Calculation of BSM Kaon B-parameter using Staggered Quarks

Yong-Chull Jang, Hwancheol Jeong , Chulwoo Jung , Jangho Kim, Seonghee Kim, Hyung-Jin Kim, Weonjong Lee, Jaehoon Leem, Jeonghwan Pak, Sungwoo Park, Stephen Sharpe, Boram Yoon

SWME Collaboration

Lattice 2014, New York

BSM Four Fermion Operators

• New $\Delta S=2$ four-fermion operators that contribute to Kaon Mixing

$$Q_{1} = [\bar{s}\gamma_{\mu}(1-\gamma_{5})d][\bar{s}\gamma_{\mu}(1-\gamma_{5})d] \to B_{K}$$

$$Q_{2} = [\bar{s}^{a}(1-\gamma_{5})d^{a}][\bar{s}^{b}(1-\gamma_{5})d^{b}]$$

$$Q_{3} = [\bar{s}^{a}\sigma_{\mu\nu}(1-\gamma_{5})d^{a}][\bar{s}^{b}\sigma_{\mu\nu}(1-\gamma_{5})d^{b}]$$

$$Q_{4} = [\bar{s}^{a}(1-\gamma_{5})d^{a}][\bar{s}^{b}(1+\gamma_{5})d^{b}]$$

$$Q_{5} = [\bar{s}^{a}\gamma_{\mu}(1-\gamma_{5})d^{a}][\bar{s}^{b}\gamma_{\mu}(1+\gamma_{5})d^{b}]$$

- $\mathcal{H}_{eff}^{\Delta S=2} = \sum_{i=1}^{5} C_i(\mu) Q_i(\mu)$
- With the constraint from experiment, calculating corresponding hadronic matrix elements

$$\langle \bar{K}_0 | Q_i | K_0 \rangle$$

can impose strong constraints on BSM models.

Jaehoon Leem (SWME Collaboration)

Lattice Calculation : BSM B-parameters

B-parameters

$$B_{K} = \frac{\langle \bar{K}_{0} | Q_{1} | K_{0} \rangle}{8/3 \langle \bar{K}_{0} | \bar{s} \gamma_{0} \gamma_{5} d | 0 \rangle \langle 0 | \bar{s} \gamma_{0} \gamma_{5} d | K_{0} \rangle} \qquad \text{SM, BSM}$$

$$B_{i} = \frac{\langle \bar{K}_{0} | Q_{i} | K_{0} \rangle}{N_{i} \langle \bar{K}_{0} | \bar{s} \gamma_{5} d | 0 \rangle \langle 0 | \bar{s} \gamma_{5} d | K_{0} \rangle} \qquad \text{BSM}$$

Where, i = 2, 3, 4, 5 and $(N_2, N_3, N_4, N_5) = (5/3, 4, -2, 4/3)$ • Golden Combinations : G_i

$$G_{23} \equiv \frac{B_2}{B_3} \qquad \qquad G_{45} \equiv \frac{B_4}{B_5}$$
$$G_{24} \equiv B_2 \cdot B_4 \qquad \qquad G_{21} \equiv \frac{B_2}{B_K}$$

 Advantage: no SU(2) chiral logs at NLO order in G_i (Golden Combinations)

Jaehoon Leem (SWME Collaboration)

Lattice 2014 New York 3 / 16

$N_f = 2 + 1$ QCD: MILC fine lattices - Staggered Quarks

<i>a</i> (fm)	am_l/am_s	geometry	ens×meas	ID	Status
0.09	0.0062/0.0310	$28^3 \times 96$	995×9	F1	
0.09	0.0031/0.0310	$40^3 \times 96$	959 imes 9	F2	
0.09	0.0093/0.0310	$28^3 \times 96$	949×9	F3	
0.09	0.0124/0.0310	$28^3 \times 96$	1995×9	F4	
0.09	0.00465/0.0310	$32^3 \times 96$	651×9	F5	
0.09	0.0062/0.0186	$28^3 \times 96$	950×9	F6	New
0.09	0.0031/0.0186	$40^3 \times 96$	701×9	F7	New
0.09	0.00155/0.0310	$64^3 \times 96$	790×9	F9	New
0.06	0.0036/0.018	$48^3 \times 144$	749×9	S1	
0.06	0.0025/0.018	$56^3 \times 144$	799 imes 9	S2	
0.06	0.0072/0.018	$48^3 \times 144$	593×9	S3	
0.06	0.0054/0.018	$48^3 \times 144$	582×9	S4	
0.06	0.0018/0.018	$64^{3} \times 144$	572×9	S5	New
0.045	0.0030/0.015	$64^3 \times 192$	747×1	U1	

Jaehoon Leem (SWME Collaboration)

Lattice 2014 New York

4 / 16

Data Analysis

Calculate raw data

Calculate B_K and G_i for different valence quark mass combinations for each gauge ensemble. ($\overline{\text{MS}}$ scheme with NDR.)

Chiral fitting

X-fit: Fix valence strange quark mass and extrapolate the light quark mass m_x to physical down quark mass.

Y-fit: Extrapolate m_y to physical strange quark mass.

RG Evolution

Obtain results at $\mu_f = 2$ GeV or 3GeV by running from $\mu_i = 1/a$.

Continuum extrapolation

Perform [1–3] for different lattices and extrapolate to a = 0 and to physical sea quark masses.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Raw Data of G_{23} and G_{45}

• We compare three ensembles which have the same ratio of sea quark mass $m_\ell/m_s=1/5.$

SchPT X-fit and Y-fit of G-parameter

NNNLO X-fit

$$\begin{array}{ll} G_i & ({\sf NNNLO}) \\ = & c_1 + c_2 X + c_3 X^2 \\ + & c_4 X^2 ({\sf ln}(X))^2 \\ + & c_5 X^2 {\sf ln}(X) + c_6 X^3 \end{array}$$

Bayesian constraints on $c_{4-6} = 0 \pm 1$.

• Y-fit(U1 ensemble)

 $G_i(\mathsf{Y-fit}) = b_1 + b_2 Y_P$

Chiral-Continuum Fit

- We use 14 data points from 14 MILC ensembles in the fitting. We extrapolate the results to physical point a = 0, $L_P = m_{\pi_0}^2$, and $S_P = m_{s\bar{s}}^2$.
- Fitting functional forms come from the SU(2) SChPT theory.

fit type	fitting functional form	Bayesian Constraints	
F_B^1	$d_1+d_2rac{L_P}{\Lambda_\chi^2}+d_3rac{S_P}{\Lambda_\chi^2}+d_4(a\Lambda_Q)^2$	$d_2 \cdots d_4 = 0 \pm 2$	
F_B^2	$F_B^1 + d_5 (a\Lambda_Q)^2 rac{L_P}{\Lambda_\chi^2} + d_6 (a\Lambda_Q)^2 rac{S_P}{\Lambda_\chi^2}$	$d_2 \cdots d_6 = 0 \pm 2$	
F_B^3	$F_B^1 + d_7 (a\Lambda_Q)^2 \alpha_s + d_8 \alpha_s^2 + d_9 (a\Lambda_Q)^4$	$d_2 \cdots d_9 = 0 \pm 2$	
F_B^4	$F_B^2 + d_7 (a\Lambda_Q)^2 \alpha_s + d_8 \alpha_s^2 + d_9 (a\Lambda_Q)^4$	$d_2 \cdots d_9 = 0 \pm 2$	
F_B^5	$F_B^4 + d_{10}\alpha_s^3 + d_{11}(a\Lambda_Q)^2\alpha_s^2 + d_{12}(a\Lambda_Q)^4\alpha_s + d_{13}(a\Lambda_Q)^6$	$d_2 \cdots d_{13} = 0 \pm 2$	
F_B^6	$F_B^5 + d_{14}(a\Lambda_Q)^4 \frac{L_P}{\Lambda_\chi^2} + d_{15}(a\Lambda_Q)^2 \alpha_s \frac{L_P}{\Lambda_\chi^2} + d_{16}\alpha_s^2 \frac{L_P}{\Lambda_\chi^2}$		
	$+d_{17}(a\Lambda_Q)^4 \frac{S_P}{\Lambda_\chi^2} + d_{18}(a\Lambda_Q)^2 \alpha_s \frac{S_P}{\Lambda_\chi^2} + d_{19}\alpha_s^2 \frac{S_P}{\Lambda_\chi^2}$	$d_2 \cdots d_{19} = 0 \pm 2$	

A B F A B F

Chiral-Continuum Fit : Fitting quality

• We can see that the χ^2 values for fitting functional forms get saturated as we add higher order terms in the fitting functional forms. We choose F_B^1 -fit results as central values for B_K , G_{24} , and G_{21} . For G_{23} and G_{45} , we choose those of F_B^4 as the central values.

fit type	B_K	G_{23}	G_{45}	G_{24}	G_{21}
F_B^1	1.49	2.01	4.06	1.08	1.25
F_B^2	1.49	1.86	3.75	1.02	1.22
F_B^3	1.48	1.42	1.53	0.93	1.19
F_B^4	1.48	1.32	1.38	0.91	1.18
$F_B^{\overline{5}}$	1.48	1.30	1.33	0.90	1.17
$F_B^{\overline{6}}$	1.48	1.22	1.15	0.88	1.13

・ 同 ト ・ ヨ ト ・ ヨ ト

Chiral-Continuum Fit of G_{45}

• The result of Chiral-Continuum fit. The straight line in the plots represents the value of fitting function at fixed S_P and a^2 for fine($a \approx 0.09$ fm), superfine ($a \approx 0.06$ fm), and ultrafine($a \approx 0.045$ fm) gauge ensembles.

Chiral-Continuum Fit of G_{23}

(4) (3) (4) (4) (4) Lattice 2014 New York 11 / 16

ም.

э

Chiral-Continuum Fit of G_{24}

A B b Lattice 2014 New York 12 / 16

ም.

э

Chiral-Continuum Fit of G_{21}

Lattice 2014 New York 13 / 16

э

・ 同 ト ・ ヨ ト ・ ヨ ト

Historical Progress

- $2013(\text{PRD})^1 \rightarrow 2014(\text{ens})$: Add more gauge ensembles.
- 2014(ens) \rightarrow 2014(A.D.) : Correct two-loop contribution to pseudoscalar anomalous dimension.
- 2014(A.D.) \rightarrow 2014(final) : Change fit type from F_B^1 to F_B^4 for G_{23} and G_{45} .

$\mu = 3 \text{GeV}$	2013(PRD) ¹	2014(ens)	2014(A.D.)	2014(final)
B_K	0.519(7)(23)	0.518(3)	0.518(4)	0.518(4)(24)
B_2	0.549(3)(28)	0.547(1)	0.525(1)	0.525(1)(25)
B_3^{Buras}	0.390(2)(17)	0.390(1)	0.375(1)	0.358(4)(23)
$B_3^{ m SUSY}$	0.790(30)	0.783(2)	0.750(2)	0.774(6)(34)
B_4	1.033(6)(46)	1.024(1)	0.981(3)	0.981(3)(71)
B_5	0.855(6)(43)	0.853(3)	0.817(2)	0.748(9)(76)

¹SWME Collaboration, Phys.ReV. **D88**,071503(2013) < □ > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () >

14 / 16

Preliminary Results and Comparison

• We obtain B_i from results of G_i and B_K .

 $\label{eq:Dominant error} \left\{ \begin{aligned} & \mathsf{Perturbative matching: 4.4\%} \\ & \mathsf{Chiral-continuum extrap}(|F_B^1 - F_B^4|): 1.3 \sim 10.1\% \end{aligned} \right.$

	SWME		RBC&UKQCD	ETM
	$\mu=2{\rm GeV}$	$\mu = 3 \text{GeV}$	$\mu=3~{ m GeV}$	$\mu=3{\rm GeV}$
B_K	0.537(4)(25)	0.518(4)(24)	0.53(2)	0.51(2)
B_2	0.568(1)(27)	0.525(1)(25)	0.43(5)	0.47(2)
B_3^{Buras}	0.380(4)(25)	0.358(4)(23)	N.A.	N.A.
B_3^{SUSY}	0.849(6)(37)	0.774(6)(34)	0.75(9)	0.78(4)
B_4	0.984(3)(73)	0.981(3)(71)	0.69(7)	0.75(3)
B_5	0.712(9)(78)	0.748(9)(76)	0.47(6)	0.60(3)

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Conclusion

- The B_K parameter agrees with the results from RBC & UKQCD and ETM collaboration.
- In the case of BSM B-parameter, there is $2\sigma(B_2)$ to $4\sigma(B_4$ and $B_5)$ discrepancy between our result and those from RBC & UKQCD and ETM collaboration.
- We guess that the discrepancy comes from the difference in matching. We use perturbative matching, whereas RBC & UKQCD and ETM collaboration use NPR (non-perturbative renormalization).
- To confirm our guess, we will obtain the matching factor using NPR (Jangho Kim) in near future.

イロト 不得下 イヨト イヨト 二日