Probing TeV physics using neutron decays and nEDM

Rajan Gupta

Theoretical Division, Los Alamos National Lab

Lattice 2014, Columbia University, USA

PNDME Collaboration: PRD 85 (2012) 054512 ; PRD 89 (2014) 094502

•Tanmoy Bhattacharya, Rajan Gupta, Boram Yoon (LANL)

•Saul Cohen, Huey-Wen Lin (UW)

•Anosh Joseph (DESY, Zeuthen)

nEDM (LANL-RBC-UKQCD) Collaboration:

- Tanmoy Bhattacharya, Vincenzo Cirigliano, Rajan Gupta, Boram Yoon (LANL)
- Michael Abramczyk and Tom Blum (RBC, U of Connecticut)
- Taku Izubuchi, Amarjit Soni, Shigemi Ohta, Christoph Lehner and Sergey Syritsyn (RBC, BNL)

Probing New Interactions: M_{BSM} >> M_W >> 1 GeV

Many BSM possibilities for Scalar & Tensor: Higgs-like, leptoquark, loop effects, ...

[Ultra] Cold Neutron Decay: Parameters sensitive to new physics

Neutron decay can be parameterized as

$$\left(d\Gamma \propto F(E_e) \left[1 + \frac{b}{E_e} \frac{m_e}{E_e} + \left(B_0 + \frac{B_1}{E_e} \frac{m_e}{E_e} \right) \frac{\vec{\sigma}_n \cdot \vec{p}_\nu}{E_\nu} + \cdots \right] \right)$$

- *b*: Deviations from the leading order electron spectrum: Fierz interference term
- B_1 : Energy dependent part of antineutrino correlation with neutron spin

Relating *b* and *B*₁ to ME & BSM couplings

$$H_{eff} \supset G_F \Big[\varepsilon_s \overline{u} d \times \overline{e} (1 - \gamma_5) v_e + \varepsilon_T \overline{u} \sigma_{\mu\nu} d \times \overline{e} \sigma^{\mu\nu} (1 - \gamma_5) v_e \Big]$$

$$g_S \sim \Big\langle p \big| \overline{u} d \big| n \Big\rangle \qquad g_T \sim \Big\langle p \big| \overline{u} \sigma_{\mu\nu} d \big| n \Big\rangle$$

Linear order relations from $n \rightarrow p \ e \ \overline{v}$ decay

$$b^{BSM} \approx 0.34 g_{s} \varepsilon_{s} - 5.22 g_{T} \varepsilon_{T}$$
$$b_{v}^{BSM} \equiv B_{1}^{BSM} = E_{e} \frac{\partial B^{BSM} (E_{e})}{\partial m_{e}} \approx 0.44 g_{s} \varepsilon_{s} - 4.85 g_{T} \varepsilon_{T}$$

Target Precision for g_S , g_T : 10-20%

Allowed region in [ε_S , ε_T] (90% contours)

Clover on 2+1+1 flavor HISQ lattices: ~1000 configs

• m_s set to its physical value using $M_{\overline{ss}}$

a(fm)	m _l /m _s	Lattice Volume	M _π L	M _π (MeV)	Configs. X sources
0.12	0.2	24 ³ × 64	4.54	305	1013 x 8
0.12	0.1	24 ³ × 64	3.22	217	1000 x 12
0.12	0.1	32 ³ × 64	4.3	217	958 x 8
0.12	0.1	40 ³ × 64	5.36	217	1010 x 8
0.09	0.2	32 ³ × 96	4.5	313	881 x 8
0.09	0.1	48 ³ × 96	4.71	220	890 x 8
0.09	0.035	64 ³ × 96	3.66	130	883 x 4
0.06	0.2	48 ³ × 144	4.51	320	865 x 4
0.06	0.1	64 ³ × 144	4.25	229	200 x 4

Observations and Lessons Learned

- Exceptional configurations: Clover-on-HISQ with HYP smearing:
 - -- Exist on the a=0.12 fm lattices with M_{π} =130MeV
 - -- None found for a=0.09 and 0.06 lattices
- Statistics: $\sigma(g_S) \sim 5 \sigma(g_A)$ [or $5 \sigma(g_T)$] Need O(15000) independent measurement (Configs X Sources)
- Excited state contamination is significant Need multiple T_{sep} with $T_{sep} > 1.2$ fm $T_{sep} > 1.2$ fm and fits including at least one excited state
- Renormalization (RI-sMOM): Smearing introduces artifacts. Need a prescription with a well-defined continuum limit

Reducing excited state contamination Simultaneous fit to all $\Delta t = t_{sep} = t_f - t_i$

Assuming 1 excited state, the 3-point function is given by

$$\Gamma^{3}(t_{f}, t, t_{i}) = |A_{0}|^{2} \langle 0|O|0\rangle e^{-M_{0}\Delta t} + |A_{1}|^{2} \langle 1|O|1\rangle e^{-M_{1}\Delta t} + A_{0}A_{1}^{*} \langle 0|O|1\rangle e^{-M_{0}\Delta t} e^{-M_{1}(\Delta t-t)} + A_{0}^{*}A_{1} \langle 1|O|0\rangle e^{-M_{1}\Delta t} e^{-M_{0}(\Delta t-t)}$$

Where M_0 and M_1 are the masses of the ground & excited state and A_0 and A_1 are the corresponding amplitudes.

Simultaneous fit to all t_{sep}

Data for g_S on the M_{π} =220 MeV ensemble at a=0.09fm

Excluding the $\langle 1|O|1\rangle$ Term

Renormalization of bilinear operators

- Non-perturbative renormalization Z_{Γ} using the RI-sMOM scheme
 - Need quark propagator in momentum space
- Assumption: there exists a window

 $-\Lambda_{QCD} << p << \pi/a$

- HYP Smearing introduces artifacts
 - Gluon momentum above $\sim 1/a$ are an average
 - A window may no longer exist on coarse lattices
- No detectable dependence of Z's on m_q

$$\frac{Z_{A,S,T}}{Z_V} \left(\overline{MS}, 2 \ GeV\right)$$

Fit data to: A/p + Z + Cpin the range { $1 }$ <math>OrChoose Z at $p^2 = 5 GeV^2$ & errors from { $4 < p^2 < 6 GeV^2$ }

$$\frac{Z_{A,S,T}}{Z_V} \times \frac{g_{A,S,T}}{g_V}$$

Use Ward identity $Z_V g_V = 1$

Extrapolations in *a*, M_{π}^{2} , *L*

$$g(a, M_{\pi}, L) = g + A a + B M_{\pi}^{2} + C e^{-M_{\pi}L} + \dots$$

We use the lowest order corrections when fitting 9 points

- Lattice spacing a
- Dependence on quark mass $m_q \sim M_{\pi}^2$
- Finite volume

*****: Preliminary Results at the physical point

Towards Physical Estimates

- g_T : 1.08(5) [preliminary]
 - Estimate of Z_T is reliable
 - Small dependence on *a*, M_{π}^2 , $M_{\pi}L$
- g_A :
 - Estimate of Z_A is reliable
 - $-\exp\{-M_{\pi}L\}$ is the largest effect \rightarrow Expt. result
- g_S :
 - Statistical errors are large
 - $-Z_S$ is not well-determined
 - Extrapolations in *a*, M_{π}^2 , $M_{\pi}L$ are not stable

CP Violation, Baryogenesis, nEDM

CP Violation, Baryogenesis, nEDM

- CPV in SM is too small to explain Baryogenesis
- BSM theories have new sources of larger CPV that can explain baryogenesis
- These novel CPV may also give rise to larger nEDM ($d_n \sim 10^{-27}$ e-cm)
- Next generation nEDM will push limit from $(d_n \sim 3x10^{-26} \text{ e-cm})$ to $(d_n \sim 10^{-28} \text{ e-cm})$
- Low energy effective theory at ~2 GeV: Two leading dimension-5 CPV operators
- To use experimental value of d_n to constrain BSM, need high precision ME

EXAMPLE: 10⁻²⁷ e-cm sensitivity in nEDM experiments requires O(1) accuracy in ME to constrain BSM

Current uncertainty in ME is O(10) [Engels, Ramsey-Musolf, Kolck, Prog. Part. Nucl. Phys., 71]

ME of novel CP violating operators: nEDM

 $\boldsymbol{\gamma}$ attaches to the vertex

$$\overline{q} \sigma_{\mu\nu} \gamma_5 q F^{\mu\nu}$$

Chromo-EDM

4-pt function as γ can attach to any quark line
Gluon free end can attach to any quark line

 $\overline{q} \sigma_{\mu\nu} \gamma_5 q \lambda^a G_a^{\mu\nu}$

- Formulation of the problem
- Operator mixing and renormalization
- Signal in disconnected diagrams
- Formulating lattice calculation of chromo EDM, a 4-point function

Mixing between D-5 CP violating operators in MS schemes

	E	C	P_{EE}	$\partial \cdot A_E$	A_G	$\partial^2 P$	mP_E	$m\partial \cdot A$	$m^2 P$	mG
E	•	0	0	0	0	0	0	0	0	0
C	•	•	•	•	•	•	•	•	•	•
P_{EE}	0	0	•	•	•	0	•	0	0	0
$\partial \cdot A_E$	0	0	0		0		0	•	0	0
A_G	0	0			•	0		0	0	0
$\partial^2 P$	0	0	0	0	0	•	0	0	0	0
mP_E	0	0	0	0	0	0	•	0	0	0
$m\partial\cdot A$	0	0	0	0	0	0	0	•	0	0
$m^2 P$	0	0	0	0	0	0	0	0		0
mG	0	0	0	0	0	0	0	•	0	•

The operators are defined as

$$E e \equiv \bar{\psi}\sigma \cdot \tilde{F}\psi,$$

$$C g \equiv \bar{\psi}\sigma \cdot \tilde{G}\psi,$$

$$P_{EE} \equiv \bar{\psi}(i\not\!\!D - m)\gamma_5(i\not\!\!D - m)\psi,$$

$$A_E^{\mu} \equiv \bar{\psi}\gamma_{\mu}\psi + h.c.,$$

$$A_G \equiv i\bar{\psi}(i\not\!\!D + m)\not\!\partial\psi + h.c.,$$

$$P \equiv \bar{\psi}\gamma_5\psi,$$

$$P_E \equiv \bar{\psi}(i\not\!\!D + m)\gamma_5\psi + h.c.,$$

$$A^{\mu} \equiv \partial_{\mu}\bar{\psi}\gamma^{\mu}\gamma_5\psi,$$

$$G = G_{\mu\nu}\tilde{G}^{\mu\nu}$$

- Entries marked 0 are prohibited by the structure of the operators.
- Only *E*, *C*, *P*, and *G* contribute to physical (`on-shell') matrix elements at zero momentum
- Rest need to be evaluated to connect the minimal subtraction scheme to a regularization independent off-shell scheme like RI-sMOM.

Feynman diagrams for CEDM

Diagrams contributing to the quark 2-pt function

Diagrams contributing to the gluon 2-pt function

IPI diagrams contributing to the quark 3-pt function

Non IPI diagrams contributing to the quark 3-pt function

Summary

- Calculation of g_A , g_S , g_T on track
 - Need higher statistics to get g_S with 10%
 - Need further finite volume study especially for g_A
 - $-g_{T} = 1.08(5)$ [preliminary]
- QEDM calculations are on track
 - DWF on DWF [See talk by Michael Abramczyk]
 - Disconnected diagrams [See talk by Boram Yoon]
- CEDM calculation is hard
 - Mixing and renormalization: perturbative calculations are nearing completion
 - We are formulating the lattice calculation of the ME

Acknowledgements

- Computing resources from
 - USQCD
 - XSEDE
 - LANL
- 2+1+1 HISQ lattices generated by the MILC collaboration
- Computer code uses CHROMA library
- Supported by DOE and LANL-LDRD