Nucleon observables and axial charges of other baryons

C. Alexandrou

University of Cyprus, The Cyprus Institute, and DESY-Zeuthen

with
M. Constantinou, K. Hadjiyiannakou, K. Jansen, Ch. Kallidonis, G. Koutsou

The XXXII International Symposium on Lattice Field Theory New York, 23-28 June 2014

Outline

(1) Introduction

- Wilson twisted mass lattice QCD
- Nucleon mass
(2) Hadron spectrum
(3) Nucleon structure
- Nucleon charges: g_{A}, g_{s}, g_{T}
- First moments: $\langle x\rangle_{q},\langle x\rangle_{\Delta q},\langle x\rangle_{\delta q}$
(4) Axial charges of hyperons and charmed baryons
(5) Conclusions

Wilson twisted mass lattice QCD

- $N_{t}=2: \psi=\binom{u}{d}$

Change of variables: $\psi=\frac{1}{\sqrt{2}}\left[1+i \tau^{3} \gamma_{5}\right] \chi \quad \bar{\psi}=\bar{\chi} \frac{1}{\sqrt{2}}\left[1+i \tau^{3} \gamma_{5}\right]$
\Rightarrow mass term: $\bar{\psi} m \psi=\bar{\chi} i \gamma_{5} \tau^{3} m \chi$

$$
S=S_{g}+a^{4} \sum_{x} \bar{\chi}(x)\left[\frac{1}{2} \gamma_{\mu}\left(\nabla_{\mu}+\nabla_{\mu}^{*}\right)-\frac{a r}{2} \nabla_{\mu} \nabla_{\mu}^{*}+m_{\text {crit }}+i_{\gamma_{5}} \tau^{3} \mu\right] \chi(x)
$$

Simulations by ETMC: Ph. Boucaud et al., Comput.Phys.Commun. 179 (2008) 695; Phys.Lett. B650 (2007) 304

- $N_{f}=2+1+1$

$$
S_{h}=\sum_{x} \bar{\chi}_{h}(x)\left[D_{W}+m_{(0, h)}+i \gamma_{5} \tau^{1} \mu_{\sigma}+\tau^{3} \mu_{\delta}\right] \chi_{h}(x)
$$

Simulations by ETMC: R. Baron et al., JHEP 1008 (2010) 097

- $N_{f}=2$ twisted mass plus clover
\rightarrow a good formulation for simulations at the physical point, see talk by B. Kostrzewa, (ETMC) A. Abdel-Rehim et al., arXiv:1311.4522
\rightarrow preliminary results at physical point, see plenary talk by M. Constantinou, (ETMC) C. Alexandrou et al., PoS LATTICE2013 (2013) 292

Wilson tmQCD at maximal twist, R. Frezzotti, G. C. Rossi, JHEP 0408 (2004) 007

- Automatic $O($ a improvement
- No operator improvement needed, renormalization simplified \rightarrow important for hadron structure

The nucleon

- Cut-off effects small for these lattice spacings
- LO fit with $m_{\pi}<375 \mathrm{MeV}$ does not include the physical point
- Complete agreement with experimental value
- Determine lattice spacing using the $\mathcal{O}\left(p^{3}\right)$ result, see talk by Ch. Kallidonis $\rightarrow \sigma$-term from m_{N} using $\mathcal{O}\left(p^{3}\right): \sigma_{\pi N}=65(2)(20) \mathrm{MeV}$ and $r_{0} \sim 0.479(4) \mathrm{fm}$ in the continuum limit

Hadron spectrum

Results by ETMC using simulations at the physical pion mass
Interpolating fields the same as those used for the $N_{f}=$ $2+1+1$ ensembles; see talk by Ch. Kallidonis
Ω and \equiv discovery, Brookhaven 1964: V. E. Barnes et al., Phys. Rev. Lett. 12, 204 (1964)

Hadron spectrum

Results by ETMC using simulations at the physical pion mass
Interpolating fields the same as those used for the $N_{f}=$ $2+1+1$ ensembles; see talk by Ch. Kallidonis
Ω and \equiv discovery, Brookhaven 1964: V. E. Barnes et al., Phys. Rev. Lett. 12, 204 (1964)

Nucleon structure

- Axial charge
- Scalar charge
- $\langle x\rangle_{q}$
- $\langle x\rangle_{\Delta q}$
- Tensor charge
- $\langle x\rangle_{\delta q}$
- $N_{f}=2+1+1$ twisted mass, $32^{3} \times 64, a=0.082 \mathrm{fm}, m_{\pi}=373 \mathrm{MeV}$-high statistics analysis including disconnected contributions, 7 sink-source time separations ranging from 0.5 fm to 1.5 fm
- $N_{f}=2$ twisted mass plus clover, $48^{3} \times 96, a=0.091 \mathrm{fm}, m_{\pi}=134 \mathrm{MeV}, \sim 1000$ confs, 4 sink-source time separations ranging from 0.9 fm to 1.5 fm
- Ground state dominance
- nucleon axial charge g_{A}, tensor charge - weak, S. Dinter, C.A., M. Constantinou, V. Drach, K. Jansen and D. Renner, arXiv: 1108.1076
- momentum fraction $\langle x\rangle_{u-d}$, electromagnetic form factors, see talk by G. Koutsou - intermediate
- scalar charge (equivalently σ-terms) - severe
- Disconnected contributions - see talk by A. Vaquero
- scalar charge, axial charge - need to be taken into account C. Alexandrou et al., arXiv:1309.2256; A. A. Rehim et al., arXiv:1310.6339
- small for EM form factors

Extracting nucleon matrix elements

- Plateau method:

$$
R\left(t_{s}, t_{\mathrm{ins}}, t_{0}\right) \xrightarrow{\left(t_{\mathrm{ins}}-t_{0}\right) \Delta \gg 1}\left(t_{s}-t_{\mathrm{ins}}\right) \Delta \gg 1 \mathrm{M}\left[1+\ldots e^{-\Delta(\mathbf{p})\left(t_{\mathrm{ins}}-t_{0}\right)}+\ldots e^{-\Delta\left(\mathbf{p}^{\prime}\right)\left(t_{s}-t_{\mathrm{ins}}\right)}\right]
$$

- \mathcal{M} the desired matrix element
- $t_{s}, t_{\text {ins }}, t_{0}$ the sink, insertion and source time-slices
- $\Delta(\mathbf{p})$ the energy gap with the first excited state

Extracting nucleon matrix elements

Form ratio by dividing the three-point correlator by an appropriate combination of two-point functions:

- Plateau method:

$$
R\left(t_{s}, t_{\text {ins }}, t_{0}\right) \xrightarrow[\left(t_{s}-t_{\text {ins }}\right) \Delta \gg 1]{\left(t_{\text {ins }}-t_{0}\right) \Delta \gg 1} \mathcal{M}\left[1+\ldots e^{-\Delta(\mathfrak{p})\left(t_{\text {ins }}-t_{0}\right)}+\ldots e^{-\Delta\left(\mathbf{p}^{\prime}\right)\left(t_{s}-t_{\text {ins }}\right)}\right]
$$

- \mathcal{M} the desired matrix element
- $t_{s}, t_{\text {ins }}, t_{0}$ the sink, insertion and source time-slices
- $\Delta(\mathbf{p})$ the energy gap with the first excited state
- Summation method: Summing over t_{ins} :

$$
\sum_{t_{\mathrm{ins}}=t_{0}}^{t_{s}} R\left(t_{s}, t_{\mathrm{ins}}, t_{0}\right)=\text { Const. }+\mathcal{M}\left[\left(t_{s}-t_{0}\right)+\mathcal{O}\left(e^{-\Delta(\mathbf{p})\left(t_{s}-t_{0}\right)}\right)+\mathcal{O}\left(e^{-\Delta\left(\mathbf{p}^{\prime}\right)\left(t_{s}-t_{0}\right)}\right)\right]
$$

- Excited state contributions are suppressed by exponentials decaying with $t_{s}-t_{0}$, rather than $t_{s}-t_{\text {ins }}$ and/or $t_{\text {ins }}-t_{0}$
- Also works if one does not include t_{0} and t_{s} in the sum \rightarrow used for the results shown here
- However, one needs to fit the slope rather than to a constant or take differences and then fit to a constant
L. Maiani, G. Martinelli, M. L. Paciello, and B. Taglienti, Nucl. Phys. B293, 420 (1987); S. Capitani et al., arXiv:1205.0180
- Fit keeping the first excited state, T. Bhattacharya et al., arXiv:1306.5435

All should yield the same answer in the end of the day!

Nucleon charges: $\mathbf{g}_{\mathrm{A}}, \mathrm{g}_{\mathrm{s}}, \mathrm{g}_{\mathrm{T}}$

- scalar operator: $\mathcal{O}_{S}^{a}=\bar{\psi}(x) \frac{\tau^{a}}{2} \psi(x)$
- axial-vector operator: $\mathcal{O}_{A}^{a}=\bar{\psi}(x) \gamma^{\mu} \gamma_{5} \frac{\tau^{a}}{2} \psi(x)$
- tensor operator: $\mathcal{O}_{T}^{a}=\bar{\psi}(x) \sigma^{\mu \nu} \frac{\tau^{a}}{2} \psi(x)$
\Longrightarrow extract from ratio: $\left.\left\langle N\left(\overrightarrow{p^{\prime}}\right) \mathcal{O}_{X} N(\vec{p})\right\rangle\right|_{q^{2}=0}$ to obtain g_{s}, g_{A}, g_{T}
(i) isovector combination has no disconnect contributions; (ii) g_{A} well known experimentally, g_{T} to be measured at JLab

Planned experiment at JLab, SIDIS on ${ }^{3} \mathrm{He} /$ Proton at 11 GeV :

Experimental values: $\delta u=0.39_{-0.12}^{+0.18}$ and $\delta d=-0.25_{-0.1}^{+0.3}$

Nucleon charges: $g_{\mathrm{A}}, \mathrm{g}_{\mathrm{s}}, \mathrm{g}_{\mathrm{T}}$

- High statistics analysis with $N_{f}=2+1+1$ TMF, $a=0.082 \mathrm{fm}, m_{\pi}=373 \mathrm{MeV}$
- Connected part with 1200 statistics

Nucleon charges: $g_{\mathrm{A}}, \mathrm{g}_{\mathrm{s}}, \mathrm{g}_{\mathrm{T}}$

\bullet High statistics analysis with $N_{f}=2+1+1$ TMF, $a=0.082 \mathrm{fm}, m_{\pi}=373 \mathrm{MeV}$

- Connected part with 1200 statistics

Agreement of summation, plateau and two-states fits give confidence to the correctness of the final result

- g_{A} : No detectable excited states
- g_{T} : similar to g_{A}
- g_{s} : severe contamination from excited states

Nucleon charges: $\mathrm{g}_{\mathrm{A}}, \mathrm{g}_{\mathrm{s}}, \mathrm{g}_{\mathrm{T}}$

- $N_{f}=2$ TMF with clover term $a=0.091 \mathrm{fm}$ with $m_{\pi}=134 \mathrm{MeV}$; Connected part with 1018 statistics

Summary of results on nucleon charges: g_{A}, g_{s}, g_{T}

- g_{A} at the physical point mass indicates agreement with the physical value \rightarrow important to reduce error - many results from other collaborations, see plenary by M. Constantinou
- Experimental value of $g_{T} \sim 0.54_{-0.13}^{+0.30}$ from global analysis of HERMES, COMPASS and Belle $e^{+} e^{-}$data, M. Anselmino et al. (2013)
- For g_{s} increasing the sink-source time separation to $\sim 1.5 \mathrm{fm}$ is crucial

Isoscalar nucleon charges: $\mathrm{g}_{\mathrm{A}}, \mathrm{g}_{\mathrm{s}}, \mathrm{g}_{\mathrm{T}}$

- scalar operator: $\mathcal{O}_{S}^{a}=\bar{\psi}(x) \frac{\tau^{a}}{2} \psi(x)$
- axial-vector operator: $\mathcal{O}_{A}^{a}=\bar{\psi}(x) \gamma^{\mu} \gamma_{5} \frac{\tau^{a}}{2} \psi(x)$
- tensor operator: $\mathcal{O}_{T}^{a}=\bar{\psi}(x) \sigma^{\mu \nu} \frac{\tau^{a}}{2} \psi(x)$
- $N_{f}=2+1+1$ twisted mass, $a=0.082 \mathrm{fm}, m_{\pi}=373 \mathrm{MeV}$
- Disconnected part, ~ 150000 statistics using GPUs, see talk by A. Vaquero

Disconnected isoscalar, agrees with Bali et al. (QCDSF), Phys.Rev.Lett. 108 (2012) 222001

Strange quark loop Analysis at the physical point still preliminary

Isoscalar nucleon charges: g_{A}, g_{s}, g_{T}

- $N_{f}=2+1+1$ twisted mass, $a=0.082 \mathrm{fm}, m_{\pi}=373 \mathrm{MeV}$
- Disconnected part, ~ 150000 statistics using GPUs, see talk by A. Vaquero

Disconnected isoscalar, agrees with Bali et al. (QCDSF), Phys.Rev.Lett. 108 (2012) 222001
Analysis at the physical point still preliminary

Isoscalar nucleon charges: $\mathrm{g}_{\mathrm{A}}, \mathrm{g}_{\mathrm{s}}, \mathrm{g}_{\mathrm{T}}$

- $N_{f}=2+1+1$ twisted mass, $a=0.082 \mathrm{fm}, m_{\pi}=373 \mathrm{MeV}$
- Disconnected part, ~ 150000 statistics using GPUs,

- Large contamination from excited states
- Compute perturbatively the difference between isovector and isoscalar renormalization constants at two-loop, see talk by H. Panagopoulos

Isoscalar nucleon charges: g_{A}, g_{s}, g_{T}

- $N_{f}=2+1+1$ twisted mass, $a=0.082 \mathrm{fm}, m_{\pi}=373 \mathrm{MeV}$
- Disconnected part, ~ 150000 statistics using GPUs,

Results shown in $\overline{M S}$ at $4 \mathrm{GeV}^{2}$
Analysis at the physical point still preliminary

Large source-sink separation and inclusion of disconnected is required

Experimental values from global analysis of HERMES, COMPASS and Belle $e^{+} e^{-}$data, M. Anselmino et al. (2013)

First moments of PDFs for the nucleon

- Unpolarized moment: $\langle x\rangle_{q}=\int_{0}^{1} d x \times[q(x)+\bar{q}(x)]$

$$
\begin{aligned}
& q(x)=q(x)_{\downarrow}+q(x)_{\uparrow} \\
& \Delta q(x)=q(x)_{\downarrow}-q(x)_{\uparrow} \\
& \quad \delta q(x)=q(x)_{\perp}+q(x)_{\uparrow}
\end{aligned}
$$

- Helicity moment: $\langle x\rangle_{\Delta q}=\int_{0}^{1} d x x[\Delta q(x)-\Delta \bar{q}(x)]$
- Transversity moment: $\langle x\rangle_{\delta q}=\int_{0}^{1} d x x[\delta q(x)+\delta \bar{q}(x)]$,
$N_{f}=2+1+1$ twisted mass, $a=0.082 \mathrm{fm}, m_{\pi}=373 \mathrm{MeV}, 1200$ statistics; Isovector

- Noticeable excited state contamination, especially for the iso-scalar
- For the plateau method one needs to show convergence by varying the sink-source time separation \rightarrow also requires a number of sequential inversions \Longrightarrow consistency of plateau and summation method gives confidence in the results

First moments of PDFs for the nucleon

$N_{f}=2+1+1$ twisted mass, $a=0.082 \mathrm{fm}, m_{\pi}=373 \mathrm{MeV}, 1200$ statistics; Isovector

First moments of PDFs for the nucleon

$N_{f}=2$ TMF with a clover term , $a=0.091 \mathrm{fm}, m_{\pi}=134 \mathrm{MeV}, 1018$ statistics; Isovector

Summary of results on the lowest moments of the nucleon

Isovector in $\overline{M S}$ at 2 GeV

- $\langle x\rangle_{u-d}$ and $\langle x\rangle_{\Delta u-\Delta d}$ approach physical value for bigger source-sink separations \rightarrow need an equivalent high statistics study as at $m_{\pi}=373 \mathrm{MeV}$
- Can provide a prediction for $\langle x\rangle_{\delta u-\delta d}$

Axial charges of hyperons and charmed baryons

Axial matrix element: $\left.\left\langle B\left(\vec{p}^{\prime}\right)\right| \bar{\psi}(x) \gamma_{\mu} \gamma_{5} \psi(x)|B(\vec{p})\rangle\right|_{q^{2}=0}$

Preliminary

- Only connected
- Use fixed current method

Axial charges of hyperons and charmed baryons

Axial matrix element: $\left.\left\langle B\left(\vec{p}^{\prime}\right)\right| \bar{\psi}(x) \gamma_{\mu} \gamma_{5} \psi(x)|B(\vec{p})\rangle\right|_{q^{2}=0}$

Preliminary

- Only connected

Axial charges of hyperons and charmed baryons

Preliminary

- First promising results at the physical point
- $\mathrm{SU}(3)$ breaking $\delta_{S U(3)}=g_{A}^{N}-g_{A}^{\Sigma}+g_{\bar{A}}^{\bar{A}}$ versus $x=\left(m_{K}^{2}-m_{\pi}^{2}\right) /\left(4 \pi^{2} f_{\pi}^{2}\right)$

Conclusions

- Simulations at the physical point \rightarrow that's where we always wanted to be!
\Longrightarrow Results on $g_{A},\langle x\rangle_{U-d}$ etc at the physical point are now directly accessible
But will need high statistics and careful cross-checks \rightarrow noise reduction techniques are crucial e.g. AMA, TSM, smearing etc
- Evaluation of quark loop diagrams has become feasible - need to make our methods work at the physical point
- Predictions for other hadron observables are emerging e.g. axial charge of hyperons and charmed baryons
- Confirmation of experimentally known quantities such as g_{A} will enable reliable predictions of others \rightarrow provide insight into the structure of hadrons and input that is crucial for new physics such as the nucleon σ-terms, g_{s} and g_{T}

Thank you for your attention

The Project Cy-Tera (NEA YПO $\triangle \mathrm{OMH} / \Sigma$ TPATH/0308/31) is co-financed by the European Regional Development Fund and the Republic of Cyprus through the Research Promotion Foundation

Backup slides

First moments of PDFs for the nucleon

Twisted Mass, $a=0.082 \mathrm{fm}, 32^{3} \times 64, m_{\pi}=373 \mathrm{MeV}, \sim 1500000$ statistics (on 4700 confs; Disconnected)

- Can put bound on its value
- Including momentum in the sink/source improves statistical accuracy
A. Abdel-Rehim, C. A., M. Constantinou, S. Dinter, V. Drach, K. Hadjiyiannakou, K. Jansen, Ch. Kallidonis, G. Koutsou

Two-state fits

Fitting the ratio to two-states simultaneous for several sink-source separations works for the scalar charge and momentum fraction. As stressed g_{A} does not pick up contributions from excited states.

Two-state fits

Fitting the ratio to two-states simultaneous for several sink-source separations works for the scalar charge and momentum fraction. As stressed g_{A} does not pick up contributions from excited states.

Not useful for predicting the large time dependence

