Study of axial magnetic effect

V.V. Braguta

Institute for Theoretical and Experimental Physics, Moscow

Lattice 2014, New-York, June 26, 2014

Collaborators:
M. N. Chernodub
V. A. Goy
A. V. Molochkov
K. Landsteiner
M.I. Polikarpov
M.V. Ulybyshev

Outline:

- Introduction
- Observation of axial magnetic effect
- Temperature dependence of axial magnetic effect
- Conclusion

Chiral magnetic effect

- Topological charge $\left(n_{R} \neq n_{L}\right)+$ magnetic field \Rightarrow chiral magnetic effect (D. Kharzeev, L. McLerran, H. Warringa, NPA 803 ('08) 227)
- Related to axial anomaly
- $J_{\boldsymbol{V}}=\sigma_{\boldsymbol{A} V} H$ can be studied experimentaly (observed at RHIC and LHC, STAR Collaboration Phys.Rev.Lett. 103 (2009) 251601, ...)

Anomalous transport

- Chiral magnetic effect: $J_{V}=\sigma_{V V} H, \quad \sigma_{V V}=\frac{\mu_{5}}{2 \pi^{2}}$
- Axial chiral magnetic effect: $J_{\boldsymbol{A}}=\sigma_{\boldsymbol{A V}} H, \quad \sigma_{\boldsymbol{A V}}=\frac{\mu}{2 \pi^{2}}$
- Chiral vortical effect: $J_{\boldsymbol{V}}=\sigma_{\boldsymbol{V}} \omega, \quad \sigma_{\boldsymbol{V}}=\frac{\mu_{5} \mu}{2 \pi^{2}}$
- Axial chiral vortical effect: $J_{\mathbf{A}}=\sigma_{\mathbf{A}} \omega, \quad \sigma_{\boldsymbol{A}}=\frac{\mu^{2}+\mu_{5}^{2}}{4 \pi^{2}}+\frac{\boldsymbol{T}^{2}}{12}$

Why anomalous transport phenomena are so interesting?

- Can be seen in current heavy ion collision experiments
- Related to the first principles of quantum field theory (anomalies)
- Non-dissipative phenomena

Axial chiral vortical effect:

One can carry out the simulations at $\mu=0, \mu_{5}=0$

Axial chiral vortical effect:

Axial chiral vortical effect: $J_{A}=\sigma_{A} \omega, \quad \sigma_{A}=\frac{T^{2}}{12}\left(\mu=\mu_{A}=0\right)$

Axial magnetic effect:

$$
\begin{aligned}
& \text { - } L=\bar{\psi}\left(\hat{\partial}-i g \hat{A}^{a} t^{a}-i e \gamma_{5} \hat{A}_{5}\right) \psi \\
& \text { - } J_{\epsilon}^{i}=\left\langle T^{0 i}\right\rangle=\sigma H_{5}, \quad \sigma=\sigma_{A}=\frac{T^{2}}{12}
\end{aligned}
$$

One can study axial magnetic effect instead of axial chiral vortical effect

From axial magnetic to usual magnetic field

- $J_{E}=\left\langle T^{0 i}\right\rangle=\frac{i}{2}\left\langle\bar{\psi}\left(\gamma^{0} D_{5}^{i}+\gamma^{i} D_{5}^{0}\right) \psi\right\rangle, D_{5}^{\mu}=\partial^{\mu}-i g A^{\mu}-i e \gamma_{5} A_{5}^{\mu}$
- $C_{\mu}\left(x, y, A_{5}\right)=\left\langle\bar{\psi}(x) U_{x y} \gamma_{\mu} \psi(y)\right\rangle=-\operatorname{Tr}\left(U S_{5}\left(A_{5}\right) \gamma_{\mu}\right)$
- $\operatorname{Tr}\left[S_{5}\left(A_{5}\right) \gamma_{\mu}\right]=\operatorname{Tr}\left[\left(P_{R}+P_{L}\right) S_{5}\left(A_{5}\right) \gamma_{\mu}\right]=$ $\operatorname{Tr}\left[P_{R} S\left(A_{5}\right) \gamma_{\mu}\right]+\operatorname{Tr}\left[P_{L} S\left(-A_{5}\right) \gamma_{\mu}\right]$

Motion in axial magnetic field can be related to the motion in usual magnetic field

Simulation details

- Tadpole improved action
- SU(2) quenched QCD
- Statistics ~3000
- Lattice parameters: $L_{s}=14-20, L_{t}=4-6, \beta=3.0-3.5$

Observation of AME (V. Braguta et. al., Phys.Rev. D88 (2013))

- Observation of non-dissipative phenomenon
- $J_{\epsilon}^{\|} \sim H_{5}, \quad J_{\epsilon}^{\perp} \sim 0$

Temperature dependence of AME (v. Braguta et. al., Phys.Rev. D89 (2014))

- $C_{A M E}=\frac{J_{\epsilon}}{e H_{5} T^{2}}$, Good fit: $C_{A M E}(T)=C_{A M E}^{\infty} \exp \left(-\frac{h}{T-T_{c}}\right)$
- $J_{\epsilon}\left(T \gg T_{c}\right) \sim T^{2}, \quad \frac{C_{A M E}\left(T \gg T_{c}\right)}{C_{A M E}^{t h}} \simeq 0.06$
- $C_{A M E}\left(T>T_{c}\right)>0, C_{A M E}\left(T<T_{c}\right)=0 \Rightarrow$ clean signature for experiments

Conclusion

- Observation of axial magnetic effect
- Scaling $\sim T^{2}$ at high temperature
- $\sigma_{\text {lat }}$ is by an order of magnitude smaller than $\sigma_{t h}$
- AME is observed in deconfinement and is not observed in confinement
- Clean signature of anomalous transport phenomena for heavy ion collision experiments

THANK YOU

