On the extraction of spectral quantities with open boundary conditions

Mattia Bruno

John von Neumann Institute for Computing (NIC), DESY

32nd International Symposium on Lattice Field Theory -Columbia University, New York

June 24, 2014

Mattia Bruno

Extraction of spectral quantities with open BC

- Lüscher-Weisz gauge action
- 2+1 O(a)-improved Wilson fermions Hasenbusch factorization of fermion determinant strange quark simulated with RHMC for more details see P. Korcyl's talk
- Open boundary conditions in time [Lüscher,Schaefer,2011]

cutoff effects close to the boundaries how the analysis changes in presence of open BC

Twisted-mass reweighting à la Lüscher-Palombi

how the reweighting affects observables

High statistics 8000 MDU per ensemble

Area: MDU/ τ_{exp} ; Blue circles: available statistics at the end of project

Area: MDU/ $au_{
m exp}$; Blue circles: available statistics at the end of project

Area: MDU/ $au_{
m exp}$; Blue circles: available statistics at the end of project

Wilson flow: [Lüscher,'10]

Signature of the boundaries:

- no pion mass dependence
- large cutoff effects
- fluctuations in the center of lattice

Boundary effects are dominantly O(a) effects \rightarrow plateau starts at fixed $x_0/a\approx [15:20]$

smoothing effect

slow-mode effect calls for proper error analysis ($\tau_{\rm exp}$) [Schaefer et al.,'11]

same fluctuations observed in periodic BC

Study χ^2 as a function of the distance from boundary x_{\min}

 $\chi^2_{\rm exp}$: expected χ^2 in presence of correlations [Bunk,'80s]

$$a^{3} f_{\rm P}(x_{0}) = \frac{a^{3}}{L^{3}} \sum_{\mathbf{x}} \left\langle P(x_{0}, \mathbf{x}) P(0, \mathbf{x}) \right\rangle, \ am_{\rm eff}(x_{0} + \frac{a}{2}) = \log \frac{f_{\rm P}(x_{0})}{f_{\rm P}(x_{0} + a)}$$

In the center of the lattice we find waves.

Fluctuations of 1-2 σ

Few per cent w.r.t. the scale of the observable

[Aoki et al.,'96]:

- 1. cov. matrix
- 2. finite statistical precision
- $3. \ fixed \ source \ position$

\Downarrow

Waves in $m_{
m eff}$ of 1-2 σ

 $am_{\pi}(x_{\min})$ from plateau $[x_{\min}:x_{\max}]$, $x_{\max} = fixed$.

$$a^{3}f_{\rm A}(x_{0}, y_{0}) = \frac{a^{3}}{L^{6}} \sum_{\mathbf{x}, \mathbf{y}} \langle A_{0}(x_{0}, \mathbf{x}) P(y_{0}, \mathbf{y}) \rangle,$$

From Transfer matrix difference to periodic BC $\rightarrow A(y_0)$: $A(y_0)$ amplitude depends on distance from boundary

$$f_{\rm A}(x_0, y_0) = A(y_0) \hat{f}_{\pi} e^{-m_{\pi}(x_0 - y_0)}, \ f_{\rm P}(T - y_0, y_0) = A^2(y_0) e^{-m_{\pi}(T - 2y_0)}$$

[Guagnelli et al., '99]: Transfer matrix applied to Schrödinger functional

$$F_{\pi}^{\text{bare}} \propto \frac{f_{\text{A}}(x_0, y_0)}{\sqrt{f_{\text{P}}(T - y_0, y_0)}} e^{m_{\pi}(x_0 - T/2)}$$

Cancellation of $A(y_0)$ via ratio

Plateau in
$$x_0$$
, if $0 \ll x_0 \ll T$

Mattia Bruno

Extraction of spectral quantities with open BC

Lattice 2014, New York

Loss of translation invariance in time

No advantage in averaging correlators from displaced sources.

Mattia Bruno

Extraction of spectral quantities with open BC

Twisted-Mass (type II) reweighting is under investigation

$$S_f \propto -\log \det \frac{(Q^2 + \mu^2)^2}{Q^2 + 2\mu^2}, \quad W = \det \frac{Q^2(Q^2 + 2\mu^2)}{(Q^2 + \mu^2)^2}, \quad Q = \gamma_5 D$$

Weights computed from stochastic sources:

is the number of sources, the method safe?

Fluctuations with gauge configurations

how do these affect the observables?

On a given configuration with small eigenvalues λ of D

observables like $f_{\rm P} \sim \lambda^{-2}$, $\langle W \rangle_{\rm src} \sim \lambda^2$

Prob. det $\frac{(Q^2 + \mu^2)^2}{Q^2 + 2\mu^2}$:

Regions of fields space with small λ now accessible with $\mu > 0$, good for ergodicity

if μ is large \rightarrow large fluctuations in observables

Extraction of spectral quantities with open BC

Predict error of observables in simulations with weight w

$$(\Delta O)^2 = \frac{\operatorname{var}_w(O)}{N}, \quad \langle O \rangle = \frac{\langle Ow \rangle_w}{\langle w \rangle_w}$$

It can be expressed as observable in underlying theory:

Error of gluonic observables (un-correlated) degrades slower

$$\leftarrow \operatorname{var}_w(O) = \langle w^{-1} \rangle \langle (O - \bar{O})^2 w \rangle$$

Fermionic observables more problematic, still under investigation

Open boundary conditions:

- loss of translation invariance in time is not a problem
- decay constants can be computed with desired precision (at $a \sim 0.085$ fm)
- we introduced a new strategy to compute F_{π}

Reweighting factors:

- better sampling of region of small EV of the Dirac operator
- affect observables \rightarrow careful tuning of μ
- have to be computed properly

Thanks for your attention!