Resonances in πK scattering

David Wilson for the Hadron Spectrum Collaboration

based on work with J. J. Dudek, R. G. Edwards and C. E. Thomas, arXiv:1406.4158

Old Dominion University

Resonances from QCD

- We want to understand the spectrum of hadrons directly from QCD.
- Most excited hadrons are resonant enhancements in the scattering of lighter stable particles: ρ resonance in $I=1 \pi \pi$ scattering.
- Many excited hadrons decay to the lightest pseudoscalar octet (π, K, η) , which are long-lived.
- Excited states are often resonances in multiple channels: need to use the coupled-channel formalism.
- Several options, one choice is $I=1/2 \pi K \cdot \eta K$ scattering.
- Physical amplitudes have resonant states in several partial waves:

Calculation method

- Anisotropic lattices with 2+1 dynamical flavours. $3.5 \times$ finer spacing in time: better energy resolution. Wilson clover action, Symanzik-improved gauge action.
- *Distillation* method for quark smearing.
- 3 volumes
- Large basis of operators including:

"Single-meson" like operators: $\overline{\psi}\Gamma\psi$, $\overline{\psi}\Gamma\overleftrightarrow{D}$... $\overleftrightarrow{D}\psi$

"Meson-meson" like operators with definite momentum: $\pi(\vec{p_1})K(\vec{p_2}), \quad \eta(\vec{p_1})K(\vec{p_2})$

- Include all Wick contractions, all disconnected contributions.
- All relevant irreps with boosts $p^2 = \left| \vec{p_1} + \vec{p_2} \right|^2 \le 4 \left(\frac{2\pi}{L} \right)^2$

 $N_{t_{\rm srcs}}$ $N_{\rm vecs}$ $\frac{N_{\rm cfgs}}{479}$ 4-8 64 $20^3 \times 128$ 603 2-6 128 $24^{3} \times 128$ 5532-6 162 $m_{\pi} = 391 \text{MeV}, \quad m_K = 549 \text{MeV}, \quad m_{\eta} = 589 \text{MeV}$

1.9

2.4

2.9

Spectrum extraction

- Use variational method to obtain the spectrum in each irrep.
- A typical irrep: A_1^+ . Contains $\pi K \eta K$ with $J^P = 0^+, 4^+, \dots$
- Large shifts from non-interacting levels: strong interactions between hadrons. $E = (m_1^2 + |\vec{p_1}|^2)^{\frac{1}{2}} + (m_2^2 + |\vec{p_2}|^2)^{\frac{1}{2}}$

Many irreps

p = [000]

- >100 energy levels obtained
- 73 used for S+P wave analysis
- 24 used for *D*-wave analysis

Coupled-channel scattering

• Use coupled-channel extension of Lüscher formalism:

$$\det \begin{bmatrix} \delta_{ij} \delta_{\ell\ell'} \delta_{nn'} + i\rho_i t_{ij}^{(\ell)} \left(\delta_{\ell\ell'} \delta_{nn'} + i\mathcal{M}_{\ell n;\ell'n'}^{\vec{d},\Lambda}(q_i^2) \right) \end{bmatrix} = 0$$

Couples channels ij, diagonal in ℓ

Couples partial waves ℓ

- *t*-matrix in ∞ -volume \longrightarrow finite volume energies.
- Actual problem: Finite volume energy levels $\longrightarrow t$ -matrix.
- Many unknowns for each energy level: channel-coupling, partial wave mixing.

A solution:

- → Parameterise t_{ij} using a few free parameters.
- \rightarrow Given many energy levels, the problem is constrained.

$$\label{eq:rho_i} \begin{split} \rho_i &= \frac{2p_i}{E_{\rm cm}} \\ q_i^2 &= p_i^2 (L/2\pi)^2 \end{split}$$

S-wave amplitudes from A₁+

$$\det\left[\delta_{ij}\delta_{\ell\ell'}\delta_{nn'} + i\rho_i t_{ij}^{(\ell)} \left(\delta_{\ell\ell'}\delta_{nn'} + i\mathcal{M}_{\ell n;\ell'n'}^{\vec{d},\Lambda}(q_i^2)\right)\right] = 0$$

- Expect $J^P = 0^+$ dominant. Neglect $J^P = 4^+$ and higher.
- Use *K*-matrix, respects unitarity and has the flexibility needed for resonances.

$$t_{ij}^{-1}(s) = K_{ij}^{-1}(s) + I_{ij}(s) \qquad K = \frac{1}{m^2 - s} \begin{bmatrix} g_{\pi K}^2 & g_{\pi K} g_{\eta K} \\ g_{\pi K} g_{\eta K} & g_{\eta K}^2 \end{bmatrix} + \begin{bmatrix} \gamma_{\pi K,\pi K} & \gamma_{\pi K,\eta K} \\ \gamma_{\pi K,\eta K} & \gamma_{\eta K,\eta K} \end{bmatrix}$$

• Minimise a χ^2 by varying *m*, *g*'s and γ 's to obtain best possible description of the lattice energies.

S-wave amplitudes from A1+

$$\det\left[\delta_{ij}\delta_{\ell\ell'}\delta_{nn'} + i\rho_i t_{ij}^{(\ell)} \left(\delta_{\ell\ell'}\delta_{nn'} + i\mathcal{M}_{\ell n;\ell'n'}^{\vec{d},\Lambda}(q_i^2)\right)\right] = 0$$

- Expect $J^P = 0^+$ dominant. Neglect $J^P = 4^+$ and higher.
- Use *K*-matrix, respects unitarity and has the flexibility needed for resonances.

$$t_{ij}^{-1}(s) = K_{ij}^{-1}(s) + I_{ij}(s) \qquad K = \frac{1}{m^2 - s} \begin{bmatrix} g_{\pi K}^2 & g_{\pi K} g_{\eta K} \\ g_{\pi K} g_{\eta K} & g_{\eta K}^2 \end{bmatrix} + \begin{bmatrix} \gamma_{\pi K,\pi K} & \gamma_{\pi K,\eta K} \\ \gamma_{\pi K,\eta K} & \gamma_{\eta K,\eta K} \end{bmatrix}$$

• Minimise a χ^2 by varying *m*, *g*'s and γ 's to obtain best possible description of the lattice energies.

S-wave amplitudes

 t_{ij} represented as phase and inelasticity

$$t_{ij} = \begin{cases} \frac{\eta \, e^{2i\delta_i} - 1}{2i\,\rho_i} & (i = j) \\ \frac{\sqrt{1 - \eta^2} \, e^{i(\delta_i + \delta_j)}}{2\,\sqrt{\rho_i\,\rho_j}} & (i \neq j) \end{cases}$$

- Discrete phase shift points obtained in decoupling $(\eta \rightarrow 1)$ limit.
- Broad resonance in *S*-wave πK .
- ηK coupling is small.
- 3 subthreshold points, naturally included in an energy-level fit.

P-wave near-threshold state

In irreps with *P*-wave overlap:

 T_1^- , [001] A_1 , [001] E_2 , [011] A_1 , [011] $B_{1,2}$, [111] A_1 , [111] E_2 , [002] A_1

"extra" level near πK threshold.

Fitting the energy levels using an elastic Breit-Wigner in πK : $k^3 \cot \delta_1 = (m_R^2 - s) \frac{6\pi s^{\frac{1}{2}}}{q_R^2}$

Resonances in πK **Scattering**

S+P-waves from 73 energy levels

- Makes use of in-flight A_1 energies to constrain *S*-wave.
- Partial wave mixing \rightarrow obtain both *S* and *P* simultaneously
- Use in-flight and *P*-wave energy levels below $\pi\pi K$ threshold ($a_t E_{cm} = 0.235$).
- *D*-wave and higher are negligible in this region.

S+P-waves from 73 energy levels

- Makes use of in-flight A_1 energies to constrain *S*-wave.
- Partial wave mixing \rightarrow obtain both *S* and *P* simultaneously
- Use in-flight and *P*-wave energy levels below $\pi\pi K$ threshold ($a_t E_{cm} = 0.235$).
- *D*-wave and higher are negligible in this region.

Narrow *D*-wave resonance

• No time for full discussion. 12

- Many other energy levels containing scattering amplitude information.
- Using only irreps with J=2 and higher $(E^+, T_2^+, [100]B_{1,2})$ we find a narrow resonance:
- Fit to energies. Discrete points obtained in $\eta \rightarrow 1$ limit.
- In $J \ge 1$ scattering $\pi \pi K$ can contribute (for $a_t E_{cm} > 0.235$).
- Ideally requires 3-body formalism. Although not strictly rigorous, we can apply the 2→2 formalism anyway.

Scattering amplitude poles

- *t*-matrix singularities have similar pattern to experiment.
- Unitarised χ PT: $\kappa(800) \rightarrow$ virtual bound state (for $m_{\pi} \ge 2.5 m_{\pi}^{(\text{phys})}$) Pole found below threshold on the unphysical sheet.
- A pole on the physical sheet below threshold found in $J^P = 1^-$. Similar to $K^*(892)$, but just bound at $m_{\pi} = 391$ MeV.

Poles are found on unphysical sheets:

- Poles in *S*-wave, large width. Dominant coupling to πK . Similar to the $K_0^*(1430)$.
- Narrow poles found in *D*-wave. Dominant coupling to πK . Similar to the $K_2^*(1430)$.

Summary

- Parameterise energy dependence
 → determine coupled-channel πK-ηK scattering amplitudes.
- Thorough analysis of ~100 energy levels
 → obtain tight constraints on the amplitudes
- Methods appear to work quite generally for a wide range of interactions.

- Very different scattering features found:
 (a) Broad resonance (in coupled channels)
 (b) Bound state
 (c) Narrow resonance
- Approximate decoupling between $\pi K \eta K$
- Applicable to scattering in many other coupled-channels.

Backup Slides

Energy level fitting

$$\det\left[\delta_{ij}\delta_{\ell\ell'}\delta_{nn'} + i\rho_i t_{ij}^{(\ell)} \left(\delta_{\ell\ell'}\delta_{nn'} + i\mathcal{M}_{\ell n;\ell'n'}^{\vec{d},\Lambda}(q_i^2)\right)\right] = 0$$

A convenient unitarity-preserving coupled-channel parameterisation is the *K*-matrix:

$$t_{ij}^{-1}(s) = \frac{1}{(2k_i)^{\ell}} K_{ij}^{-1}(s) \frac{1}{(2k_j)^{\ell}} + I_{ij}(s)$$
$$K_{ij}(s) = \sum_{p} \frac{g_i^{(p)} g_j^{(p)}}{m_p^2 - s} + \sum_{n} \gamma_{ij}^{(n)} s^n$$

• Unitarity of the *S*-matrix is preserved when the parameters *m*, *g* and *γ* are real, and

$$\operatorname{Im} I_{ij}(s) = -\rho_i \delta_{ij}$$

Principal Correlators - [100] A₁

Elastic Region

90 $\circ 16^{3}$ 75 $\square 20^3$ $\simeq 24^3$ 60 $\delta_0^{\pi K}$ 45 30 тĿФ Ъ 15 Ŀф 0 0.200 $a_t E_{\mathsf{cm}}$ 0.170 0.175 0.180 0.190 0.195 0.185 2 $\delta_1^{\pi K}$ 0 -2 -4

Scattering length and *K*-matrix in *S*-wave.

Breit-Wigner and *K*-matrix in *P*-wave.

Partial wave contributions in each irrep

\vec{P}	$LG(\vec{P})$	Λ	$J^P(\vec{P}=0)$	$(K\pi) \ell^N$
			$ \lambda ^{(\tilde{\eta})} (\vec{P} \neq 0)$	
		A_1^+	$0^+, 4^+$	$0^1, 4^1$
		T_1^-	$1^{-}, 3^{-}, (4^{-})$	$1^1, 3^1$
		T_1^+	$(1^+), (3^+), 4^+$	4^{1}
[0,0,0]	O_h^D	T_2^-	$(2^{-}), 3^{-}, (4^{-})$	3^{1}
		T_2^+	$2^+, (3^+), 4^+$	$2^1, 4^1$
		E^+	$2^+, 4^+$	$2^1, 4^1$
		A_2^-	3-	3^1
		A_1	$0^+, 4$	$0^1, 1^1, 2^1, 3^1, 4^2$
		A_2	$(0^{-}), 4$	4^{1}
[0,0,n]	Dic_4	E_2	1, 3	$1^1, 2^1, 3^2, 4^2$
		B_1	2	$2^1, 3^1, 4^1$
		B_2	2	$2^1, 3^1, 4^1$
		A_1	$0^+, 2, 4$	$0^1, 1^1, 2^2, 3^2, 4^3$
[0,n,n]	Dic_2	A_2	$(0^{-}), 2, 4$	$2^1, 3^1, 4^2$
		B_1	1, 3	$1^1, 2^1, 3^2, 4^2$
		B_2	1, 3	$1^1, 2^1, 3^2, 4^2$
		A_1	$0^+, 3$	$0^1, 1^1, 2^1, 3^2, 4^2$
[n,n,n]	Dic_3	A_2	$(0^{-}), 3$	$3^1, 4^1$
		E_2	1, 2, 4	$1^1, 2^2, 3^2, 4^3$

Table 2: The separation of $K\pi$ spins, helicities and partial waves in each lattice irrep, with $J \leq 4$. The first three columns are taken from Refs. [13, 8, 7]. The final column is derived by considering how the helicity components are projected on each ℓ . The brackets around (J^P) donote a J^P at rest that does not contribute to elastic $K\pi$ scattering (e.g. 0^- , 1^+ , 2^- , ...) and also $|\lambda|^{\tilde{\eta}} = 0^-$.

Resonances in πK Scattering