Quark mass dependence of quarkonium properties at finite temperature

H. Ohno^{1,2}

in collaboration with H.-T. Ding³ and O. Kaczmarek⁴ ¹University of Tsukuba, ²Brookhaven National Laboratory, ³Central China Normal University, ⁴Bielefeld University

Lattice 2014 Columbia University, New York, USA June 25, 2014

Quarkonium in hot medium

Sequential Bottomonium suppression @ LHC \rightarrow

Investigating dissociation temperatures of charmonia and bottomonia by first principle lattice QCD calculation is important

H. Ohno Lattice 2014

Transport coefficient

The evolution of the system in hydro models **← Transport coefficients are important.**

Determination by the first principle calculation in QCD is needed.

Adare et al. [PHENIX Collaboration], PRL 98 (2007) 172301

H. Ohno Lattice 2014

Meson correlator & spectral function

Heavy quark diffusion constant

$$\chi_{00} : \text{Quark number susceptibility} \\ \rho_{00}^{V}(\omega) = 2\pi\chi_{00}\omega\delta(\omega) \implies G_{00}^{V}(\tau) = T\chi_{00}$$

D is related to the vector spectral function around zero frequency.

H. Ohno Lattice 2014

Recent lattice studies : spectral functions

- Charmonia
 - Quenched QCD
 - Both S- and P-wave states are dissociated above $\sim 1.5T_c$.
 - H.-T. Ding et al., PRD 86 (2012) 014509

- Bottomonia
 - 2-flavor, nonrelativistic QCD
 - Y has no temperature dependence up to $2.09T_{c}$.
 - χ_{b0} is sensitive to the presence of thermal medium immediately above T_{c} .
 - Momentum dependence is effectively
 - temperature independent.

G.Aarts *et al.*, PRL 106 (2011) 061602 G.Aarts *et al.*, JHEP 1303 (2012) 084

H. Ohno Lattice 2014

Recent lattice studies : diffusion constant

Perturbative estimate
 2πDT ≈ 71.2 in LO
 2πDT ≈ 8.4 in NLO

Kovtun, Son and Starinets, JHEP 0310 (2004) 064

2πDT ≈ 1

Strong coupling limit

Moore and Teaney, PRD 71 (2005) 064904, Caron-Hout and Moore, PRL 100 (2008) 052301

Simulation Setup

• Standard plauette gauge & O(a)-improved Wilson quark actions

•	In quenched QCD	β	N_{σ}	N_{τ}	T/T_c	# confs.
•	On fine and large isotropic lattices	7.192	96	48	0.7	259 476
•	2 different cutoff			$\frac{32}{28}$	1.1 1.2	470 336
•	$T = 0.7 - 1.4T_{\odot}$	7 700	100	24	1.4	336
•	Both charm & bottom	(.(93	192	96 48	0.7 1. 4	36 49

• Computing meson correlation functions

β	$a \; [\mathrm{fm}]$	a^{-1} [GeV]	$\kappa_{ m charm}$	$\kappa_{ m bottom}$	$m_{J/\Psi} \; [{ m GeV}]$	$m_{\Upsilon} \; [\text{GeV}]$
7.192	0.0190	10.4	0.13194	0.12257	3.105(3)	9.468(3)
7.793	0.00968	20.4	0.13221	0.12798	3.089(6)	9.437(6)

Experimental values: $m_{J/\Psi} = 3.096.916(11) \text{ GeV}, m_{Y} = 9.46030(26) \text{ GeV}$ J. Beringer *et al.* [PDG], PRD 86 (2012) 010001

Reconstructed correlator

$$G_{\rm rec}(\tau,T;T') \equiv \int_0^\infty d\omega \rho(\omega,T') K(\omega,\tau,T)$$
$$\frac{G(\tau,T)}{G_{\rm rec}(\tau,T;T')} \quad \text{equals to unity at all } \tau$$
if the spectral function doesn't vary with temperature
S. Datta *et al.*, PRD 69 (2004) 094507

$$\frac{\cosh[\omega(\tau - N_{\tau}/2)]}{\sinh[\omega N_{\tau}/2]} = \sum_{\tau'=\tau;\Delta\tau'=N_{\tau}}^{N_{\tau}'-N_{\tau}+\tau} \frac{\cosh[\omega(\tau' - N_{\tau}'/2)]}{\sinh[\omega N_{\tau}'/2]} \\
T = 1/(N_{\tau}a) \qquad N_{\tau}' = mN_{\tau} \qquad m = 1, 2, 3, \cdots \\
G_{\rm rec}(\tau, T; T') = \sum_{\tau'=\tilde{\tau};\Delta\tau'=N_{\tau}}^{N_{\tau}'-N_{\tau}+\tau} G(\tau', T') \\
H.-T. Ding et al., PRD 86 (2012) 014509$$

H. Ohno Lattice 2014

Results (1) : reconstructed correlators

V, S and Av channels have strong modification at large τ , which might be related to the transport peak

H. Ohno Lattice 2014

Results (2) : vector correlation function

χ_{00} increases as increasing temperature for charm. χ_{00} has quite small temperature dependence for bottom.

H. Ohno Lattice 2014

Results (3) : heavy quark diffusion constant

Charm: 2πTD ≈ 0.6−4 (β = 7.192), 2πTD ≈ 0.5−3 (β = 7.793) for $m_a = 1-2$ GeV

Bottom: there is no intersection for $m_a = 4 - 5$ GeV

H. Ohno Lattice 2014

Conclusions

- We calculate meson correlation functions
 - On fine and large isotropic lattices
 - With 2 different cutoff
 - With quark mass for both charm and bottom
- Meson spectral functions are investigated by using reconstructed correlators
 - V, S and Av channel have strong modification at large τ, which might be related to the transport peak.
 - From the difference between the ordinary and reconstructed correlators, the heavy quark diffusion constant is roughly estimated in the charm case.

Outlook

- Taking continuum limit
- Investigating spectral functions directly
 - Bayesian analysis
- Estimating transport coefficients more accurately.
- Investigating exited states
 - variational analysis

End