
Optimisation of
Quantum Hamiltonian Evolution

Apoorva Patel

Centre for High Energy Physics and

Supercomputer Education and Research Centre

Indian Institute of Science, Bangalore

26 June 2014, Lattice 2014, New York

Quantum Hamiltonian Evolution – p. 1/20

Motivation
Richard Feynman: Quantum computers are efficient
simulators of quantum physical systems and models.
Classical simulations of quantum systems and models are not efficient.

Quantum superposition can sum multiple evolutionary
paths contributing to a quantum process in one go,
while classical simulators evaluate them one by one.

Quantum Hamiltonian Evolution – p. 2/20

Motivation
Richard Feynman: Quantum computers are efficient
simulators of quantum physical systems and models.
Classical simulations of quantum systems and models are not efficient.

Quantum superposition can sum multiple evolutionary
paths contributing to a quantum process in one go,
while classical simulators evaluate them one by one.

This advantage needs to be formalised in terms of
computational complexity, for physical Hamiltonians.
Feynman (1982), Lloyd (1996), Aharanov and Ta-Shma (2003), Berry et al. (2007, 2013)

Quantum Hamiltonian Evolution – p. 2/20

Motivation
Richard Feynman: Quantum computers are efficient
simulators of quantum physical systems and models.
Classical simulations of quantum systems and models are not efficient.

Quantum superposition can sum multiple evolutionary
paths contributing to a quantum process in one go,
while classical simulators evaluate them one by one.

This advantage needs to be formalised in terms of
computational complexity, for physical Hamiltonians.
Feynman (1982), Lloyd (1996), Aharanov and Ta-Shma (2003), Berry et al. (2007, 2013)

Computational complexity of a problem is a measure of the
physical resources required to solve it.

Space Time Energy
Tradeoffs between resources are dictated by their availability, e.g. parallel computers.

Conventional classification does not explicitly include energy.

Quantum Hamiltonian Evolution – p. 2/20

Computational Complexity
Computational complexity of a decision problem is specified
in terms of the size of its input (output size is only one bit).

Problems with different output structures are reformulated
as a sequence of decision problems, with successive
verifiable bounds on the outputs (e.g. as in binary search).
For a specified tolerance level ε, the corresponding output size is log ε.

The complexity of the original problem is then the sum of
complexities of the individual decision problems.

Quantum Hamiltonian Evolution – p. 3/20

Computational Complexity
Computational complexity of a decision problem is specified
in terms of the size of its input (output size is only one bit).

Problems with different output structures are reformulated
as a sequence of decision problems, with successive
verifiable bounds on the outputs (e.g. as in binary search).
For a specified tolerance level ε, the corresponding output size is log ε.

The complexity of the original problem is then the sum of
complexities of the individual decision problems.

It is therefore appropriate to specify the complexity of a
general problem in terms of its input and output sizes.
This is a natural criterion for reversible computation. It is also suitable for extending

finite precision analog computation to arbitrary precision digital computation.

A computational algorithm is efficient when the required
resources are polynomial in its input and output sizes.
Popular importance sampling methods are not efficient, with error ε ∝ N

−1/2
iter .

Quantum Hamiltonian Evolution – p. 3/20

Quantum Hamiltonian Simulation
Start from the initial quantum state |ψ(0)〉.
First evolve: |ψ(T)〉 = U(T)|ψ(0)〉, U(T) = P [e−i

∫ T

0
H(t)dt].

Then measure: 〈Oa〉 = 〈ψ(T)|Oa|ψ(T)〉.
In typical problems, both these parts are executed
probabilistically upto a specified tolerance level, say ε.

We address the first part: The problem is to determine the
evolution operator U(T), with accuracy ||Ũ(T)− U(T)|| < ε.
Efficient execution of the second part requires different techniques.

Quantum Hamiltonian Evolution – p. 4/20

Quantum Hamiltonian Simulation
Start from the initial quantum state |ψ(0)〉.
First evolve: |ψ(T)〉 = U(T)|ψ(0)〉, U(T) = P [e−i

∫ T

0
H(t)dt].

Then measure: 〈Oa〉 = 〈ψ(T)|Oa|ψ(T)〉.
In typical problems, both these parts are executed
probabilistically upto a specified tolerance level, say ε.

We address the first part: The problem is to determine the
evolution operator U(T), with accuracy ||Ũ(T)− U(T)|| < ε.
Efficient execution of the second part requires different techniques.

In a finite N -dimensional Hilbert space, a generic H(t) is a
dense N ×N matrix. That cannot be simulated efficiently.

Physical properties restrict the structure of H(t), however.
Efficient simulations must exploit this Hamiltonian structure.

Quantum Hamiltonian Evolution – p. 4/20

Useful Physical Features
Features commonly present in physical problems are:
(1) The Hilbert space is a tensor product of many small
components (e.g. N = 2n for a system of qubits).

Quantum Hamiltonian Evolution – p. 5/20

Useful Physical Features
Features commonly present in physical problems are:
(1) The Hilbert space is a tensor product of many small
components (e.g. N = 2n for a system of qubits).
(2) The components have only local interactions (e.g.
couplings with only a limited number of neighbours).
Such sparse Hamiltonians have O(N) non-zero elements.
Exception: An easily factorisable dense operator is also fine, as in case of FFT.

Quantum Hamiltonian Evolution – p. 5/20

Useful Physical Features
Features commonly present in physical problems are:
(1) The Hilbert space is a tensor product of many small
components (e.g. N = 2n for a system of qubits).
(2) The components have only local interactions (e.g.
couplings with only a limited number of neighbours).
Such sparse Hamiltonians have O(N) non-zero elements.
Exception: An easily factorisable dense operator is also fine, as in case of FFT.

(3) The Hamiltonian is specified using a finite number of
functions (e.g. translationally invariant interactions).
With such a compact description of the Hamiltonian, the resources needed
to just write it do not influence the simulation complexity.

Quantum Hamiltonian Evolution – p. 5/20

Useful Physical Features
Features commonly present in physical problems are:
(1) The Hilbert space is a tensor product of many small
components (e.g. N = 2n for a system of qubits).
(2) The components have only local interactions (e.g.
couplings with only a limited number of neighbours).
Such sparse Hamiltonians have O(N) non-zero elements.
Exception: An easily factorisable dense operator is also fine, as in case of FFT.

(3) The Hamiltonian is specified using a finite number of
functions (e.g. translationally invariant interactions).
With such a compact description of the Hamiltonian, the resources needed
to just write it do not influence the simulation complexity.

Such Hamiltonians can be mapped to graphs with bounded
degree d (vertices ↔ components, edges ↔ interactions).
Above features permit SIMD simulations of these Hamiltonians with domain decomposition.

Quantum Hamiltonian Evolution – p. 5/20

Useful Physical Features
Features commonly present in physical problems are:
(1) The Hilbert space is a tensor product of many small
components (e.g. N = 2n for a system of qubits).
(2) The components have only local interactions (e.g.
couplings with only a limited number of neighbours).
Such sparse Hamiltonians have O(N) non-zero elements.
Exception: An easily factorisable dense operator is also fine, as in case of FFT.

(3) The Hamiltonian is specified using a finite number of
functions (e.g. translationally invariant interactions).
With such a compact description of the Hamiltonian, the resources needed
to just write it do not influence the simulation complexity.

Such Hamiltonians can be mapped to graphs with bounded
degree d (vertices ↔ components, edges ↔ interactions).
Above features permit SIMD simulations of these Hamiltonians with domain decomposition.

Efficient Hamiltonian simulation algorithms use resources
that are polynomial in log(N), d and log(ε).

Quantum Hamiltonian Evolution – p. 5/20

Evolution Strategy
Efficient simulation strategy has two major ingredients:

(A) Decompose the sparse Hamiltonian as a sum of
non-commuting but block-diagonal parts, H =

∑l
i=1Hi.

Then each Hi can be easily and exactly exponentiated,
with exp(−iHiτ) retaining the block-diagonal structure.
The smallest possible blocks are of size 2× 2: H(b) = a0I + �a · �σ.
Their projection operator structure allows them to be interpreted as binary query oracles.

Quantum Hamiltonian Evolution – p. 6/20

Evolution Strategy
Efficient simulation strategy has two major ingredients:

(A) Decompose the sparse Hamiltonian as a sum of
non-commuting but block-diagonal parts, H =

∑l
i=1Hi.

Then each Hi can be easily and exactly exponentiated,
with exp(−iHiτ) retaining the block-diagonal structure.
The smallest possible blocks are of size 2× 2: H(b) = a0I + �a · �σ.
Their projection operator structure allows them to be interpreted as binary query oracles.

Hi can be identified by an edge-colouring algorithm for
graphs, with distinct colours for overlapping edges.
Any graph can be efficiently coloured with d+ 1 colours.
Algorithms for bipartite graphs are simpler than the generic case. They need d colours.

Quantum Hamiltonian Evolution – p. 6/20

Evolution Strategy
Efficient simulation strategy has two major ingredients:

(A) Decompose the sparse Hamiltonian as a sum of
non-commuting but block-diagonal parts, H =

∑l
i=1Hi.

Then each Hi can be easily and exactly exponentiated,
with exp(−iHiτ) retaining the block-diagonal structure.
The smallest possible blocks are of size 2× 2: H(b) = a0I + �a · �σ.
Their projection operator structure allows them to be interpreted as binary query oracles.

Hi can be identified by an edge-colouring algorithm for
graphs, with distinct colours for overlapping edges.
Any graph can be efficiently coloured with d+ 1 colours.
Algorithms for bipartite graphs are simpler than the generic case. They need d colours.

Identification of Hi provides a compressed labeling scheme
to address individual blocks.
The blocks can then be easily evolved in parallel
(classically), or in superposition (quantum mechanically).

Quantum Hamiltonian Evolution – p. 6/20

Example of Hamiltonian decomposition:
Discretised Laplacian in 1-dim can be decomposed as:

· ·
· · · −1 2 −1 0 0 · · ·
· · · 0 −1 2 −1 0 · · ·
· · · 0 0 −1 2 −1 · · ·
· ·

 =

· ·
· · · −1 1 0 0 0 · · ·
· · · 0 0 1 −1 0 · · ·
· · · 0 0 −1 1 0 · · ·
· ·

+

· ·
· · · 0 1 −1 0 0 · · ·
· · · 0 −1 1 0 0 · · ·
· · · 0 0 0 1 −1 · · ·
· ·

This decomposition has the projection operator structure
following from: H = Ho +He, H

2
o = 2Ho, H

2
e = 2He.

Quantum Hamiltonian Evolution – p. 7/20

Example of Hamiltonian decomposition:
Discretised Laplacian in 1-dim can be decomposed as:

· ·
· · · −1 2 −1 0 0 · · ·
· · · 0 −1 2 −1 0 · · ·
· · · 0 0 −1 2 −1 · · ·
· ·

 =

· ·
· · · −1 1 0 0 0 · · ·
· · · 0 0 1 −1 0 · · ·
· · · 0 0 −1 1 0 · · ·
· ·

+

· ·
· · · 0 1 −1 0 0 · · ·
· · · 0 −1 1 0 0 · · ·
· · · 0 0 0 1 −1 · · ·
· ·

This decomposition has the projection operator structure
following from: H = Ho +He, H

2
o = 2Ho, H

2
e = 2He.

Graphically, the bipartite break-up is:

o o o
� � � � � �

e e.

Ho and He are identified by the last bit of the position label.
Eigenvalues of H are 4 sin2(k/2). Those of Ho, He are 0, 2.

Quantum Hamiltonian Evolution – p. 7/20

Evolution Strategy (contd.)
(B) Use the discrete Lie-Trotter formula to exponentiate H,
but with as large ∆t as possible.

e−iHT = e−i
∑l

i=1 HiT ≈ (
∏

i e
−iHi∆t)n, n = T/∆t

This replacement maintains unitarity of the evolution,
but may not preserve other properties such as the energy.
Time-dependent Hamiltonians should be expanded about the mid-point of the interval ∆t.

Quantum Hamiltonian Evolution – p. 8/20

Evolution Strategy (contd.)
(B) Use the discrete Lie-Trotter formula to exponentiate H,
but with as large ∆t as possible.

e−iHT = e−i
∑l

i=1 HiT ≈ (
∏

i e
−iHi∆t)n, n = T/∆t

This replacement maintains unitarity of the evolution,
but may not preserve other properties such as the energy.
Time-dependent Hamiltonians should be expanded about the mid-point of the interval ∆t.

When the exponent is proportional to a projection operator,
the largest ∆t makes the exponential a reflection operator.
P = 1

2(1−n̂·�σ), P 2 = P ⇒ R = e±iπP = 1−2P = n̂·�σ, R2 = I.

Quantum Hamiltonian Evolution – p. 8/20

Evolution Strategy (contd.)
(B) Use the discrete Lie-Trotter formula to exponentiate H,
but with as large ∆t as possible.

e−iHT = e−i
∑l

i=1 HiT ≈ (
∏

i e
−iHi∆t)n, n = T/∆t

This replacement maintains unitarity of the evolution,
but may not preserve other properties such as the energy.
Time-dependent Hamiltonians should be expanded about the mid-point of the interval ∆t.

When the exponent is proportional to a projection operator,
the largest ∆t makes the exponential a reflection operator.
P = 1

2(1−n̂·�σ), P 2 = P ⇒ R = e±iπP = 1−2P = n̂·�σ, R2 = I.

This extreme strategy not only keeps the evolution
accurate, but also improves the algorithmic complexity
from a power law dependence on ε to a logarithmic one.

That is not at all obvious, and needs to be demonstrated.

Quantum Hamiltonian Evolution – p. 8/20

Illustration: Database Search
View database search as a Hamiltonian evolution problem.

The evolution is from the initial uniform superposition state
|s〉 to a specific target state |t〉: U(T)|s〉 = |t〉.
For a database of size N : |〈i|s〉| = 1/

√
N, 〈i|t〉 = δit.

Quantum Hamiltonian Evolution – p. 9/20

Illustration: Database Search
View database search as a Hamiltonian evolution problem.

The evolution is from the initial uniform superposition state
|s〉 to a specific target state |t〉: U(T)|s〉 = |t〉.
For a database of size N : |〈i|s〉| = 1/

√
N, 〈i|t〉 = δit.

Logic: Design a Hamiltonian to diffuse the wavefunction
over the whole Hilbert space by kinetic energy (mean field
version) and attract it towards the target by potential energy.

Quantum Hamiltonian Evolution – p. 9/20

Illustration: Database Search
View database search as a Hamiltonian evolution problem.

The evolution is from the initial uniform superposition state
|s〉 to a specific target state |t〉: U(T)|s〉 = |t〉.
For a database of size N : |〈i|s〉| = 1/

√
N, 〈i|t〉 = δit.

Logic: Design a Hamiltonian to diffuse the wavefunction
over the whole Hilbert space by kinetic energy (mean field
version) and attract it towards the target by potential energy.

In simplest algorithms, the Hamiltonians depend only on |s〉
and |t〉. The unitary evolution is then a rotation in the 2-dim
subspace formed by |s〉 and |t〉. Let

|t〉 =
(
1

0

)
, |t⊥〉 =

(
0

1

)
, |s〉 =

(
1/

√
N√

(N − 1)/N

)
.

A time-independent H rotates the state at a fixed rate:
|ψ〉 → U(t)|ψ〉, U(t) = exp(−iHt) = exp(−in̂H · �σωt).

Quantum Hamiltonian Evolution – p. 9/20

Farhi-Gutmann version:
Continuous time evolution with HC = |s〉〈s| + |t〉〈t| gives:
U(t) = exp(−in̂ · �σt/√N), n̂ = (

√
(N − 1)/N, 0, 1/

√
N)T .

The (unnormalised) eigenvectors of H are |s〉 ± |t〉.
The rotation axis n̂ bisects the initial and target states.

Rotation by angle π on the Bloch sphere takes |s〉 to |t〉,
with evolution time T = (π/2)

√
N .

Quantum Hamiltonian Evolution – p. 10/20

Farhi-Gutmann version:
Continuous time evolution with HC = |s〉〈s| + |t〉〈t| gives:
U(t) = exp(−in̂ · �σt/√N), n̂ = (

√
(N − 1)/N, 0, 1/

√
N)T .

The (unnormalised) eigenvectors of H are |s〉 ± |t〉.
The rotation axis n̂ bisects the initial and target states.

Rotation by angle π on the Bloch sphere takes |s〉 to |t〉,
with evolution time T = (π/2)

√
N .

Grover version:
Time evolution is discrete with the evolution operator
UG = −(I − 2|s〉〈s|)(I − 2|t〉〈t|) = (1− 2

N)I + 2i
√
N−1
N σ2 .

UG = exp(−iHGτ) corresponds to the Hamiltonian
HG = i([|t〉〈t|, |s〉〈s|] = i(|t〉〈s| − |s〉〈t|)/√N = −

√
N−1
N σ2 .

It is the discrete Lie-Trotter formula for Hs and Ht with
∆tG = π. The rotation axis n̂G = (0, 1, 0)T is orthogonal to n̂.

Quantum Hamiltonian Evolution – p. 10/20

The evolution time step is: τ = 2N√
N−1

sin−1 1√
N
.

Going from |s〉 to |t〉 requires Q steps along the geodesic:
(UG)

Q|s〉 = |t〉, QT = 1
4 cos

−1(2
N − 1)/ sin−1(1/

√
N) ≈ π

4

√
N.

Quantum Hamiltonian Evolution – p. 11/20

The evolution time step is: τ = 2N√
N−1

sin−1 1√
N
.

Going from |s〉 to |t〉 requires Q steps along the geodesic:
(UG)

Q|s〉 = |t〉, QT = 1
4 cos

−1(2
N − 1)/ sin−1(1/

√
N) ≈ π

4

√
N.

y

z

x

|s〉

|t〉

|t⊥〉
n̂G

n̂

HG HC

The two evolution trajectories are completely different.
Only after a specific evolution time, corresponding to the
solution of the search problem, they meet each other.

Adiabatic evolution follows the same trajectory as HG.
Quantum Hamiltonian Evolution – p. 11/20

Equivalent Evolutions
For database search: UC(T) = i(1− 2|t〉〈t|)(UG)

QT

For a more general evolution time 0 < t < T , we have
(analogous to the Euler angle decomposition):

UC(t) = exp(iβσ3) (UG)
Qt exp

(
i(π2 + β)σ3

)
,

Qt =
sin−1 (

√
N−1
N

sin(t/
√
N))

2 sin−1(1/
√
N)

≈ t
2 , σ3 = 2|t〉〈t| − 1,

β = −π
4 − 1

2 tan
−1

(
1√
N
tan(t/

√
N)

)
.

Quantum Hamiltonian Evolution – p. 12/20

Equivalent Evolutions
For database search: UC(T) = i(1− 2|t〉〈t|)(UG)

QT

For a more general evolution time 0 < t < T , we have
(analogous to the Euler angle decomposition):

UC(t) = exp(iβσ3) (UG)
Qt exp

(
i(π2 + β)σ3

)
,

Qt =
sin−1 (

√
N−1
N

sin(t/
√
N))

2 sin−1(1/
√
N)

≈ t
2 , σ3 = 2|t〉〈t| − 1,

β = −π
4 − 1

2 tan
−1

(
1√
N
tan(t/

√
N)

)
.

Thus UC(t) can be expressed entirely in terms of projection
operators, and the two evolutions are identical irrespective
of the initial state and the evolution time.

HG can be used to obtain the same evolution as HC , even
though they have different eigenvectors and eigenvalues.
Fractional oracle operator, Oφ = exp(iφ|t〉〈t|), is easily generated using an ancilla bit.

Quantum Hamiltonian Evolution – p. 12/20

Complexity of Discretised Evolution
All continuous variables are discretised in digital computers.
That is needed for implementing fault-tolerant computation with control over bounded errors.

Discrete evolution step ∆t has to be chosen so as to satisfy
the overall error bound ε on the algorithm.

Quantum Hamiltonian Evolution – p. 13/20

Complexity of Discretised Evolution
All continuous variables are discretised in digital computers.
That is needed for implementing fault-tolerant computation with control over bounded errors.

Discrete evolution step ∆t has to be chosen so as to satisfy
the overall error bound ε on the algorithm.

The simplest and the symmetric Lie-Trotter formulae are:

e−i
∑l

i=1 Hi∆t = (e−iH1∆t...e−iHl∆t)× e−iE(2)(∆t)2

e−i
∑l

i=1 Hi∆t = (e−iHl∆t/2...e−iH1∆t/2)

× (e−iH1∆t/2...e−iHl∆t/2)× e−iE(3)(∆t)3

with discretisation errors:
E(2) =

i

24

∑
i<j

[Hi, Hj] +O(∆t)

E(3) =
1

24

∑
i<j

{2[Hi, [Hi, Hj]] + [Hj , [Hi, Hj]]}

+
1

12

∑
i<j<k

{2[Hi, [Hj , Hk]] + [Hj , [Hi, Hk]]}+O(∆t)

Quantum Hamiltonian Evolution – p. 13/20

Small step size ∆t:
For unitary operators, ||X|| = 1. For n evolution steps,
triangle and Cauchy-Schwarz inequalities bound the error:
||Xn − Y n|| = ||(X − Y)(Xn−1 + . . .+ Y n−1)|| ≤ n||X − Y ||.
So to keep the total discretisation error bounded, we need
n||e−iE(k)(∆t)k − I|| ≈ n(∆t)k||E(k)|| = t(∆t)k−1||E(k)|| < ε.

With exact exponentiation of the individual Hi, the
computational cost C of a single step is independent of ∆t.

Quantum Hamiltonian Evolution – p. 14/20

Small step size ∆t:
For unitary operators, ||X|| = 1. For n evolution steps,
triangle and Cauchy-Schwarz inequalities bound the error:
||Xn − Y n|| = ||(X − Y)(Xn−1 + . . .+ Y n−1)|| ≤ n||X − Y ||.
So to keep the total discretisation error bounded, we need
n||e−iE(k)(∆t)k − I|| ≈ n(∆t)k||E(k)|| = t(∆t)k−1||E(k)|| < ε.

With exact exponentiation of the individual Hi, the
computational cost C of a single step is independent of ∆t.

The computational complexity of the whole evolution is then
O(nC) = O(tk/(k−1)(||E(k)||/ε)1/(k−1)C).

With power-law scaling in ε, this scheme is inefficient.

For the Hamiltonian HC , ||E(2)|| and ||E(3)|| are O(N−1/2).
For evolution time T = Θ(N1/2), its time complexity is linear.

Quantum Hamiltonian Evolution – p. 14/20

Grover’s discretisation:
∆tG is chosen to make exp(−Hi∆tG) reflection operators.

The large step size introduces an error because one may
jump across the desired state instead of reaching it exactly.
In general, Qt is not an integer, and has to be replaced by
its nearest integer approximation 	Qt +

1
2
.

Quantum Hamiltonian Evolution – p. 15/20

Grover’s discretisation:
∆tG is chosen to make exp(−Hi∆tG) reflection operators.

The large step size introduces an error because one may
jump across the desired state instead of reaching it exactly.
In general, Qt is not an integer, and has to be replaced by
its nearest integer approximation 	Qt +

1
2
.

The error probability for UC(t) is thus bounded by 1/N ,
corresponding to half a rotation step. Simple repetition of
the algorithm and selection of the result by majority rule
(not average) can rapidly reduce the error probability.

With R repetitions, the error probability is less than (N/4)R,
which can be made smaller than any prescribed ε.

Quantum Hamiltonian Evolution – p. 15/20

Grover’s discretisation:
∆tG is chosen to make exp(−Hi∆tG) reflection operators.

The large step size introduces an error because one may
jump across the desired state instead of reaching it exactly.
In general, Qt is not an integer, and has to be replaced by
its nearest integer approximation 	Qt +

1
2
.

The error probability for UC(t) is thus bounded by 1/N ,
corresponding to half a rotation step. Simple repetition of
the algorithm and selection of the result by majority rule
(not average) can rapidly reduce the error probability.

With R repetitions, the error probability is less than (N/4)R,
which can be made smaller than any prescribed ε.

The computational complexity of the total evolution is then
O(QtRCG) = O(t2(−2 log ε

logN)CG) = O(−t log ε
logN CG),

and the algorithm is efficient.
Quantum Hamiltonian Evolution – p. 15/20

Key Features
With a straightforward application of the Lie-Trotter formula,
the algorithm has an error proportional to the number of
steps n, and a power-law dependence of complexity on ε.

With the Lie-Trotter formula based on exact exponentiation
of projection operators to reflection operators, the algorithm
has an error independent of the evolution time, and a
logarithmic dependence of complexity on ε.

Quantum Hamiltonian Evolution – p. 16/20

Key Features
With a straightforward application of the Lie-Trotter formula,
the algorithm has an error proportional to the number of
steps n, and a power-law dependence of complexity on ε.

With the Lie-Trotter formula based on exact exponentiation
of projection operators to reflection operators, the algorithm
has an error independent of the evolution time, and a
logarithmic dependence of complexity on ε.

Algebraically, the Baker-Campbell-Hausdorff expansion
reduces to a finite number of terms for projection operators.
That allows efficient implementation of the Lie-Trotter
formula even for large step size.

Quantum Hamiltonian Evolution – p. 16/20

Key Features
With a straightforward application of the Lie-Trotter formula,
the algorithm has an error proportional to the number of
steps n, and a power-law dependence of complexity on ε.

With the Lie-Trotter formula based on exact exponentiation
of projection operators to reflection operators, the algorithm
has an error independent of the evolution time, and a
logarithmic dependence of complexity on ε.

Algebraically, the Baker-Campbell-Hausdorff expansion
reduces to a finite number of terms for projection operators.
That allows efficient implementation of the Lie-Trotter
formula even for large step size.

With compressed labeling, operations on specific blocks are
easily implemented as controlled unitary operations.

Euler angle decomposition allows easy conversion of
rotations about arbitrary axes to rotations about fixed axes.

Quantum Hamiltonian Evolution – p. 16/20

Truncation Error
A digital computer with finite number of bits produces
truncation errors. With b bits, the precision is δ = 2−b.

Addition, multiplication and polynomial evaluations
respectively require O(b), O(b2) and O(b3) resources.
Overflow/underflow limits the degree of the polynomial to be at most b.

With all functions approximated by accurate polynomials,
fixed axes rotations to b-bit precision need O(b3) effort.

Quantum Hamiltonian Evolution – p. 17/20

Truncation Error
A digital computer with finite number of bits produces
truncation errors. With b bits, the precision is δ = 2−b.

Addition, multiplication and polynomial evaluations
respectively require O(b), O(b2) and O(b3) resources.
Overflow/underflow limits the degree of the polynomial to be at most b.

With all functions approximated by accurate polynomials,
fixed axes rotations to b-bit precision need O(b3) effort.

The number of exponentiations of Hi needed for the
Lie-Trotter formula is n(k − 1)l, which reduces to
2Qt ≈ t for the Grover version.

The truncation error can be always made negligible
compared to the discretisation error, with the choice
n(k − 1)lδ = O(ε), i.e. b = Θ(− log(ε/n)).
The cost of a single step then scales as C = O((− log ε)3),
and the algorithm remains efficient.

Quantum Hamiltonian Evolution – p. 17/20

Generalisations
(1) Laplacian evolution can (marginally) beat FFT.
The Hamiltonian is a sum of only two projection operators in any dimension.

Quantum Hamiltonian Evolution – p. 18/20

Generalisations
(1) Laplacian evolution can (marginally) beat FFT.
The Hamiltonian is a sum of only two projection operators in any dimension.

(2) Overrelaxation evolution is more efficient than evolution
with small Metropolis steps.

Quantum Hamiltonian Evolution – p. 18/20

Generalisations
(1) Laplacian evolution can (marginally) beat FFT.
The Hamiltonian is a sum of only two projection operators in any dimension.

(2) Overrelaxation evolution is more efficient than evolution
with small Metropolis steps.

(3) The evolution identity in terms of reflection operators
remains exact even when magnitudes of Hi are unequal.
Only the parameters Qt and β change.

Quantum Hamiltonian Evolution – p. 18/20

Generalisations
(1) Laplacian evolution can (marginally) beat FFT.
The Hamiltonian is a sum of only two projection operators in any dimension.

(2) Overrelaxation evolution is more efficient than evolution
with small Metropolis steps.

(3) The evolution identity in terms of reflection operators
remains exact even when magnitudes of Hi are unequal.
Only the parameters Qt and β change.

(4) For general Hamiltonians, successive Hi can be added
to the algorithm one by one (e.g. in an induction procedure).
The large step evolution then is not exact, but has Θ(1)
success probability for a suitable evolution duration.
The overall scaling of the algorithm remains efficient:

O(lt||H|| log3(lt||H||/ε)Poly(logN)).

Quantum Hamiltonian Evolution – p. 18/20

Generalisations
(1) Laplacian evolution can (marginally) beat FFT.
The Hamiltonian is a sum of only two projection operators in any dimension.

(2) Overrelaxation evolution is more efficient than evolution
with small Metropolis steps.

(3) The evolution identity in terms of reflection operators
remains exact even when magnitudes of Hi are unequal.
Only the parameters Qt and β change.

(4) For general Hamiltonians, successive Hi can be added
to the algorithm one by one (e.g. in an induction procedure).
The large step evolution then is not exact, but has Θ(1)
success probability for a suitable evolution duration.
The overall scaling of the algorithm remains efficient:

O(lt||H|| log3(lt||H||/ε)Poly(logN)).

(5) Block-diagonal structure of Hi can evaluate many other
functions easily, e.g. fermion determinants.

Quantum Hamiltonian Evolution – p. 18/20

References
R.P. Feynman, Simulating Physics with Computers,

Int. J. Theor. Phys. 21 (1982) 467-488
S. Lloyd, Universal Quantum Simulators,

Science 273 (1996) 1073-1078
D. Aharonov and A. Ta-Shma,

Adiabatic Quantum State Generation and Statistical Zero Knowledge,
Proc. 35th Annual ACM Symp. on Theory of Computing, ACM (2003) 20-29

D.W. Berry, G. Ahokas, R. Cleve and B.C. Sanders,
Efficient Quantum Algorithms for Simulating Sparse Hamiltonians,
Comm. Math. Phys. 270 (2007) 359-371

A.M. Childs and R. Kothari
Simulating Sparse Hamiltonians with Star Decompositions,
Proc. TQC2010, Lecture Notes in Comp. Sci. 6519 (2011) 94-103

D.W. Berry, R. Cleve and R.D. Somma,
Exponential Improvement in Precision for Hamiltonian-Evolution Simulation,
Presented at AQIS’13, Chennai (2013), arXiv:1308.5424

D.W. Berry, A.M. Childs, R. Cleve, R. Kothari and R.D. Somma,
Exponential Improvement in Precision for Simulating Sparse Hamiltonians,
arXiv:1312.1414

Quantum Hamiltonian Evolution – p. 19/20

H. De Raedt, Product Formula Algorithms for Solving the Time-Dependent Schrödinger
Equation, Comp. Phys. Rep. 7 (1987) 1-72

J.L. Richardson, Visualizing Quantum Scattering on the CM-2 Supercomputer,
Comp. Phys. Comm. 63 (1991) 84-94

L.K. Grover, From Schrödinger’s Equation to the Quantum Search Algorithm,
Pramana 56 (2001) 333-348

E. Farhi and S. Gutmann, An Analog Analogue of a Digital Quantum Computation,
Phys. Rev. A 57 (1998) 2403-2406

L.K. Grover, A Fast Quantum Mechanical Algorithm for Database Search,
Proc. 28th Annual ACM Symp. on Theory of Computing, ACM (1996) 212-219

M.A. Nielsen and I.L. Chuang, Quantum Computation and Quantum Information,
Cambridge University Press (2000)

Quantum Hamiltonian Evolution – p. 20/20

