Update on the critical endpoint of the finite temperature phase transition for three flavor QCD with clover type fermions

Yoshifumi Nakamura

RIKEN Advanced Institute for Computational Science

in collaboration with

X.-Y. Jin, Y. Kuramashi, S. Takeda & A. Ukawa

\(m_\pi \) at the endpoint at \(\mu = 0 \) (bottom-left corner of Columbia plot)

<table>
<thead>
<tr>
<th>(N_t)</th>
<th>action</th>
<th>(m_\pi^E [\text{MeV}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>unimproved staggered</td>
<td>260</td>
</tr>
<tr>
<td>6</td>
<td>unimproved staggered</td>
<td>150</td>
</tr>
<tr>
<td>4</td>
<td>p4-improved staggered</td>
<td>70</td>
</tr>
<tr>
<td>6</td>
<td>stout-improved staggered</td>
<td>(\leq 50)</td>
</tr>
<tr>
<td>6</td>
<td>HISQ</td>
<td>(\leq 45)</td>
</tr>
<tr>
<td>4</td>
<td>unimproved Wilson</td>
<td>(\sim 1100)</td>
</tr>
</tbody>
</table>

 - \(m_\pi^E \) decreases with decreasing lattice spacing
 - the crossover may persist down to \(\sim 0.1 m^{\text{phy}} \)

- Wilson type: [Iwasaki, et. al. ’96]
 - 1st order at rather heavy \(m_q \)
Motivation

- Critical endpoint (CEP) obtained with staggered and Wilson type fermions is inconsistent
- Results in the continuum limit is necessary

We determine CEP on $m_l = m_s$ line with clover fermions

$N_f = 3$ study is a stepping stone
- to the physical point
- curvature of critical surface

→ talk by S. Takeda [15:15 Tue]
Distinguishing between 1st, 2nd and crossover criterion

<table>
<thead>
<tr>
<th>Distribution</th>
<th>First order</th>
<th>Second order</th>
<th>Crossover</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ_{peak}</td>
<td>$\propto N_l^d$</td>
<td>$\propto N_l^{\gamma/\nu}$</td>
<td>-</td>
</tr>
<tr>
<td>$\beta(\chi_{\text{peak}}) - \beta_c$</td>
<td>$\propto N_l^{-d}$</td>
<td>$\propto N_l^{-1/\nu}$</td>
<td>-</td>
</tr>
<tr>
<td>Kurtosis at $N_l \to \infty$</td>
<td>$K = -2$</td>
<td>$-2 < K < 0$</td>
<td>-</td>
</tr>
</tbody>
</table>

- Scaling might work with wrong exponents near CEP
- Peaks in histogram might emerge only at large N_l on weak 1st order
- K does not depend on volume at 2nd order phase transition point

\[
M = N_l^{-\beta/\nu} f_M(tN_l^{1/\nu})
\]

\[
K + 3 = B_4(M) = \frac{N_l^{-4\beta/\nu} f_M^4(tN_l^{1/\nu})}{[N_l^{-2\beta/\nu} f_M^2(tN_l^{1/\nu})]^2} = f_B(tN_l^{1/\nu})
\]
Method to determine CEP (kurtosis intersection)

- determine the transition point (peak position of susceptibility)
- determine kurtosis at transition point at each spatial lattice size
- find intersection point of kurtosis by fit, $K_E + aN_l^{1/\nu}(\beta - \beta_E)$
 → other method (gap of masses), talk by X.-Y. Jin [14:55 Tue]

- interpolate/extrapolate $(m_{PS}/m_V)_t$ measured at transition point to β_E
- extrapolate $(m_{PS}/m_V)_E$ to the continuum limit
Simulations

- action: Iwasaki gluon + $N_f = 3$ clover (non perturbative c_{SW}, degenerate)
- temporal lattice size $N_t = 4, 6, 8$ for continuum extrapolation
- statistics: $O(200,000)$ traj.
- observables: gauge action density, plaquette, Polyakov loop, chiral condensate and their higher moments
plaquette at $\beta = 1.60$, $N_t = 4$

The diagram shows the susceptibility, skewness, and kurtosis as functions of κ for different values of N_f (6, 8, 10, 12, 16). The data points are labeled with error bars indicating uncertainties. The plot demonstrates the phase transition behavior at finite temperatures.
plaquette at $\beta = 1.65, N_t = 4$
Kurtosis intersection at \(N_t = 4 \)
Kurtosis intersection at $N_t = 4$
\[\chi_{\text{max}} \text{ fit: } aN_l^{b} \]
\(\gamma / \nu \) v.s. \(\beta \)

<table>
<thead>
<tr>
<th>(N_t)</th>
<th>4</th>
<th>6</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta_E(E_m))</td>
<td>1.6130(55)</td>
<td>1.7269(42)</td>
<td>1.7505(19)</td>
</tr>
<tr>
<td>(\beta_E(P, s_g, L))</td>
<td>1.6238(21)</td>
<td>1.7361(16)</td>
<td>1.75491(92)</td>
</tr>
</tbody>
</table>
continuum extrapolation for \((m_{PS}/m_V)_E\)

\[
\begin{align*}
\text{\textbullet: } & \quad m_{PS}^{\text{phy}; \text{sym}} / m_V^{\text{phy}; \text{sym}} = \sqrt{(m_{\pi}^2 + 2m_K^2)/3}/[(m_\rho + 2m_{K^*})/3] \sim 0.4817 \\
\text{\textDelta: } & \quad m_{\eta_{ss}} / m_\phi \sim 0.6719
\end{align*}
\]
We have investigated the critical endpoint of QCD with clover fermions and determined the critical endpoint by using the intersection points of the Binder cumulants at $N_t = 4, 6, 8$ and extrapolated to the continuum limit.

- Kurtosis intersection analysis is consistent with χ_{max} analysis.
- $(m_{PS}/m_V)_E$ at $N_t = 4$ is out of scaling region.
- $(m_{PS}/m_V)_E$ in the continuum limit is smaller than the SU(3) symmetric point, not so small as staggered type fermions at $N_t = 6$ and it will be controlled by values at larger N_t.
Backup slides
inconsistent results: Wilson and staggered type fermion

\[m_s \]

\[N_F = 2 \]

pure gauge

1st order

2nd order
crossover

\[m_s^* \]

\[m_u \]

\[m_d \]

\[m_{ud} \]

\[m_{u,d}/m_{phys} \]

physical point
crossover region

\[\approx 140 \]

\[\approx 150 \]

\[\approx 250 \text{ MeV} \]

\[\approx 1.2 \text{ GeV} \]

\[\approx 50 \]

Wilson

staggered
Higher moments

i-th derivative of $\ln Z$ with respect to control parameter c:

$$E = \frac{\partial \ln Z}{\partial c}$$

- Variance

$$V = \frac{\partial^2 \ln Z}{\partial c^2} = \sigma^2$$

- Skewness (e.g. right-skewed $\rightarrow S > 0$, left-skewed $\rightarrow S < 0$)

$$S = \frac{1}{\sigma^3} \frac{\partial^3 \ln Z}{\partial c^3}$$

- Kurtosis (e.g. Gaussian $\rightarrow K = 0$, 2δ func. $\rightarrow K = -2$)

$$K = \frac{1}{\sigma^4} \frac{\partial^4 \ln Z}{\partial c^4} = B_4 - 3$$
Plaquette v.s. κ at lowest β (= 1.60)

- no bulk phase transition
$\beta = 1.60$ and $\kappa = 0.14345$ on $10^3 \times 4$, clear two states, $K \sim -1.5$

$\beta = 1.70$ and $\kappa = 0.13860$ on $10^3 \times 4$, one state, $K \sim -0.5$
CEP of the finite temperature phase transition

Yoshifumi Nakamura (RIKEN AICS)
Critical endpoint at $N_t = 6, 8$

$N_t = 6$

$N_t = 8$
continuum extrapolation for \((T/m_V)_E\)
K_E and critical exponent ν

<table>
<thead>
<tr>
<th>N_t</th>
<th>K_E</th>
<th>ν</th>
<th>class</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>-1.363(88)</td>
<td>0.64(11)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-1.323(76)</td>
<td>0.60(14)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>-1.199(72)</td>
<td>0.48(14)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1.396</td>
<td>0.63</td>
<td>3D Z2</td>
</tr>
<tr>
<td></td>
<td>-1.758</td>
<td>0.67</td>
<td>3D O(2)</td>
</tr>
<tr>
<td></td>
<td>-1.908</td>
<td>0.75</td>
<td>3D O(4)</td>
</tr>
</tbody>
</table>

K_E and ν are consistent with values of 3D Z2.