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Motivation

Mesonic spectral functions

• The spectral function (SF) is the Fourier-transform of the
imaginary part of the retarded correlator

• We will consider correlators of charmonium currents in the
pseudoscalar(PS) and vector(V) channels

• These correspond to ηc and J/Ψ

• J/Ψ suppression is regarded as an important signal of QGP
formation

• The low frequency behaviour of the SF is related to transport
coefficients

The talk is based on: JHEP 1404 (2014) 132



Preliminaries

Spectral function = im part of real-time retarded correlator

A(ω) =
(2π)2

Z

∑

m,n

(

e−En/T − e−Em/T
)

|〈n|JH(0)|m〉|2 δ(p − kn + km)

Relation to the Euclidean time correlator

G (τ,~p) =

∫

∞

0
dωA(ω,~p)K (ω, τ) where K(ω, τ) =

cosh(ω(τ − 1/2T))

sinh(ω/2T)

The inversion of this equation is and ill-posed problem.



The Maximum Entropy Method

The method in a nutshell

Q = αS −
1

2
χ2

S =

∫

dω

(

A(ω)−m(ω)− A(ω) log

(

A(ω)

m(ω)

))

χ2 =
∑

i ,j

(Gfit
i − Gdata

i )C−1
ij (Gfit

j − Gdata
j )

Gi =

∫

A(ω)K (ω, τi )dω

m(ω) is a function, summarizing our prior knowledge of the
solution. Then we average over α. The conditional probability
P [α|data,m] is given by Bayes’ theorem.



Simulation details

Lattice details
Action of BMW collaboration in 2008 (talk tomorrow: Trombitas).
Gauge action = Symanzik tree-level improved gauge action
Fermion action = 2+1 dynamical Wilson fermions with 6 step
stout smearing (ρ = 0.11) and tree-level clover improvement
Same configurations as in JHEP 1208 (2012) 126
a = 0.057(1)fm
mπ = 545MeV
Ns = 64
Nt = 28...12
T = 123...288MeV
We measured the charm meson correlators on these lattices.



Outline of MEM procedure

Stability test at the lowest temp

• Drop data points, emulating the number of data points
available at the lowest temperature (Nt = 28)

• Do the same analysis as with the higher temperature
correlators. If the ground state peak cannot be reconstructed,
the given number of data points is not reliable

• RESULT: Nt=12 NOT OK, Nt=14,16,18,20 OK

Error analysis

• Systematic error analysis: vary ∆ω, Nω, the shape of the prior
function: m0, m0ω

2, 1/(m0 + ω),m0ω and m0=0.01, 0.1, 1.0,
10.0.

• Statistical error analysis: given set of parameters, 20 jackknife
samples



Sensitivity on prior function

This is the PS channel, but V looks similar
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Temperature dependence
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Temperature dependence

Vector channel
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Results - MEM

Pseudoscalar channel - position of 1st peak
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Results - MEM

Vector channel - position of 1st peak
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Charm diffusion coefficient

Kubo-formula

D =
1

6χ
lim
ω→0

3
∑

i=1

Aii(ω,T )

ω
,

If D > 0 we have ρ/ω > 0 for small ω implying a transport peak

Narrow transport peak

In the case of a narrow transport peak, we can use the ansatz:

Atransport(ω,T ) = f (T )ωδ(ω − 0+)

This does not mean, that the diffusion coefficient is infinite. But in
case of a narrow transport peak, the Euclidean correlator
G (τ,T ) =

∫

K (ω, τ)A(ω,T ) is not sensitive to the full shape of
the peak, only the area. The contrubtion of the transport peak will
be a temperature dependent constant (zero mode).



Some indication of a transport peak

Nt = 16 not conclusive
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A different method

Definition of G/Grec

Jakovac, Petreczky, Petrov, Velytsky: Phys.Rev. D75 014506 (2007)

G (t,T )

Grec (t,T )
=

G (t,T )
∫

A(ω,Tref)K (ω, t,T )dω

Midpoint subtracted version

G−

G−

rec

=
G (t,T )− G (Nt/2,T )

Grec (t,T )− Grec (Nt/2,T )
=

G (t,T )− G (Nt/2,T )
∫

A(ω,Tref) [K (ω, t,T )− K (ω,Nt/2,T )] dω

This removes the zero mode.



Results: G/Grec

Pseudoscalar channel
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Results: G/Grec

Vector channel
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Results: G−/G−
rec

Pseudoscalar channel, midpoint subtracted version

 0.9

 0.95

 1

 1.05

 1.1

 2  4  6  8  10

G
- /G

- re
c

t/a

Nt=12
Nt=14
Nt=16
Nt=18
Nt=20



Results: G−/G−
rec

Vector channel, midpoint subtracted version
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Results: G − Grec

Vector channel
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Conclusions

MEM analysis

• There seems to be no change in the SF in the PS channel up
to 1.4Tc

• There seems to be some change in SF in the V channel

• Indications of a transport peak in the V channel

G/Grec analyis

• No change in the PS channel

• In the V channel, results are consistent with a temperature
independent ω > 0 part and a temperature dependent zero
mode (narrow transport peak), described by the ansatz
A(ω) = f (T )ωδ(ω − 0+) + A(ω,T = 0).



Backup - implementation details 1

MEM continued...
It can be shown, that the maximum of Q is in an Ndata

dimensional subspace:

A(ω) = m(ω) exp

(

Ndata
∑

i=1

si fi(ω)

)

Two choice for basis functions: Bryan (Eur. Biophys J. 18, 165
(1990)) or Jakovác et al (Phys.Rev. D75 014506 (2007). We use
the latter. In this case the maximization of Q is equivalent to the
minimization of

U =
α

2

Ndata
∑

i ,j=1

siCijsj +

∫ ωmax

0
dωA(ω)−

Ndata
∑

i=1

G
data
i si.

Comment: Have to use arbitrary precision arithmetics with both
methods.



Backup - implementation details 2

Problem: stopping criterion
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Backup - implementation details 3

Solution: going back to the Nω dimensions
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Backup - shortcomings of MEM

Conclusions from mock data analysis

• MEM gives the correct qualitative features of the spectral
function, but it is not a precise quantitative method.

• The peak positions agree well with the input, the shapes do
not

• As long as the data points are not too noisy, O(10) point are
enough for reconstruction.

• Features that remain unchanged by varying the prior are
restricted by the data.

• Peaks close in position can be merged into one broader peak.



Backup - charm mass tuning

From Davies et al PRL 104, 132003 (2010) mc/ms = 11.85.
Because of additive renormalization, it is impossible to use this
directly. We use (mc −ms)/(ms −mud ) where the additive
renormalization constant cancels. We know that for ud and s the
masses used in the simulation correspond to a mass ratio of 1.5
(Durr et al. Phys. Lett. B701 (2011) 265), from this we get
(mc −ms)/(ms −mud ) = 32.55 We check if the meson masses are
indeed in the right ballpark:

JP mi ma ma/mD∗

s
a mexp/mD∗

s

0− ms ,mc Ds 0.54(1) 0.95(2) 0.932
0− mc ,mc ηc 0.8192(7) 1.437(4) 1.411
1− ms ,mc D∗

s 0.570(1) 1 1
1− mc ,mc J/Ψ 0.8388(8) 1.472(2) 1.466

3/2+ 3ms Ω 0.478(8) 0.84(2) 0.791


