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One Flavor QCD

� Chiral symmetry is broken by the anomaly.

� There is no spontaneous symmetry breaking and no Goldstone
bosons.

� The mass dependence of the one flavor QCD partition function is
given by

Z = emV Σ cos θ+O(m2V ).

� For Nf = 2 with spontaneous symmetry breaking, the mean field
estimate of the partition function is given by (for θ = 0 )

Z = e|m|V Σ+O(m2V ).
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Chiral Condensate
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Behavior of the chiral condensate for Nf = 1 (left) and Nf = 2 (right).

Σ(m) = −〈q̄q〉 d

dm
log Z(m)

The goal of this talk is to explain this behavior in terms of the Dirac
spectrum.
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Banks-Casher

− 〈q̄q〉 =

〈

1

V

∑

k

1

iλk + m

〉

=

〈

1

V

∑

k

m − iλk

λ2
k + m2

〉

=

〈

1

V

∫

dλρ(λ)
m
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〉

=
m→0

π

V
ρ(0)sign(m)

To obtain a continuous chiral condensate we need that
ρ(0−) = −ρ(0+) .

Or could it be that ρ(0) = 0? Creutz-2007

Dirac Spectra – p. 7/32



Lattice results for one-flavor QCD
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Distribution of the lowest two Dirac eigenvalues for QCD with one flavor

compared to the result from chiral random matrix theory (solid curve).

DeGrand-Hoffmann-Schäfer-Liu-2006
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What Can We Conclude from the Dirac
Spectrum?

� The smallest Dirac eigenvalues of one-flavor QCD behave in
exactly the same was as the Dirac spectrum of QCD and QCD-like
theories with spontaneously broken chiral symmetry.

� The distribution of the smallest eigenvalues at fixed ν is given by
random matrix theory or the ǫ-limit of the corresponding partially
quenched chiral Lagrangian.

� Although the Dirac spectrum at fixed topology has all signatures of
spontaneous chiral symmetry breaking, it should synthesize a
chiral condensate that is due to explicit chiral symmetry breaking.
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Chiral Condensate for Nf = 1
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Mass dependence of the chiral condensate due to the nonzero modes for

ν = 2 (left) and the mass dependence of the chiral condensate at θ = 0 . Note

that Σν
NZ(m) = Σν(m) − |ν|

mV
.

For m < 0 , the negative part of Σν(m) should average to a positive
number.
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Chiral condensate atθ = 0

Σ(m, θ = 0) =

∑∞
ν=−∞ Zν(m)Σν(m)
∑∞

ν=−∞ Zν(m)
.

This condensate follows from the spectral density at θ = 0

ρ(m, θ = 0) =

∑∞
ν=−∞ Zν(m)ρν(m)
∑∞

ν=−∞ Zν(m)
.

Can be evaluated numerically in the ǫ domain of QCD.
Damgaard-1999, Kanazawa-Wettig-2011

Zν(−|m|) ∼ (−1)ν |m|.

This makes it possible that the negative part of Σν(m) averages to a
positive number.
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Silver Blaze Problem

� In the thermodynamic limit, the chiral condensate at fixed ν has a
discontinuity when the mass crosses the line of eigenvalues.

� The Silver Blaze Problem is that the chiral condensate at θ = 0

does not have such discontinuity.

� A similar problem first arose in QCD at nonzero chemical potential,
and the original motivatio for the present work was to improve our
understanding of the relation between the chiral condensate and
the Dirac spectrum for QCD at nonzero chemical potential.
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OSV Mechanism at Nonzero Chemical Potential

� The chiral condensate for QCD at nonzero chemical potential
results from an oscillating spectral density with an amplitude that
diverges exponentially with the volume and a period proportional to
the inverse volume. Osborn-Splittorff-JV-2005

� When the eigenvalue density is not positive definite (due to the
fermion determinant), the OSV mechanism replaces the
Banks-Casher formula.

Let us see how this works for Nf = 1
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How to get a Constant Chiral Condensate?
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Behavior of the chiral condensate

due to a line of eigenvalues for the

quenched theory at θ = 0 .
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Behavior of the chiral condensate due

to a line of eigenvalues for the one flavor

theory at θ = 0 .

This implies that the not positive definite measure should give a
correction to the spectral density that contributes to the chiral
condensate as Σosc(m) = 2θ(−m)
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OSV Mechanism in Pictures
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How can this be Generated by a Spectral
Density?
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2θ(−m) =

∫

dλ
ρosc(λ, m)

iλ − m
.

What is ρosc(λ, m) ?

Hint,
θ(m) =

1

2πi

∫ ∞

−∞
dτ

eimτ+mǫ

τ − iǫ
.
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Solution

ρosc(λ, m) =
1

π
(eiV λ−V m + e−iV λ−V m)

∫ ∞

−∞
dλ

1

iλ − m

1

π
(eV (iλ−m) + eV (iλ−m)) = 2θ(−m) − 2θ(m)e−2V m

� In the termodynamic limit we obtain a continuous chiral
condensate.

� For Nf = 1 this should also happen when mV ∼ O(1) .

Let us calculate the spectral density for one flavor QCD.
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The Microscopic Domain of QCD

In this domain, also know as the ǫ-domain, the quark mass and the
Dirac eigenvalues scale as

m ∼ 1

V
, λ ∼ 1

V
.

Correction terms will enter when m, λ ≈
√

V .

In this domain it is possible to obtain exact analytical results for the
spectral density at fixed ν and at fixed θ -angle.

We will use units where Σ = 1 .
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Microscopic Spectral Density at θ = 0

One flavor spectral density at fixed ν (Note that Σ = 1 )

ρν(x) =
x̂

2
(J2

ν (x̂) − Jν+1(x̂)Jν−1(x̂)) + |ν|δ(x̂)

+
m̂

m̂2 + x̂2

[

m̂Jν(x̂)Jν+1(x̂) − x̂
Iν+1(m̂)

Iν(m̂)
J2

ν (x̂)

]
∣

∣

∣

∣

x̂=xV,m̂=mV

.

Damgaard-Osborn-Toublan-JV-1999

One flavor spectral density at θ = 0

ρ(m, θ = 0) =

∑∞
ν=−∞ Zν(m)ρν(m)
∑∞

ν=−∞ Zν(m)

= ρq(x) + ρZM (x) + ρd(x, m)

with Zν(m) = Iν(mV Σ) .
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The Dirac Spectrum for Nf = 1 at θ = 0

The quenched part of the spectral
density at θ = 0 , ρq(x, m) .

ρq(x, m) =
1

π

Z

1

0

e−2mV t2dt

t
√

1 − t2
J1(2xV t).

The dynamical part of the spectral
density at θ = 0 , ρd(x, m) .

ρd(x, m) = − 2

π

x

x2 + m2

Z

1

0

e−2mV t2dt
√

1 − t2

×
ˆ

xtJ1(2xV t) + m(1 − 2t
2
)J0(2xV t)

˜

.

JV-Wettig-2014

ρZM (x, m) = e
|m|V

X

ν

|ν|Iν(mV )δ(x) = e
−mV

(I0(mV ) + I1(mV ))δ(x)
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Chiral Condensate

The chiral condensate can be obtained by integration over the spectral
density

Σ(m) =
1

V

∫ ∞

−∞

2mρ(λ, m)

λ2 + m2
.

For m < 0 the contribution from the nonzero modes diverges in the
thermodynamic limit as

e2|mV |
√

8π|mV |3
.

This contribution cancels against a similar contribution from the zero
modes Kanazawa-Wettig-2012.

To extract the mass dependence of the chiral condensate we have to
achieve this cancellation analytically and to all orders. JV-Wettig-2014
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Contribution of Zero Modes

ΣZM(m) = e−mV
[

I0(mV ) + I1(mV )
]

=
1

πmV

∫ 1

0

dt

t2
√

1 − t2

(

1 − e−2mV t2
)

∼
V →∞
m<0

e2|mV |
√

8π|mV |3
.

Σq(m) = 1
πmV

∫ 1

0
dt e−2mV t2

t2
√

1−t2
[1 − 2t|mV |K1(2t|mV |)] ∼

V →∞
m<0

− e2|mV |√
8π|mV |3

.

The cancellation of the divergent part is true to all orders

ΣQ ≡ Σq(m) + ΣZM(m) =
1

πmV

∫ 1

0

dt

t2
√

1 − t2

×
[

1 − e−2mV t22t|mV |K1(2t|mV |)
]

.

Dirac Spectra – p. 22/32



Exponential Cancellation
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The exponentially large contribution of the zero modes (red) is canceled by the

contribution from the the nonzero modes (blue). The sum of the two

contributions is given by the black curve.
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Contribution to the Chiral Condensate Due to
Dynamical Quarks

The integral over the dynamical part of the spectral density can also be
evaluated analytically

Σd(m) = − 4
π

∫ 1

0
dt t e−2mV t2

√
1−t2

[

tmV K0(2t|mV |) + (1 − 2t2)|mV |K1(2t|mV |)
]

.
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Contribution of the dynamical part of the Dirac spectrum to the chiral condensate.
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Solution of the Silver Blaze Problem
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Chiral condensate as a function of the quark mass m . The red curve shows

the chiral condensate due to the quenched part of the spectral density, while

the blue curve represents the condensate due to the oscillating part. The black

curve is the sum of the two.
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V. Conclusions

� The chiral condensate in the massless limit of one-flavor QCD is
nonzero because of the zero modes but its value is determined by
the nonzero modes.
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V. Conclusions

� The chiral condensate in the massless limit of one-flavor QCD is
nonzero because of the zero modes but its value is determined by
the nonzero modes.

� One flavor QCD has a Silver Blaze problem when the chiral
condensate remains constant while the quark mass crosses a line
of eigenvalues.

� From QCD at nonzero chemical potential we have learnt that the
solution of the Silver Blaze problem requires an oscillating spectral
density with period ∼ 1/V and an amplitude that grows
exponentially with the volume.
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V. Conclusions

� The chiral condensate in the massless limit of one-flavor QCD is
nonzero because of the zero modes but its value is determined by
the nonzero modes.

� One flavor QCD has a Silver Blaze problem when the chiral
condensate remains constant while the quark mass crosses a line
of eigenvalues.

� From QCD at nonzero chemical potential we have learnt that the
solution of the Silver Blaze problem requires an oscillating spectral
density with period ∼ 1/V and an amplitude that grows
exponentially with the volume.

� In the ǫ domain of QCD we have obtained simple exact analytical
expressions for the eigenvalue density of the Dirac operator at
θ = 0 and θ = π . Indeed, an oscillating contribution to the spectral
density results in a constant chiral condensate.
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V. Conclusions

� The zero modes are essential for the continuity of the chiral
condensate. Their exponentially increasing contribution is
canceled against the contribution from the nonzero modes.
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V. Conclusions

� The zero modes are essential for the continuity of the chiral
condensate. Their exponentially increasing contribution is
canceled against the contribution from the nonzero modes.

� Rooting fails at a fundamental level.
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Could the Chiral Condensate be Due to the
Zero Modes?

If we take the chiral limit before the thermodynamic limit then

− 〈q̄q〉 =
1

V Z(m)

〈

∑

ν

∑

k

1

iλk + m
m|ν|

∏

k

(iλk + m)

〉

=
m→0

〈

∏

λk 6=0 iλk

∣

∣

∣

ν=1

〉

〈

∏

λk 6=0 iλk

∣

∣

∣

ν=0

〉 +

〈

∏

λk 6=0 iλk

∣

∣

∣

ν=−1

〉

〈

∏

λk 6=0 iλk

∣

∣

∣
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〉 ≈ 1
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The nonzero eigenvalues shift on average by ν∆λ/2 .

Even in the chiral limit, the value of the chiral condensate is due to the
nonzero modes.
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What Happens if we Reverse the
Thermodynamical and Chiral Limits?

If the thermodynamic limit is taken before the chiral limit we have that
for mV Σ ≫ 1

− 〈q̄q〉 =
1

V

∑

ν
|ν|
m e−ν2/2|m|V Σ

∫

dνe−ν2/2|m|V Σ

=
1

V m

∑

ν |ν|e−ν2/2|m|V Σ

∫

dνe−ν2/2|m|V Σ

= sign(m)
2Σ

√

π2|m|V Σ
.

To get a constant chiral condensate we need the contribution of the
nonzero modes.

Because of the exponential cancellations, this argument is not correct
for m < 0 .
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Technical Detail

To evaluate the microscopic spectral density at fixed θ-angle we need
sums of the form

Sa,b,c(x, m, θ) =
∞
∑

ν=−∞
eiνθIν+a(m)Jν+b(x)Jν+c(x)

They can be reduced to one-dimensional integrals. Examples are

∑

ν

Iν(m)J2
ν (x) =

2

π

∫ 1

0

dt√
1 − t2

em−2mt2J0(2xt) ,

∑

ν

Iν(m)Jν+1(x)Jν−1(x) = − 2

π

∫ 1

0

dt√
1 − t2

em−2mt2J2(2xt) .

JV-Wettig-2014
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Asymptotic Scaling for m > 0

10 x

0.25

ΡqHx m ,mL

ρq(x
√

m, m > 0) ∼ xV√
2πmV

e−V x2/4m[I0(V x2/4m) + I1(V x2/4m)]

Wettig-JV-2014
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Asymptotic Scaling for m < 0

50 xV

-0.1

0.1

ΡqHx,mLe-2 m V mV

ρq(x, m < 0) ∼ e2|m|V
√

8π|m|V
J1(2xV ).

Wettig-JV-2014
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