Update on the critical endpoint of the finite temperature phase transition for three flavor QCD with clover type fermions

Yoshifumi Nakamura

RIKEN Advanced Institute for Computational Science

in collaboration with

X.-Y. Jin, Y. Kuramashi, S. Takeda & A. Ukawa

24 Jun. 2014, Lattice 2014

m_{π} at the endpoint at $\mu = 0$ (bottom-left corner of Columbia plot)

N_t	action	m_{π}^{E} [MeV]
4	unimproved staggered	260
6	unimproved staggered	150
4	p4-improved staggered	70
6	stout-improved staggered	≲ 50
6	HISQ	≲ 45
4	unimproved Wilson	~ 1100

- staggered type:[de Forcrand, Philipsen '07, Karsch, et. al. '03, Endrődi, et. al. '07, Ding, et. al. '11]
 - m_{π}^{E} decreases with decreasing lattice spacing
 - the crossover may persist down to ~ 0.1m^{phy}
- Wilson tyep: [lwasaki, et. al. '96]
 - 1st order at rather heavy m_q

Motivation

- Critical endpoint (CEP) obtained with staggered and Wilson type fermions is inconsistent
- Results in the continuum limit is necessary

We determine CEP on $m_l = m_s$ line with clover fermions

- $N_f = 3$ study is a stepping stone
 - to the physical point
 - curvature of critical surface
 → talk by S. Takeda [15:15 Tue]

Distinguishing between 1st, 2nd and crossover

criterion	first order	second order	crossover
distribution	double peak	single peak	singe peak
χ peak	$\propto N_l^d$	$\propto N_l^{\gamma/\nu}$	-
$\beta(\chi_{\text{peak}}) - \beta_c$	$\propto N_I^{-d}$	$\propto N_{I}^{-1/\nu}$	-
kurtosis at $N_l \rightarrow \infty$	K= -2	-2 < K < 0	-

- scaling might work with wrong exponents near CEP
- peaks in histgram might emerge only at large N_l on weak 1st order
- K does not depend on volume at 2nd order phase transition point

$$M = N_l^{-\beta/\nu} f_M(tN_l^{1/\nu})$$

$$K + 3 = B_4(M) = \frac{N_l^{-4\beta/\nu} f_{M^4}(tN_l^{1/\nu})}{\left[N_l^{-2\beta/\nu} f_{M^2}(tN_l^{1/\nu})\right]^2} = f_B(tN_l^{1/\nu})$$

Method to determine CEP (kurtosis intersection)

- determine the transition point (peak position of susceptibility)
- determine kurtosis at transition point at each spatial lattice size
- find intersection point of kurtosis by fit, $K_{\rm E} + aN_l^{1/\nu}(\beta \beta_{\rm E})$ \rightarrow other method (gap of masses), talk by X.-Y. Jin [14:55 Tue]

• interpolate/extrapolate $(m_{\rm PS}/m_{\rm V})_{\rm t}$ measured at transition point to $\beta_{\rm E}$

• extrapolate $(m_{\rm PS}/m_{\rm V})_{\rm E}$ to the continuum limit

Simulations

- action: Iwasaki gluon + N_f = 3 clover (non perturbative c_{SW} , degenerate)
- temporal lattice size $N_t = 4, 6, 8$ for continuum extrapolation
- statistics: O(200,000) traj.
- observables: gauge action density, plaquette, Polyakov loop, chiral condensate and their higher moments

plaquette at $\beta = 1.60$, $N_t = 4$

plaquette at $\beta = 1.65$, $N_t = 4$

Kurtosis intersection at $N_t = 4$

Kurtosis intersection at $N_t = 4$

 χ_{\max} fit: aN_1^b

γ/ν v.s. β

continuum extrapolation for $(m_{\rm PS}/m_{\rm V})_{\rm E}$

$$\Rightarrow : m_{PS}^{phy;sym} / m_V^{phy;sym} = \sqrt{(m_\pi^2 + 2m_K^2)/3/[(m_\rho + 2m_{K^*})/3]} \sim 0.4817$$

$$\Rightarrow : m_{\eta_{ss}} / m_\phi \sim 0.6719$$

Summary

We have investigated the critical endpoint of QCD with clover fermions and determined the critical endpoint by using the intersection points of the Binder cumulants at $N_t = 4, 6, 8$ and extrapolated to the continuum limit

- kurtosis intersection analysis is consistent with χ_{max} analysis
- $(m_{\rm PS}/m_{\rm V})_{\rm E}$ at $N_t = 4$ is out of scaling region
- $(m_{\rm PS}/m_{\rm V})_{\rm E}$ in the continuum limit is smaller than the SU(3) symmetric point, not so small as staggered type fermions at $N_t = 6$ and it will be controlled by values at larger N_t

Backup slides

Columbia plot

inconsistent results: Wilson and staggered type fermion

Higher moments

i-th derivative of $\ln Z$ with respect to control parameter c:

$$E = \frac{\partial \ln Z}{\partial c}$$

$$V = \frac{\partial^2 \ln Z}{\partial c^2} = \sigma^2$$

• Skewness (e.g. right-skewed $\rightarrow S > 0$, left-skewed $\rightarrow S < 0$)

$$S = \frac{1}{\sigma^3} \frac{\partial^3 \ln Z}{\partial c^3}$$

• Kurtosis(e.g. Gaussian $\rightarrow K = 0, 2\delta$ func. $\rightarrow K = -2$)

$$K = \frac{1}{\sigma^4} \frac{\partial^4 \ln Z}{\partial c^4} = B_4 - 3$$

Yoshifumi Nakamura (RIKEN AICS)

Finite temperature phase transition

- Plaquette v.s. κ at lowest β (= 1.60)
- no bulk phase transition

1st order phase transition and crossover (like)

 $\beta = 1.60$ and $\kappa = 0.14345$ on $10^3 \times 4$, clear two states, $K \sim -1.5$

 $\beta = 1.70$ and $\kappa = 0.13860$ on $10^3 \times 4$, one state, $K \sim -0.5$

Critical endpoint at $N_t = 6, 8$

continuum extrapolation for $(T/m_V)_E$

$K_{\rm E}$ and critical exponent ν

N_t	K _E	ν	class
4	-1.363(88)	0.64(11)	
6	-1.323(76)	0.60(14)	
8	-1.199(72)	0.48(14)	
	-1.396	0.63	3D Z2
	-1.758	0.67	3D O(2)
	-1.908	0.75	3D O(4)

 K_E and ν are consistent with values of 3D Z2.