Spectral Flow and Index Theorem for Staggered Fermions

Eduardo Follana

Universidad de Zaragoza
(Lattice 2014, Columbia University, NY, June 2014)

Work in collaboration with:
V. Azcoiti (Universidad de Zaragoza)
G. Di Carlo (Laboratori Nazionali del Gran Sasso, INFN)
A. Vaquero (The Cyprus Institute)

Thanks: A. Hart for generating the configurations.

Outline

- Motivation
- Staggered fermions and topology.
- Index Theorem in the continuum.
- Index Theorem for Staggered Quarks with the spectral flow.
- Numerical results.
- Conclusions and outlook.

Motivation

- Continuum QCD has interesting topological features:
- Index theorem: quantized topological charge.
- RMT description of the distribution of low-level eigenvalues for each sector of topological charge, in the ϵ-regime.
- Can we identify these properties in lattice QCD? (In particular, can we do so for staggered fermions?)
- For a long time, it was believed that staggered quarks are "topology-blind".
- No good (staggered) definition of the topological charge Q.
- No RMT description sensitive to Q.

Staggered fermions and topology

NOT SO!

- Staggered quarks display the expected behaviour, if we are close enough to the continuum \Rightarrow improved actions (HISQ).

$$
\text { Improved Glue }\left(a \approx 0.077 \mathrm{fm}, \mathrm{~V}=20^{4}\right)
$$

Staggered fermions and topology

- We can define the index with the chirality of the low-lying eigenvalues.
- It works well in practice, and any discrepancy with other definitions is expected to vanish as $a \rightarrow 0$.
- However, it is not yet a topological definition in the same sense that the spectral flow of the Wilson operator is (or equivalently, the index of the overlap operator constructed with it.)
- D. H. Adams proposed a new definition for the index with staggered fermions, similar to the Wilson one (Phys.Rev.Lett.104:141602,2010 [arXiv:0912.2850])
- Preliminary results: E. Follana, V. Azcoiti, G. Di Carlo, A. Vaquero, PoS LATTICE2011 (2011) 100

Index Theorem in the continuum

Gluonic

- Smooth continuum gauge fields A_{μ} : integer Q

Fermionic

- $D=\gamma_{\mu}\left(\partial_{\mu}+A_{\mu}\right)$

$$
D \Psi=0, \gamma_{5} \Psi= \pm \Psi
$$

- Index Theorem: $n_{+}-n_{-}=Q$

Spectral flow

- $H(m)=\gamma_{5}(D-m)$, hermitian.
- $H(m)^{2}=D^{\dagger} D+m^{2} \rightarrow$ semipositive definite.
- Zero modes of D of chirality ± 1 : \rightarrow eigenmodes of $H(m)$, whose eigenvalues $\lambda(m)$ cross the origin with slope ∓ 1.
- Spectral flow (net number of crossings, with sign depending on the slope) $=n_{-}-n_{+}$.

Spectral flow on the Lattice

- For Wilson fermions, $H_{W}(m)=\gamma_{5}\left(D_{W}-m\right)$
- This cannot be directly applied to staggered fermions ($\gamma_{5} \rightarrow \Gamma_{5}$). But different operators could be used in the continuum, for example $H(m)=i D-m \gamma_{5}$
- This can be generalized directly to the staggered case, $H_{s t}(m)=i D_{s t}-m \Gamma_{5} \quad$ (D. H. Adams).
- In a background which is not too rough, we should identify the would-be zero modes with the eigenmodes of $H(m)$ which cross zero at a low-lying value of m. The slope of the crossing is minus the chirality.
- This is a topological property, and thus stable under small deformations of the field.
- It provides an unambiguous definition of the index, as long as there is a good separation of low and high-lying crossings.

Numerical setup

- Three ensembles of tree-level Symanzik and tadpole improved quenched QCD at different values of the lattice spacing (and roughly the same physical volume): . 125 fm (very coarse), . 093 fm (coarse) and . 0077 fm (fine).
- We study both the unimproved, 1link staggered Dirac operator and HISQ.
- The spectrum comes in pairs

$$
\lambda(m) \leftrightarrow-\lambda(-m)
$$

Numerical results: 2D

Numerical results: 2D

Numerical results

HISQ spectral flow, $Q=-1$

HISQ chirality, $Q=-1$

Numerical results

Numerical results

Numerical results

HISQ spectral flow, $Q=-1$

Numerical results

Numerical results

HISQ spectral flow, $Q=+2$

HISQ chirality, $Q=+2$

Numerical results

HISQ spectral flow, $Q=+2$

Numerical results

Numerical results

Numerical results

$$
\beta=5.0
$$

Numerical results

$$
\beta=4.6
$$

Numerical results

$$
\beta=5.0
$$

Numerical results

$$
\beta=4.6
$$

Numerical results

Numerical results: cuts

$4 D, L=20$, hisq. $\beta=5.0$

4D, $L=16$, hisq, $\beta=4.8$

$4 \mathrm{D}, \mathrm{L}=12$, hisq, $\beta=4.6$

4D, $L=20,1$ link, $\beta=5.0$

4D, $L=16,1$ link, $\beta=4.8$

$4 \mathrm{D}, \mathrm{L}=12,1$ link, $\beta=4.6$

Conclusions and outlook

- The topology as determined by the spectral flow defined by the staggered Dirac operator works very well for realistic gauge configurations. It is a perfectly good definition, on the same footing as the one coming from the Wilson flow.
- For most configurations, the index determined through the spectral flow and through the chiral modes of HISQ coincides.
- Much harder numerically.
- Study the flow for full QCD configurations.

