Charmonium spectral functions from $2+1$ flavour lattice QCD

\author{

Attila Pásztor ${ }^{12}$ apasztor@bodri.elte.hu In collaboriation with
 \begin{tabular}{llll}
S. Borsányi \& S. Dürrr \& Z. Fodor \& C. Hoelbling

S. D. Katz \& S. Krieg \& S. Mages \& \& D. Nógrádi
\end{tabular} A. Schäfer ${ }^{5}$
 B. C. Tóth ${ }^{3} \quad$ N. Trombitás ${ }^{1} \quad$ K. K. Szabó ${ }^{34}$
 ${ }^{1}$ Eötvös University
 ${ }^{2}$ MTA-ELTE Lattice Gauge Theory Group
 ${ }^{3}$ University of Wuppertal
 ${ }^{4}$ Jülich Supercomputing Center
 ${ }^{5}$ University of Regensburg
 Lattice 2014, New York

}

Motivation

Mesonic spectral functions

- The spectral function (SF) is the Fourier-transform of the imaginary part of the retarded correlator
- We will consider correlators of charmonium currents in the pseudoscalar(PS) and vector (V) channels
- These correspond to η_{c} and J / Ψ
- J / Ψ suppression is regarded as an important signal of QGP formation
- The low frequency behaviour of the SF is related to transport coefficients

The talk is based on: JHEP 1404 (2014) 132

Preliminaries

Spectral function $=$ im part of real-time retarded correlator

$$
\left.A(\omega)=\frac{(2 \pi)^{2}}{Z} \sum_{m, n}\left(e^{-E_{n} / T}-e^{-E_{m} / T}\right)\left|\langle n| J_{H}(0)\right| m\right\rangle\left.\right|^{2} \delta\left(p-k^{n}+k^{m}\right)
$$

Relation to the Euclidean time correlator
$G(\tau, \vec{p})=\int_{0}^{\infty} d \omega A(\omega, \vec{p}) K(\omega, \tau)$ where $K(\omega, \tau)=\frac{\cosh (\omega(\tau-1 / 2 \mathrm{~T}))}{\sinh (\omega / 2 \mathrm{~T})}$
The inversion of this equation is and ill-posed problem.

The Maximum Entropy Method

The method in a nutshell

$$
\begin{array}{r}
Q=\alpha S-\frac{1}{2} \chi^{2} \\
S=\int d \omega\left(A(\omega)-m(\omega)-A(\omega) \log \left(\frac{A(\omega)}{m(\omega)}\right)\right) \\
\chi^{2}=\sum_{i, j}\left(G_{i}^{\mathrm{fit}}-G_{i}^{\mathrm{data}}\right) C_{i j}^{-1}\left(G_{j}^{\mathrm{fit}}-G_{j}^{\mathrm{data}}\right) \\
G_{i}=\int A(\omega) K\left(\omega, \tau_{i}\right) \mathrm{d} \omega
\end{array}
$$

$m(\omega)$ is a function, summarizing our prior knowledge of the solution. Then we average over α. The conditional probability $P[\alpha \mid$ data, m$]$ is given by Bayes' theorem.

Simulation details

Lattice details

Action of BMW collaboration in 2008 (talk tomorrow: Trombitas).
Gauge action $=$ Symanzik tree-level improved gauge action Fermion action $=2+1$ dynamical Wilson fermions with 6 step
stout smearing ($\rho=0.11$) and tree-level clover improvement
Same configurations as in JHEP 1208 (2012) 126
$a=0.057(1) \mathrm{fm}$
$m_{\pi}=545 \mathrm{MeV}$
$N_{s}=64$
$N_{t}=28 . . .12$
$T=123 . . .288 \mathrm{MeV}$
We measured the charm meson correlators on these lattices.

Outline of MEM procedure

Stability test at the lowest temp

- Drop data points, emulating the number of data points available at the lowest temperature $\left(N_{t}=28\right)$
- Do the same analysis as with the higher temperature correlators. If the ground state peak cannot be reconstructed, the given number of data points is not reliable
- RESULT: $N_{t}=12$ NOT OK, $N_{t}=14,16,18,20$ OK

Error analysis

- Systematic error analysis: vary $\Delta \omega, N_{\omega}$, the shape of the prior function: $m_{0}, m_{0} \omega^{2}, 1 /\left(m_{0}+\omega\right), m_{0} \omega$ and $m_{0}=0.01,0.1,1.0$, 10.0 .
- Statistical error analysis: given set of parameters, 20 jackknife samples

Sensitivity on prior function

This is the PS channel, but V looks similar

Temperature dependence

Temperature dependence

Vector channel

Results - MEM

Pseudoscalar channel - position of 1st peak

Results - MEM

Vector channel - position of 1st peak

Charm diffusion coefficient

Kubo-formula

$$
D=\frac{1}{6 \chi} \lim _{\omega \rightarrow 0} \sum_{i=1}^{3} \frac{A_{i i}(\omega, T)}{\omega}
$$

If $D>0$ we have $\rho / \omega>0$ for small ω implying a transport peak

Narrow transport peak

In the case of a narrow transport peak, we can use the ansatz:

$$
A_{\text {transport }}(\omega, T)=f(T) \omega \delta\left(\omega-0^{+}\right)
$$

This does not mean, that the diffusion coefficient is infinite. But in case of a narrow transport peak, the Euclidean correlator $G(\tau, T)=\int K(\omega, \tau) A(\omega, T)$ is not sensitive to the full shape of the peak, only the area. The contrubtion of the transport peak will be a temperature dependent constant (zero mode).

Some indication of a transport peak

$N_{t}=16$ not conclusive

A different method

Definition of $G / G_{\text {rec }}$

Jakovac, Petreczky, Petrov, Velytsky: Phys.Rev. D75 014506 (2007)

$$
\frac{G(t, T)}{G_{\mathrm{rec}}(t, T)}=\frac{G(t, T)}{\int A\left(\omega, T_{\mathrm{ref}}\right) K(\omega, t, T) \mathrm{d} \omega}
$$

Midpoint subtracted version

$$
\begin{aligned}
\frac{G^{-}}{G_{\text {rec }}^{-}}= & \frac{G(t, T)-G\left(N_{t} / 2, T\right)}{G_{\text {rec }}(t, T)-G_{\text {rec }}\left(N_{t} / 2, T\right)}= \\
& \frac{G(t, T)-G\left(N_{t} / 2, T\right)}{\int A\left(\omega, T_{\text {ref }}\right)\left[K(\omega, t, T)-K\left(\omega, N_{t} / 2, T\right)\right] \mathrm{d} \omega}
\end{aligned}
$$

This removes the zero mode.

Results: $G / G_{\text {rec }}$

Pseudoscalar channel

Results: $G / G_{\text {rec }}$

Vector channel

Results: $G^{-} / G_{\text {rec }}^{-}$

Pseudoscalar channel, midpoint subtracted version

Results: $G^{-} / G_{\text {rec }}^{-}$

Vector channel, midpoint subtracted version

Results: $G-G_{\text {rec }}$

Vector channel

Conclusions

MEM analysis

- There seems to be no change in the SF in the PS channel up to $1.4 T_{c}$
- There seems to be some change in SF in the V channel
- Indications of a transport peak in the V channel
$G / G_{\text {rec }}$ analyis
- No change in the PS channel
- In the V channel, results are consistent with a temperature independent $\omega>0$ part and a temperature dependent zero mode (narrow transport peak), described by the ansatz $A(\omega)=f(T) \omega \delta\left(\omega-0^{+}\right)+A(\omega, T=0)$.

Backup - implementation details 1

MEM continued...

It can be shown, that the maximum of Q is in an $N_{\text {data }}$ dimensional subspace:

$$
A(\omega)=m(\omega) \exp \left(\sum_{i=1}^{N_{\text {data }}} s_{i} f_{i}(\omega)\right)
$$

Two choice for basis functions: Bryan (Eur. Biophys J. 18, 165 (1990)) or Jakovác et al (Phys.Rev. D75 014506 (2007). We use the latter. In this case the maximization of Q is equivalent to the minimization of

$$
U=\frac{\alpha}{2} \sum_{i, j=1}^{N_{\text {data }}} s_{i} C_{i j} s_{j}+\int_{0}^{\omega_{\max }} \mathrm{d} \omega \mathrm{~A}(\omega)-\sum_{\mathrm{i}=1}^{\mathrm{N}_{\text {data }}} \mathrm{G}_{\mathrm{i}}^{\text {data }} \mathrm{S}_{\mathrm{i}} .
$$

Comment: Have to use arbitrary precision arithmetics with both methods.

Backup - implementation details 2

Problem: stopping criterion

Backup - implementation details 3

Solution: going back to the N_{ω} dimensions

Backup - shortcomings of MEM

Conclusions from mock data analysis

- MEM gives the correct qualitative features of the spectral function, but it is not a precise quantitative method.
- The peak positions agree well with the input, the shapes do not
- As long as the data points are not too noisy, $O(10)$ point are enough for reconstruction.
- Features that remain unchanged by varying the prior are restricted by the data.
- Peaks close in position can be merged into one broader peak.

Backup - charm mass tuning

From Davies et al PRL 104, 132003 (2010) $m_{c} / m_{s}=11.85$. Because of additive renormalization, it is impossible to use this directly. We use $\left(m_{c}-m_{s}\right) /\left(m_{s}-m_{u d}\right)$ where the additive renormalization constant cancels. We know that for $u d$ and s the masses used in the simulation correspond to a mass ratio of 1.5 (Durr et al. Phys. Lett. B701 (2011) 265), from this we get $\left(m_{c}-m_{s}\right) /\left(m_{s}-m_{u d}\right)=32.55 \mathrm{We}$ check if the meson masses are indeed in the right ballpark:

J^{P}	m_{i}		ma	$m a / m_{D_{s}^{*}} a$	$m_{\text {exp }} / m_{D_{s}^{*}}$
0^{-}	m_{s}, m_{c}	D_{s}	$0.54(1)$	$0.95(2)$	0.932
0^{-}	m_{c}, m_{c}	η_{c}	$0.8192(7)$	$1.437(4)$	1.411
1^{-}	m_{s}, m_{c}	D_{s}^{*}	$0.570(1)$	1	1
1^{-}	m_{c}, m_{c}	J / Ψ	$0.8388(8)$	$1.472(2)$	1.466
$3 / 2^{+}$	$3 m_{s}$	Ω	$0.478(8)$	$0.84(2)$	0.791

