working from the Lattice energy to the phase in the usual manner. Poorly determined

6


