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Motivation

• Hamiltonian simulations,  working with wave-functions, real-time physics

• No sign problem, finite fermionic chemical potential

• Understand gauge theories in the tensor network language i.e. in  terms of 
their entanglement structure
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Tensor network states 
taming the humongous Hilbert space

(spins, fermions, bosons, 
QFT) |Ψ >= cs1,s2,...,sN |s1, s2, . . . , sN >

dimension: pN



The tiny corner of Hilbert space

|Ψ >= cs1,s2,...,sN |s1, s2, . . . , sN >

dimension:

A

B

ρA = TrB |Ψ><Ψ|

SA = −TrAρA log ρA ∼ ∂A

area law for entanglement 
entropy of low-energy states:

pN

(proven by Hastings ’07 for d=1)



The tiny corner of Hilbert space

|Ψ >= cs1,s2,...,sN |s1, s2, . . . , sN >

A

B

area law for entanglement 
entropy of low-energy states:

tensor network:

= As
αLαRαUαD

SA ≤ logD ∂A

SA = −TrAρA log ρA ∼ ∂A

ρA = TrB |Ψ><Ψ|

(proven by Hastings ’07 for d=1)
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two reviews  
(with the proper references)



d=1+1 QED a.k.a. the Schwinger model

(B. Buyens, J. Haegeman, K.V.A., H. Verschelde, F. Verstraete, arXiv: 1312.6654)

L = −1

4
FµνF

µν + ψ̄iγµ(∂µ − ieAµ)ψ +mψ̄ψ

•Can be solved exactly for                (Schwinger ’62, Coleman ’76)

•Non-trivial physics, similar to QCD: e.g. confinement 

g → ∞



Kogut-Susskind (            + staggered fermions) + Jordan-Wigner:

H =
g
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σz(n)|sn>= sn|sn> (sn = ±1)

Ln|pn>= pn|pn> pn ∈ Z [θ(n), L(m)] = iδnm

fermions:

gauge-fields:

(∇.E = ρ)

A0 = 0

Extra ingredient: gauge invariance/Gauss law

Gn = L(n)− L(n− 1)− 1

2
(σz(n) + (−1)n)

Gn|Ψ>phys= 0
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(v+LB
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= [Bsn
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gauge-invariant Matrix Product State



Effective truncation local Hilbert space

L R

|Ψ>=
�

i

�
λi|Ψi>L |Ψi>RSchmidt-decomposition:
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Groundstate energy+excitations

4

m/g ω0 Mv,1 Ms,1 Mv,2

0 -0.318320(4) 0.56418(2)

0.125 -0.318319(4) 0.789491(8) 1.472(4) 2.10 (2)

0.25 -0.318316(3) 1.01917 (2) 1.7282(4) 2.339(3)

0.5 -0.318305(2) 1.487473(7) 2.2004 (1) 2.778 (2)

0.75 -0.318285(9) 1.96347(3) 2.658943(6) 3.2043(2)

1 -0.31826(2) 2.44441(1) 3.1182 (1) 3.640(4)

TABLE I: Energy density and masses of the one-particle ex-
citations (in units g = 1) for different m/g. The last column
displays the result for the heavy vector boson, compatible
with the prediction of Coleman [11, 12]

Dq is peaked around q = 0, and justifies our pmax = 3
truncation that corresponds to Dq = 0 for |q| > 3.

To extrapolate towards x → ∞ we used a third order
polynomial fit in 1/

√
x through the largest five x-values.

Similar to [2] our extrapolation error is then estimated by
considering a third and fourth order polynomial through
all six points, taking the error to be the maximal differ-
ence with the original inferred value.

In table 1 we display our resulting values for the ground
state energy density and the mass of the different one-
particle excitations. For m/g = 0 this can be com-
pared with the exact result that follows from bosoniza-
tion [15]. In this limit the model reduces to a free the-
ory, of one bosonic vector (γ = −1) particle with mass
Mv,1 = 1/

√
π = 0.56419 and with a ground-state energy

density ω0 = −1/π = −0.318310 (both in units g = 1).

Furthermore, in the strong coupling expansion g/m �
1 on this exact result, it is found that the vector boson be-
comes an interacting particle, leading to two more stable
bound states. There appears one scalar boson that is a
stable bound state of two vectors and one more vector bo-
son, that is best interpreted as a bound state of the scalar
and the original lowest mass vector [11, 12]. For g/m �= 0
we also find three excited states, one scalar and two vec-
tors, with the hierarchy of masses Mv,1 < Ms,1 < Mv,2

matching that of the strong coupling result. But notice
that for our values of g/m, the strong coupling expan-
sion result is not reliable anymore, making a quantita-
tive comparison useless. One can also show that in the
continuum limit the ground-state energy is independent
of g/m which is compatible with our findings.

This is the first time that the second vector excitation
has been found numerically. For the energy density and
the two lowest mass excitations our results are consistent
with the previous most precise simulations [2, 3], with a
similar or sometimes better accuracy.

A nice cross-check of our method also follows from cal-
culating the excitation energies for non-zero momenta k.
The Schwinger model is Lorentz invariant in the contin-
uum limit, so we should have an approximate Einstein
dispersion relation at finite lattice spacing a, for small

momenta ka � 1. As shown in fig.1b, this is precisely
what we find.
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FIG. 2: The electric field and current density as function of
time for α = 0.75 (in units g = 1). The results are plotted
for two different values of the bond dimension D = 239 (blue)
and D = 207 (green).

Finally, we have investigated the non-equilibrium dy-
namics induced by applying a uniform electric field E
on the ground-state |Ψ0� at time t = 0. Here we show
some first results, a more detailed analysis will be pre-
sented elsewhere [16]. Physically, the situation corre-
sponds to the so called Schwinger particle creation mech-
anism [17], but now for a confining theory. This sub-
ject was recently also explored in the AdS/CFT set-up
[18]. In our set-up this can be simulated by applying
a uniform quench, replacing L(n) → L(n) + α in the
Hamiltonian (2), where E = gα. Again we used TDVP,
but now for real-time evolution with the quench Hamil-
tonian. As the background field breaks CT invariance
our ansatz is now defined simply by blocking two sites
and two links into one site and taking a gauge-invariant
form for Aq that follows from (5). In fig. 2 one can
see our results for the evolution of the electric field,
�Ψ0(t)|L(2n− 1) + L(2n)|Ψ0(t)� and for the current den-
sity,

√
x �Ψ0(t)|σ+(2n− 1)eiθ(2n−1)σ−(2n) + h.c.|Ψ0(t)�;

and this for α = 0.75. We observe the typical plasma os-
cillations that are damped over time, which is a typical
feature of thermalization. This is corroborated by the lin-
ear growth of the half-system entanglement entropy that
we find in this case. It is precisely this growth of the
entropy that will at some point invalidate the MPS ap-
proximation for a given D. We can determine this point
self-consistently by looking at variations of the result for
different D. From fig.2 we can infer then that at t ≈ 15,
our D = 239 MPS-result starts to become less reliable.

Conclusions. In this letter we have demonstrated the
potential of MPS as numerical method for gauge the-
ories. It is clear that we have only scratched the sur-
face of this approach and that even within the Schwinger
model there are many other types of calculations one
could do, like for instance the construction of two-particle
scattering states. Looking further afield, one can eas-
ily generalize our gauge invariant MPS ansatz to other



Real-time simulation Schwinger mechanism (new results)
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Going to higher dimensions, d=2+1

Some facts:

1. The exact contraction of a 2dim.-tensor network (PEPS) is an 
exponentially hard problem.  (equivalent to solving for the groundstate 
of a d=1+1 system)  

2. But one can approximate this contraction, best algorithm so far has 
number of steps                             .  Therefore at present, we can only 
perform PEPS simulations with relatively low bond dimension.

3.  A PEPS is a groundstate of some local parent Hamiltonian (unique 
groundstate if the PEPS is injective)

   

O(χ3D4 + pχ2D6)

So already from the study of low bond-dimension PEPS, one can probe the 
phase space of certain local parent Hamiltonians. IR universality?  



Probing phase diagram of gauge theories with parent Hamiltonians
J. Haegeman,  K.V.A. , N. Schuch, F. Verstraete (coming soon)

d=2+1 Z2 lattice gauge 
theory:
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D=2 PEPS, with parent Hamiltonian:

H = −σx − h� − βxτx − βzσzτzσz

Hp = e
− βx

2 τx− βz
2 σzτzσz (−σx − h�)e−

βx
2 τx− βz

2 σzτzσz



Phase-diagram parent Hamiltonian:

ds2 =<δψ|δψ> − <δψ|ψ><ψ|δψ>



Conclusions/Outlook

For d=1+1 TNS formalism can simulate gauge theories with high 
precision. Specifically in those regimes (real-time, non-zero chemical 
potential) that are difficult/impossible for lattice Monte-Carlo.  (also 
works for thermal states, see talk by H. Saito)

For higher dimensions we need better algorithms!

Still one can make already progress, by studying PEPS parent model 
Hamiltonians. 

It should be possible to include fermions in this approach and study gauge 
theory phases at non-zero chemical potential, for d=2+1, d=3+1

Lots of things to do!! 



Extra slides
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Other values of the electric field background, linear response +beyond linear 
response, but no sign of thermalization



Exponential growth bond-dimension during linear growth 
entropy (orange line):  
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