Standard Model contributions to B and B_s meson semileptonic decays

Heechang Na University of Utah

In collaboration with:

C. Bouchard, P. Lepage, C. Monahan, and J. Shigemitsu

HPQCD collaboration

Lattice 2014 at Columbia University, New York, USA

Outline

- HPQCD's heavy-light meson semileptonic decay programs
- $B \rightarrow D$ Iv and $Bs \rightarrow Ds$ Iv semileptonic decays
 - Preliminary!
 - Dispersion relation
 - Chiral and continuum extrapolation
 - R(D) and R(D_s)
 - $f_0(B_s \rightarrow D_s)/f_0(B \rightarrow D)$: important input for $Br(B_s \rightarrow \mu^+\mu^-)$
 - alternative |V_{cb}| determination

• $B_s \rightarrow K$ ly semileptonic decays

- First lattice calculation! C. Bouchard et al., arXiv:1406.2279
- HPChPT z-expansion and error budget
- Prediction of differential branching fractions
 - alternative |Vub| determination
- Phenomenology
 - $R_{\mu}\tau$, A^{I}_{FB} , \bar{A}^{I}_{FB} , and A^{I}_{pol}

Heavy-light semileptonic projects from HPQCD

- D \rightarrow K Iv, D $\rightarrow \pi$ Iv, and B \rightarrow K II have been investigated recently.
 - PRD 82 (2010) 014506, PRD 84 (2011) 114505, PRD 88 (2013) 054509, PRL 111 (2013) 162002
- $B \rightarrow D Iv$, $Bs \rightarrow Ds Iv$, and $Bs \rightarrow K Iv$ for the Standard Model contribution in tree level

$$\langle X|V^{\mu}|B_{x}\rangle = f_{+}(q^{2})(p_{B_{x}}^{\mu} + p_{X}^{\mu} - \frac{M_{B_{x}}^{2} - M_{X}^{2}}{q^{2}}q^{\mu}) + f_{0}(q^{2})\frac{M_{B_{x}}^{2} - M_{X}^{2}}{q^{2}}q^{\mu}$$

$$q^{2} = M_{B_{x}}^{2} + M_{X}^{2} - 2M_{B_{x}}E_{X}$$

 $< X|V^0|B_x> = \sqrt{2M_{B_x}}f_{\parallel}, \ < X|V^k|B_x> = \sqrt{2M_{B_x}}p_X^kf_{\perp}$

$$f_0(q^2) = \frac{\sqrt{2M_{B_x}}}{M_{B_x}^2 - M_X^2} [(M_{B_x} - E_X)f_{\parallel} + (E_X^2 - M_X^2)f_{\perp}]$$

$$f_{+}(q^{2}) = \frac{1}{\sqrt{2M_{B_{x}}}} [f_{\parallel} + (M_{B_{x}} - E_{X})f_{\perp}]$$

Heavy-light semileptonic projects from HPQCD

• We used MILC $N_f=2+1$ asqtad gauge configurations

~ a (fm)	size	sea quarks	confs	tsrc
0.12 (C1)	24	0.005/0.05	2096 (1200)	2
0.12 (C2)	20	0.01/0.05	2256 (1200)	2
0.12 (C3)	20	0.02/0.05	1200 (600)	2
0.09 (F1)	28	0.0062/0.031	1896 (1200)	4
0.09 (F2)	28	0.0124/0.031	1200 (600)	4

- We apply NRQCD heavy quark action for the bottom quark, and HISQ action for the light and charm quarks.
 - HISQ has leading discritization error at $O(\alpha_s(am_h)^2 v^2/c^2)$ and $O((am_h)^4 v^2/c^2)$
 - The lattice vector current corrected through O(α_s, Λ_{QCD}/m_b, α_s/(am_b)) in one loop perturbative calculation.
 - U(1) random-wall source
 - New chaining and marginalizing technique for correlator fits (arXiv:1406.2279)

$B \rightarrow D \text{ and } B_s \rightarrow D_s$ semileptonic decays

- Dispersion relation
- Chiral and continuum extrapolation
- R(D) and $R(D_s)$
- $f_0(B_s \rightarrow D_s)/f_0(B \rightarrow D)$: important input for $Br(B_s \rightarrow \mu^+\mu^-)$
- alternative $|V_{cb}|$ determination
- Preliminary!

Dispersion relation

- D mesons from HISQ light and charm quarks. Fully relativistic D meson.
- E_{sim}^2/E_{disp}^2 for D mesons on the coarse and fine ensembles

Modified z-expansion: Preliminary

• z-expansion with BCL parameterization

$$f_{+}(q^{2}) = \frac{1}{P} \sum_{k=0}^{K-1} a_{k} [z^{k} - (-1)^{k-K} \frac{k}{K} z^{K}], \quad P = 1 - \frac{q^{2}}{M_{B_{c}^{*}}}$$

Modified z-expansion for continuum, chiral, and kinematic extrapolation

$$f_{+}(q^{2}) = \frac{1}{P} \sum_{k=0}^{K-1} a_{k} D_{k} [z^{k} - (-1)^{k-K} \frac{k}{K} z^{K}]$$

$$D_k = 1 + c_1 x_\pi + c_2 \left(\frac{1}{2}\delta x_\pi + \delta x_K\right) + c_3 x_\pi \log x_\pi + d_1 (am_c)^2 + d_2 (am_c)^4 + e_1 (aE_D/\pi)^2 + e_2 (aE_D/\pi)^4$$

- Pole locations
 - $f_+: B_c^*(1^-) = 6.33 \text{ GeV}$ from a lattice calculation by HPQCD (PRL 104 (2010) 022001)
 - f_0 : No measurement or lattice calculations for B_c (0+).
 - We used $6.33 + \exp(\log(0.2 \pm 1.0))$ GeV.

Modified z-expansion

 $\cdot \quad \mathsf{B} \to \mathsf{D} \mathsf{I} \mathsf{v}$

Modified z-expansion

 $\cdot B_s \rightarrow D_s I v$

- $R(D) \text{ and } R(D_s): R(D_x) = \frac{BR(B_x \to D_x \tau \nu)}{BR(B_x \to D_x \mu \nu)}$
- Potential New Physics signature: $B_x \rightarrow D_x \tau v$ and $B_x \rightarrow D_x \mu v$
 - The scalar form factor is more important for $B_x \twoheadrightarrow D_x \, \tau \, v$
- $B \rightarrow D$ and $B_s \rightarrow D_s$ show almost identical results.
 - Kinematic variable, q², is very close. $q^2 = m_B^2 + m_D^2 2m_B E_D$

R(D) and $R(D_s)$: 2HDM dip.

13

$f_0(B_s \rightarrow D_s; m_π^2)/f_0(B \rightarrow D; m_K^2): important input for Br(B_s \rightarrow \mu^+ \mu^-)$

- Probing New Physics from $B_s \rightarrow \mu^+ \mu^-$
 - Highly suppressed in SM $Br^{SM}(B_s \to \mu^+ \mu^-) = (3.36 \pm 0.30) \times 10^{-9}$ $Br^{EXP}(B_s \to \mu^+ \mu^-) = 2.9^{+1.1}_{-1.0} \times 10^{-9}$
 - LHCb, PRL 111 (2013) 101805
- How to measure the branching ratio in experiments?

$$Br(B_s \to \mu^+ \mu^-) = Br(B_s \to X) \frac{\epsilon_X}{\epsilon_{\mu\mu}} \frac{N_{\mu\mu}}{N_X}$$

$$\implies Br(B_s \to \mu^+ \mu^-) = Br(B_d \to X) \frac{f_d}{f_s} \frac{\epsilon_X}{\epsilon_{\mu\mu}} \frac{N_{\mu\mu}}{N_X}$$

• Now, $\frac{f_d}{f_s}$ is the dominant source of the systematic errors!

• f₀(B_s→D_s;m_{π²})/f₀(B→D;m_{K²}): important input for Br(B_s→µ⁺µ⁻)

• Combined result (LHCb-CONF-2013-011):

$$\frac{f_s}{f_d} = 0.259 \pm 0.015$$

$$\begin{pmatrix} \left(\frac{f_s}{f_d}\right)_{semi} = 0.263 \pm 0.008(stat)^{+0.019}_{-0.016}(syst)$$

$$+ \left(\frac{f_s}{f_d}\right)_{hadr} = 0.242 \pm 0.004(stat) \pm 0.012(syst) \pm 0.021(theo)$$

- The theory errors are came from the ratio of the form factors, $N_{\text{F}}.$
- N_F = 1.092(93) from Fermilab/MILC, PRD 86 (2012) 039904
 - $N_F = 1.24 \pm 0.08$ (Sum rule, Blasi et al PRD 49 (1994) 238)
- We are getting the result soon with at least 30% smaller errors!
 - Need to take into account the correlations
- More independent lattice calculations are needed!
- $\frac{f_d}{f_s}$ will be used for all other branching ratio experiments with B_s
 - Even for the CMS experiments

- $B \rightarrow D$ and $B_s \rightarrow D_s$ can be used for alternative determinations of $|V_{cb}|$
 - But, the most accurate determination is from B → D* I v at zero recoil, mostly due to the experiments.

$B_s \rightarrow K$ semileptonic decays

Lead by Chris Bouchard arXiv: 1406.2279

- First lattice calculation!
- HPChPT z-expansion and error budget
- Prediction of differential branching fractions
 - alternative |V_{ub}| determination
- Phenomenology
 - $R_{\mu} \boldsymbol{\tau}$, A^{I}_{FB} , \bar{A}^{I}_{FB} , and A^{I}_{pol}

HPChPT z-expansion

• HPChPT-motivated modified z-expansion

$$f_{\parallel,\perp}(E) = (1 + [\text{logs}]) \mathcal{K}_{\parallel,\perp}(E)$$

$$f_{+}(q^{2}) = \frac{1}{P} \sum_{k=0}^{K-1} a_{k} [z^{k} - (-1)^{k-K} \frac{k}{K} z^{K}] \longrightarrow f_{+}(q^{2}) = \frac{1}{P} \sum_{k=0}^{K-1} a_{k} D_{k} [z^{k} - (-1)^{k-K} \frac{k}{K} z^{K}]$$

$$f_+(q^2) = (1 + [logs]) \frac{1}{P} \sum_{k=0}^{K-1} a_k D_k [z^k - (-1)^{k-K} \frac{k}{K} z^K]$$

$$D_{k} = 1 + c_{1}^{(k)} x_{\pi} + c_{2}^{(k)} \left(\frac{1}{2}\delta x_{\pi} + \delta x_{K}\right) + c_{3}^{(k)} \delta x_{\eta_{s}} + d_{1}^{(k)} (a/r_{1})^{2} + d_{2}^{(k)} (a/r_{1})^{4} + e_{1}^{(k)} (aE_{K})^{2} + e_{2}^{(k)} (aE_{K})^{4}, [logs] = -\frac{3}{8} x_{\pi} (\log x_{\pi} + \delta_{FV}) - \frac{1 + 6g^{2}}{4} x_{K} \log x_{K} - \frac{1 + 12g^{2}}{24} x_{\eta} \log x_{\eta},$$

$$\begin{aligned} & d_1^{(k)} \to d_1^{(k)} (1 + l_1^{(k)} x_\pi + l_2^{(k)} x_\pi^2) (1 + h_1^{(k)} \delta x_b + h_2^{(k)} \delta x_b^2) \\ & d_2^{(k)} \to d_2^{(k)} (1 + l_3^{(k)} x_\pi + l_4^{(k)} x_\pi^2) (1 + h_3^{(k)} \delta x_b + h_4^{(k)} \delta x_b^2) \end{aligned}$$

HPChPT z-expansion

• Chiral and continuum extrapolation results

Form factors: error budget

- f+(q2=0) = 0.323(63)
- Kinematic and statistical errors are the dominant errors at small q²

Form factors: comparisons to non-lattice calculations

Branching fractions: Predictions!

3.2

3.4

3.6

 $|V_{ub}| \ge 10^3$

Other phenomenological quantities

- $R_{\mu}\tau = Differential branching fraction ratio$
- A_{FB} = Forward and backward asymmetry

Other phenomenological quantities

Other phenomenological quantities

- $\bar{A}_{pol}\mu$ = Normalized μ polarization distribution
- $\bar{A}_{pol}\tau = Normalized \tau$ polarization distribution

Summary and future plan

- Our semileptonic programs have been very successful.
- We presented preliminary results on B \to Dlv and B_s \to D_slv, and complete analysis results on B_s \to Klv
- $B \rightarrow DIv \text{ and } B_s \rightarrow D_sIv$
 - HPChPT z-expansion
 - Correlations between B \rightarrow D and B_s \rightarrow D_s form factors
 - Ratio of the form factors $\rightarrow Br(B_s \rightarrow \mu^+\mu^-)$
- $B_s \rightarrow KI_V$
 - Finished project: C. Bouchard et al., arXiv:1406.2279
 - Waiting experiment results from LHCb and Bellell
 - Precise non-perturbative renormalization for $B \rightarrow \pi Iv$ with $B_s \rightarrow \eta_s Iv$ with HISQ b quark

• Pole for f_0

• $B_c^*(1-)$: 6.33 GeV \rightarrow pole location: 40 GeV²

• $B^{*}(1-)$: 5.325 GeV \rightarrow pole location: 28.4 GeV²

• Pole for f_0

• $B_c^*(1-)$: 6.33 GeV \rightarrow pole location: 40 GeV²

• $B^{*}(1-)$: 5.325 GeV \rightarrow pole location: 28.4 GeV²