QCD Thermodynamics With Continuum Extrapolated Wilson Fermions

 1 Department of Physics, University of Wuppertal, Germany

² Jülich Supercomputing Center, Forschungszentrum Jülich, Germany

³Institute for Theoretical Physics, Eötvös University, Hungary

Lattice 2014,

The 32nd International Symposium on Lattice Field Theory, Brookhaven National Laboratory and Columbia University

Motivation

 Continuum extrapolated staggered N_f = 2 + 1 QCD thermodynamics at the physical point. [Wuppertal-Budapest, HotQCD]

Disadvantages: rooting trick, taste symmetry breaking.

 Wilson fermions do not have these problems, continuum extrapolation is possible.

The action

Gauge fields

Symanzik tree level improved action:

$$S_{\rm G}^{\rm Sym} = \beta \left[\frac{c_0}{3} \sum_{\rm plaq} \operatorname{Re} \operatorname{Tr} \left(1 - U_{\rm plaq} \right) + \frac{c_1}{3} \sum_{\rm rect} \operatorname{Re} \operatorname{Tr} \left(1 - U_{\rm rect} \right) \right],$$

where $c_0 = 5/3$ and $c_1 = -1/12$.

Fermionic fields, $N_f = 2 + 1$

$$S_{\rm F}^{\rm SW} = S_{\rm F}^{\rm W} - \frac{c_{\rm SW}}{4} \sum_{x} \sum_{\mu,\nu} \bar{\psi}_x \, \sigma_{\mu\nu} F_{\mu\nu,x} \, \psi_x \,,$$

with six steps of stout smearing with smearing parameter $\varrho=0.11$ and clover coefficient its tree level value $c_{\rm SW}=1.0$, which leads to improved chiral properties.

Parameter tuning, LCP

- We used the fixed scale approach.
- Three sets of simulations each corresponding to a fixed m_π/m_Ω and m_K/m_Ω mass ratio.
- At each lattice spacing m_s is fixed at its physical value.
- The scale was set by $m_{\Omega} = 1672 \,\mathrm{MeV}.$

32
64
48
64
32
64
48
64
32
64
96

Parameter tuning, LCP

	β	m_{π}/m_{Ω}	r	$n_{\rm K}/m_{\Omega}$	am_{PCAC}	am_{Ω}	a [fm]
$m_{\pi} \approx 545 \mathrm{MeV}$	3.30	0.332(3)		0.373(3)	0.0428(2)	1.16(1)	0.139(1)
$m_V \approx 614 \mathrm{MeV}$	3.57	0.319(6)		0.359(4)	0.02649(4)	0.777(9)	0.093(1)
$m_{\pi}L \geq 8$	3.70	0.326(5)		0.369(5)	0.01994(4)	0.586(8)	0.070(1)
	3.85	0.314(7)		0.358(6)	0.01559(2)	0.480(8)	0.057(1)
		()		()	()	()	()
	β	m_{π}/m_{Ω}	r	$n_{\rm K}/m_{\Omega}$	am_{PCAC}	am_{Ω}	a [fm]
$m_{\pi} \approx 440 \mathrm{MeV}$	3.30	0.262(3)		0.340(3)	0.0248(2)	1.11(1)	0.133(1)
$m_{\rm K} \approx 570 {\rm MeV}$	3.57	0.270(3)		0.344(3)	0.01710(5)	0.737(7)	0.088(1)
$m_{\pi}L > 7$	3.70	0.258(4)		0.337(5)	0.01266(3)	0.578(8)	0.069(1)
	3.85	0.256(4)		0.343(6)	0.00890(1)	0.446(7)	0.053(1)
		. ,		. ,	. ,	. ,	
	β	m_{π}/m_{Ω}	r	$n_{\rm K}/m_{\Omega}$	am_{PCAC}	am_{Ω}	a [fm]
$m_{\pi} \approx 280 \mathrm{MeV}$	3.30	0.174(4)		0.325(7)	0.0084(2)	0.97(2)	0.117(3)
$m_{\rm K} \approx 520 {\rm MeV}$	3.57	0.174(2)		0.311(4)	0.00693(4)	0.723(8)	0.087(1)
$m_{\pi}L > 5.4$	3.70	0.170(1)		0.316(5)	0.00481(2)	0.560(9)	0.067(1)
				_			
				640 -	m = 545 MeV	· ·	
				620	$m_{\pi} = 440 \text{ MeV}$		Æ
			020	m = 280 MeV		T T	
At each finite temperature point			600 -	$m_{\pi} = 200$ meV			
1000-1500 equilibrated trajectories were				580	physical point and		- <u>4</u>
generated while around 1000 at zero			Je'	000			1111 H
temperature.		<u>د</u>	560 -	т		T	
		Ε	540	+			
				545	ᅶ		
m _Q and hence the lattice spacing	g depends			520 -	Ψ		
rather mildly on the light quark n		500 -	•				

480 L

 m_{π} [MeV]

Estimating uncertainties

Statistical error: jackknife analysis

- ► Systematic error: histogram method [BMW, 2008]
- Different T interpolations and continuum limits $(a^2, \alpha a)$
- Various weights: goodness of fit, flat, or Akaike Information Criterion (AIC):

 $w = \exp(-AIC/2)$ with $AIC = \chi^2 + 2 \times (\# \text{ of parameters})$

Chiral condensate

The bare chiral condensate requires both additive and multiplicative renormalization. [S. Borsanyi *et al.* 1205.0440]

$$m_{\rm R} \langle \bar{\psi} \psi \rangle_{\rm R}(T) = 2 N_f m_{\rm PCAC}^2 Z_{\rm A}^2 \Delta_{PP}(T),$$

where

$$\Delta_{PP}(T) = \int d^4x \, \langle P_0(x) P_0(0) \rangle(T) - \int d^4x \, \langle P_0(x) P_0(0) \rangle(T=0).$$

To avoid a strong pion mass dependence the following dimensionless combination is convenient when comparing different pion masses:

$$m_{\rm R} \langle \bar{\psi} \psi \rangle_{\rm R}(T) / m_\pi^2 / m_\Omega^2.$$

Continuum limit of the chiral condensate

Strange quark number susceptibility

$$\chi_s = \frac{T}{V} \frac{\partial^2 \ln Z}{\partial \mu_s^2} \bigg|_{\mu_s = 0}$$

- It characterizes strangeness fluctuation.
- There is no need for renormalization, the continuum limit is straightforward.
- ► Tree level improved $\frac{\chi_s}{T^2}$ dimensionless combination. [S. Borsanyi *et al.* 1205.0440]

Cont. limit of the strange quark number susceptibility

Polyakov loop

Multiplicative divergence has to be removed.

► A value L_{*} can be fixed for the renormalized Polyakov loop at a fixed but arbitrary temperature T_{*} > T_c:

$$L_{\rm R}(T) = \left(\frac{L_*}{L_0(T_*)}\right)^{\frac{T_*}{T}} L_0(T)$$

We choose $T_* = 0.143 m_{\Omega}$ and $L_* = 1.2$

Continuum limit of the Polyakov loop

Summary

- We investigated the pion mass dependence of several observables which may be used to define a pseudo-critical temperature.
- Continuum extrapolation was fully under control for $m_{\pi} = 545 \text{ MeV}$ and 440 MeV, only continuum estimates for $m_{\pi} = 280 \text{ MeV}$ (except for the Polyakov loop).
- Chiral condensate shows much stronger pion mass dependence than the other two observables.
- Smaller (close to physical) pion mass is needed for a full result at the physical point.