Weak interactions of kaons and pions

Nicolas Garron
School of Maths, Trinity College Dublin

Lattice 2014, Columbia University, June 24, 2014

Outline

1 Decay constants f_{K}, f_{π} and f_{K} / f_{π}
$2 K_{13}$
3 Neutral kaon mixing (B_{K} and BSM contributions)
$4 K \rightarrow \pi \pi$
Rare kaon decays not covered in this talk (see plenary by Chris Sachrajda)

Situation before lattice 2014

FLAG'13

$$
\begin{aligned}
& f_{K} / f_{\pi}=1.194(5) \quad n_{f}=2+1+1 \\
& f_{K} / f_{\pi}=1.192(5) \quad n_{f}=2+1 \\
& f_{K} / f_{\pi}=1.205(6)(17) \quad n_{f}=2
\end{aligned}
$$

Situation before lattice 2014

FLAG'13

$$
\begin{array}{rll}
f_{\pi} & =130.2(1.4) \mathrm{MeV} & n_{f}=2+1 \\
f_{K} & =156.3(0.9) \mathrm{MeV} & \\
n_{f}=2+1 \\
f_{K} & =158.1(2.5) \mathrm{MeV} & n_{f}=2
\end{array}
$$

Lattice 2014 update

Fermilab/MILC [A. Bazavou et al., Phys. Rev.Lett. 110 (2013) 172003 \& PoS LATTCE 2013]

$$
\begin{array}{lll}
2013 & f_{K^{+}} / f_{\pi^{+}}=1.1947 & (26)_{\text {stat }}(33)_{\mathrm{a}^{2} \text { extrap }}(17)_{\mathrm{FV}}(2)_{\mathrm{EM}} \\
2014 & f_{K^{+}} / f_{\pi^{+}}=1.1956 & \left.(10)_{\text {stat }}{ }_{-14}^{+23}\right|_{\mathrm{a}^{2} \text { extrap }}(10)_{\mathrm{FV}}(5)_{\mathrm{EM}}
\end{array}
$$

- $n_{f}=2+1+1$ Highly-Improved Staggered Quark (HISQ)
- $a \sim 0.06,0.09,0.12,0.15 \mathrm{fm}$
- $m_{\pi} \sim 135,200 \mathrm{MeV}$ and $m_{\pi} L>3.3$

See talk by Javad Komijani, Wednesday@12:10

Lattice 2014 update

RBC-UKQCD PRELIMINARY (draft in final stage)

$$
\begin{aligned}
f_{\pi} & =0.1298(9)_{\text {stat }}(4)_{\chi}(2)_{\mathrm{FV}} \mathrm{GeV} \\
f_{K} & =0.1556(8)_{\mathrm{stat}}(2)_{\chi}(1)_{\mathrm{FV}} \mathrm{GeV} \\
f_{K} / f_{\pi} & =1.199(5)_{\mathrm{stat}}(6)_{\chi}(1)_{\mathrm{FV}}
\end{aligned}
$$

$n_{f}=2+1$ Domain-Wall fermions
■ New Möbius ensembles [Brower, Neff, Orginos '12] combined with existing Shamir ensembles.

- $a \sim 0.084,1.144 \mathrm{fm}, 48^{3} \times 96 \times 12$ and $64^{3} \times 128 \times 12$
- Physical pion masses $m_{\pi} \sim 130 \mathrm{MeV}$ and $m_{\pi} L>3.5$
- Finer ensemble $a \sim 0.06,32^{3} \times 64 \times 12$ with $m_{\pi} \sim 360 \mathrm{MeV} \Rightarrow m_{\pi} L \sim 3.8$)

$$
K_{13}
$$

K_{13} semileptonic form factor I.

Obtain $\left|V_{u s} f_{+}(0)\right|$ from the experimental rate

$$
\Gamma_{K \rightarrow \pi / \nu}=C_{K}^{2} \frac{G_{F}^{2} m_{K}^{5}}{192 \pi^{2}} I S_{E W}\left[1+2 \Delta_{S U(2)}+2 \Delta_{E M}\right]\left|V_{u s} f_{+}(0)\right|^{2}
$$

where:

I is the phase space integral evaluated from the shape of the experimental form factor
$\Delta_{S U(2)}$ is the ispospin breaking correction
$S_{E W}$ is the short distance electroweak correction
$\Delta_{E M}$ is the long distance electromagnetic correction
and $f_{+}(0)$ is the form factor defined from ($q=p-p^{\prime}$)

$$
\left\langle\pi\left(p^{\prime}\right)\right| V_{\mu}|K(p)\rangle=\left(p_{\mu}+p_{\mu}^{\prime}\right) f_{+}\left(q^{2}\right)+\left(p_{\mu}-p_{\mu}^{\prime}\right) f_{-}\left(q^{2}\right) \quad \text { with } V_{\mu}=\bar{s} \gamma_{\mu} u
$$

\Rightarrow determine $f_{+}(0)$ from the lattice to constraint $V_{u s}$

$K_{/ 3}$ semileptonic form factor II.

Use the the scalar form factor $f_{0}\left(q^{2}\right)=f_{+}\left(q^{2}\right)+\frac{q^{2}}{m_{K}^{2}-m_{\pi}^{2}} f_{-}\left(q^{2}\right)$

$$
\left\langle\pi\left(p^{\prime}\right)\right| V_{\mu}|K(p)\rangle_{q^{2}=0}=\frac{m_{K}^{2}-m_{\pi}^{2}}{m_{s}-m_{u}} f_{+}(0)
$$

- Compute $f_{0}\left(q^{2}\right)$ for several negative values of q^{2}
- Interpolate to $q^{2}=0$ (or use twisted boundary conditions) [RBC-UKQCD]

Or compute $f_{+}(0)$ from [Fermilab Lattice and MILC Collaborations Bazavov, et al. '13]

$$
f_{+}(0)=f_{0}(0)=\frac{m_{s}-m_{l}}{m_{K}^{2}-m_{\pi}^{2}}\left\langle\pi\left(p^{\prime}\right)\right| S|K(p)\rangle
$$

Form factor can be obtained from $\left\langle\pi\left(p^{\prime}\right)\right| S|K(p)\rangle$ and from $\left\langle\pi\left(p^{\prime}\right)\right| V_{\mu}|K(p)\rangle$

Situation before lattice 2014

FLAG'13

$$
\begin{aligned}
& f_{+}(0)=0.9661(32) \quad n_{f}=2+1 \\
& f_{+}(0)=0.9560(57)(62) \quad n_{f}=2
\end{aligned}
$$

lattice 2014 update for $K_{/ 3}$

RBC-UKQCD

- New ensembles 48^{3} and 64^{3} at the physical point
- Results obtained from the vector current

See talk by David Murphy, Monday@6:10

Lattice	$m_{\pi}(\mathrm{MeV})$	$f_{+}^{K \pi}(0)$	Stat. error
$24 I$	678	$0.9992(1)$	0.01%
241	563	$0.9956(4)$	0.04%
241	422	$0.9870(9)$	0.09%
241	334	$0.9760(43)$	0.4%
24I	334	$0.9858(28)$	0.3%
48I (PRELIMINARY)	$\mathbf{1 3 9}$	$\mathbf{0 . 9 7 2 7 (2 5)}$	$\mathbf{0 . 3 \%}$
32ID	248	$0.9771(21)$	0.2%
32ID	171	$0.9710(45)$	0.5%
32I	398	$0.9904(17)$	0.2%
32I	349	$0.9845(23)$	0.2%
32I	295	$0.9826(35)$	0.4%
$\mathbf{6 4 I}$ (PRELIMINARY)	$\mathbf{1 3 9}$	$\mathbf{0 . 9 7 0 1 (2 2)}$	$\mathbf{0 . 2 \%}$

lattice 2014 update for $K_{/ 3}$

ETMc

■ $2+1+1$ Twisted Mass / Osterwalder-Seiler fermions

- Results obtained from the vector current
- Preliminary result:

$$
f_{+}(0)=0.9683(50)_{\text {stat }+ \text { fit }}(42)_{\text {chiral }}
$$

See talk by Lorenzo Riggio, Friday@5:10

$K^{0}-K^{0}$ mixing, $K \rightarrow \pi \pi$ and CP violation

Background: Kaon decays and CP violation

- First discovery of CP violation was made in kaon system in 1964 (Christenson, Cronin, Fitch and Turlay)
- Noble prize in 1980 (Cronin and Fitch)
- Very nice measurements of both direct and indirect CP violation

$$
\left\{\begin{array}{cl}
\operatorname{Re}\left(\frac{\varepsilon^{\prime}}{\varepsilon}\right) & =(1.65 \pm 0.26) \times 10^{-3} \\
|\varepsilon| & =(2.228 \pm 0.011) \times 10^{-3}
\end{array}\right.
$$

- Theoretically:

Relate indirect CP violation parameter (ϵ) to neutral kaon mixing $\left(B_{K}\right)$
Still lacking a quantitative description of direct $C P$ violation $\left(\varepsilon^{\prime}\right)$

- Sensitivity to new physics

Background: Kaon decays and CP violation

Flavour eigenstates $\binom{K^{0}=\bar{s} \gamma_{5} d}{\bar{K}^{0}=\bar{d} \gamma_{5} s} \neq C P$ eigenstates $\left|K_{ \pm}^{0}\right\rangle=\frac{1}{\sqrt{2}}\left\{\left|K^{0}\right\rangle \mp\left|\bar{K}^{0}\right\rangle\right\}$ They are mixed in the physical eigenstates $\left\{\begin{array}{lll}\left|K_{L}\right\rangle & \sim\left|K_{-}^{0}\right\rangle+\bar{\varepsilon}\left|K_{+}^{0}\right\rangle \\ \left|K_{S}\right\rangle & \sim\left|K_{+}^{0}\right\rangle+\bar{\varepsilon}\left|K_{-}^{0}\right\rangle\end{array}\right.$

Direct and indirect CP violation in $K \rightarrow \pi \pi$

$$
\left|K_{L}\right\rangle \propto\left|K_{-}\right\rangle+\varepsilon\left|K_{+}\right\rangle
$$

$$
\epsilon=\frac{A\left(K_{L} \rightarrow(\pi \pi)_{I=0}\right)}{A\left(K_{S} \rightarrow(\pi \pi)_{I=0}\right)}=|\epsilon| e^{i \phi_{\epsilon}} \sim \bar{\epsilon}
$$

$K \rightarrow \pi \pi$ amplitudes

Two isospin channels: $\Delta I=1 / 2$ and $\Delta I=3 / 2$

$$
K \rightarrow(\pi \pi)_{I=0,2}
$$

Corresponding amplitudes defined as

$$
A\left[K \rightarrow(\pi \pi)_{\mathrm{I}}\right]=A_{\mathrm{I}} \exp \left(i \delta_{\mathrm{I}}\right) \quad / \mathrm{w} \mathrm{I}=0,2 \quad \delta=\text { strong phases }
$$

$\Delta I=1 / 2$ rule

$$
\omega=\frac{\operatorname{Re} A_{2}}{\operatorname{Re} A_{o}} \sim 1 / 22 \quad \text { (experimental number) }
$$

Amplitudes are related to the parameters of CP violation $\varepsilon, \varepsilon^{\prime}$ via

$$
\begin{aligned}
\epsilon^{\prime} & =\frac{i \omega \exp \left(i \delta_{2}-\delta_{0}\right)}{\sqrt{2}}\left[\frac{\operatorname{Im}\left(A_{2}\right)}{\operatorname{Re} A_{2}}-\frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}}\right] \\
\epsilon & =e^{i \phi \epsilon}\left[\frac{\operatorname{Im}\left\langle\bar{K}^{0}\right| H_{\mathrm{eff}}^{\Delta S=2}\left|K^{0}\right\rangle}{\Delta m_{K}}+\frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}}\right]
\end{aligned}
$$

\Rightarrow Related to $K^{0}-\bar{K}^{0}$ mixing

See poster by Yong-Chull Jang and Weonjong Lee

Neutral kaon mixing in the SM

In the Standard Model, $K^{0}-\bar{K}^{0}$ mixing dominated by box diagrams with W exchange, e.g.

+ long distance
OPE
$\Delta S=2$
$(\Delta S=1)^{2}$
Operator product expansion

$$
H_{\mathrm{eff}}^{\Delta S=2}=\frac{G_{F}^{2} m_{W}^{2}}{16 \pi^{2}} \times F(\mathrm{SM} \text { free parameters }) \times C(\mu) \mathcal{O}_{L L}^{\Delta S=2}(\mu)
$$

Factorise the non-perturbative contribution

$$
\left\langle\bar{K}^{0}\right| \mathcal{O}_{L L}^{\Delta S=2}(\mu)\left|K^{0}\right\rangle=\frac{8}{3} F_{K}^{2} M_{K}^{2} B_{K}(\mu) \quad \text { w } / \mathcal{O}_{L L}^{\Delta S=2}=\left(\bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) d\right)\left(\bar{s} \gamma^{\mu}\left(1-\gamma_{5}\right) d\right)
$$

B_{K} is the SM kaon bag parameter

$$
B_{K}(\mu)=\frac{\left\langle\bar{K}^{0}\right| \mathcal{O}_{L L}^{\Delta S=2}(\mu)\left|K^{0}\right\rangle}{\left\langle\bar{K}^{0}\right| \mathcal{O}_{L L}^{\Delta S=2}(\mu)\left|K^{0}\right\rangle_{\mathrm{VS}}}
$$

Neutral kaon mixing in the SM

In the Standard Model, $K^{0}-\bar{K}^{0}$ mixing dominated by box diagrams with W exchange, e.g.

+ long distance
$\Delta S=2$
$(\Delta S=1)^{2}$
$K_{L}-K_{S}$ mass difference, long distance contributions:

See plenary talk by Chris Sachrajda, Saturday@10:30

Neutral kaon mixing in the SM: B_{K}

In the SM, only one four-quark operator

$$
\mathcal{O}_{(V-A) \times(V-A)}^{\Delta S=2}=\left(\bar{s}_{\alpha} \gamma_{\mu}\left(1-\gamma_{5}\right) d_{\alpha}\right)\left(\bar{s}_{\beta} \gamma^{\mu}\left(1-\gamma_{5}\right) d_{\beta}\right)
$$

Usually parametrised by its bag parameter (renormalization scheme and scale dependent)

$$
B_{K}=\frac{\left\langle\bar{K}^{0}\right| \mathcal{O}_{L L}^{\Delta S=2}(\mu)\left|K^{0}\right\rangle}{\left\langle\bar{K}^{0}\right| \mathcal{O}_{L L}^{\Delta S=2}\left|K^{0}\right\rangle_{\mathrm{VS}}}=\frac{\left\langle\bar{K}^{0}\right| \mathcal{O}_{L L}^{\Delta S=2}(\mu)\left|K^{0}\right\rangle}{\frac{8}{3} m_{K}^{2} f_{K}^{2}}
$$

Define the Renormalisation-Group-Invariant \hat{B}_{K} by

$$
\hat{B}_{K}=\left(\frac{\bar{g}(\mu)^{2}}{4 \pi}\right)^{-\gamma_{0} /\left(2 \beta_{0}\right)} \exp \left\{\int_{0}^{\bar{s}(\mu)} d g\left(\frac{\gamma(g)}{\beta(g)}+\frac{\gamma_{0}}{\beta_{0} g}\right)\right\} B_{K}(\mu)
$$

Traditionally: give $B_{K}^{\overline{\mathrm{MS}}}(2 \mathrm{GeV})$ or \hat{B}_{K} or $B_{K}^{\overline{\mathrm{MS}}}(2 \mathrm{GeV})$.
Recently, lattice community starts giving results at a higher scale.

Status before lattice 2014

FLAG [Aoki et al., '13-14]

Status before lattice 2014

BMW '11 [Dür, Fodor, Hoelbling, Katz, Krieg, Kurth, Lellouch, Lippert, McNeil, Portelli, Szabob, PLB '11]
 $$
\hat{B}_{K}=0.7727(81)_{\text {stat }}(34)_{\mathrm{sys}}(77)_{\mathrm{PT}}
$$

- $2+1$ HEX-smeared clover-improved Wilson fermions,
. Four lattice spacings $a \sim 0.054-0.093 \mathrm{fm}$
- Pion masses down to the physical point
- Non-perturbative-renormalization (NPR) through RI-MOM scheme

RBC-UKQCD '12 [Arthur, Blum, Boyve, Christ, NG., Husspith, Izubuchi, Jung, Kelly, Lytle, Mawhiney, Murphy, Ohta, Scchrojda,

```
                                    Soni, Yu, Zanotti], PRD'12
```

$$
\hat{B}_{K}=0.758(11)_{\mathrm{stat}}(10)_{\chi}(4)_{\mathrm{FV}}(16)_{\mathrm{PT}}
$$

- $2+1$ Domain-Wall fermions
- $a \sim 0.14 \mathrm{fm}$, IDSDR, $m_{\pi} \sim 170 \mathrm{MeV}$ (partially quenched 140 MeV)
- $a \sim 0.85,0.11 \mathrm{fm}$ IW m_{π} down to $\sim 290 \mathrm{MeV}$
- NPR with 2 RI-SMOM schemes

Status before lattice 2014

SWME '14 [Bae, Jang, Jeong, Jung, H.J.K Kim, Ja.Kim, Jo.Kim, K.Kim, S. Kim, Lee, Jaehoon Leem, Pak, Park, Sharpe, Yoon]

$$
\hat{B}_{K}=0.7379(47)_{\text {stat }}(365)_{\text {sys }}
$$

- $2+1$ HYP-smeared staggered on aqstqd (MILC) ensembles
- Four lattice spacings $a \sim 0.045-0.12 \mathrm{fm}$
- Pion masses down to 200 MeV
- Renormalisation: 1-loop matching to $\overline{\mathrm{MS}}$

$$
\begin{gathered}
\text { ETMc } \\
\hat{B}_{K}=0.729(25)(17)
\end{gathered}
$$

- 2 flavours twisted mass ($2+1+1$ in progress)
- Four lattice spacings $a \sim 0.045-0.12 \mathrm{fm}$
- Pion masses down to 200 MeV
- Non-perturbative-renormalization (NPR) through RI-MOM scheme

Non-perturbative scale-evolution

Running between two energy scales μ_{1} and μ_{2}

$$
Z\left(\mu_{1}\right)=U\left(\mu_{1}, \mu_{2}\right) Z\left(\mu_{2}\right)
$$

Comparison of the non-perturbative running in RI-MOM with perturbation theory (NLO)

BMW'11
$U_{N P}(\mu, 3.5) / U_{2 \text {-loop }}(\mu, 3.5)$

RBC-UKQCD'10
$U_{N P}(2,3)$ vs $U_{2 \text {-loop }}(2,3)$

lattice 2014 update

RBC-UKQCD PRELIMINARY (Work in progeress, draft in final stage

$n_{f}=2+1$ Domain-Wall fermions

- New Möbius ensembles combined with existing Shamir ensembles.
- $a \sim 0.084,0.144 \mathrm{fm}, 48^{3} \times 96 \times 12$ and $64^{3} \times 128 \times 12$
- Physical quark masses $m_{\pi} \sim 130 \mathrm{MeV}$ and $m_{\pi} L>3.5$
- Finer ensemble a $\sim 0.06,32^{3} \times 64 \times 12$ with $m_{\pi} \sim 360 \mathrm{MeV} \Rightarrow m_{\pi} L \sim 3.8$)
$n_{f}=2+1+1$ Domain-Wall fermions (Möbius) in progress

RBC-UKQCD PRELIMINARY

Running to 5 GeV with $2+1+1$ flavours

$$
\mathrm{N}_{\mathrm{f}}=2+\underset{\text { RII-SMOM }_{\text {qq }}}{2+1+1 \mathrm{~B}_{\mathrm{K}}} \text { steme } \text { scaling }
$$

see talk by Julien Frison, Tuesday @5:10

Note about matching to $\overline{\mathrm{MS}}$

- The matching to $\overline{\mathrm{MS}}$ is done at Next-to-leading order
- Difficult to estimate the corresponding systematic error
- NNLO matching factors (between MOM and $\overline{\mathrm{MS}}$) on the wishlist
- RBC-UKQCD uses several intermediate (SMOM) scheme and take the difference for the estimate of the syst. error
- At 2 or 3 GeV this is significantly larger than the naive estimate
- At 5 GeV this error is 1% (see talk by Julien Frison)

Standard Model and Beyond

See [F. Gabbiani et al '96]
In the SM , neutral kaon mixing occurs through W-exchanges $\rightarrow(V-A) \times(V-A)$

$$
O_{1}^{\Delta s=2}=\left(\bar{s}_{\alpha} \gamma_{\mu}\left(1-\gamma_{5}\right) d_{\alpha}\right)\left(\bar{s}_{\beta} \gamma_{\mu}\left(1-\gamma_{5}\right) d_{\beta}\right)
$$

Invariant under Fierz arrangement \Rightarrow only one color structure

Beyond the SM, other Dirac structure appear at high energy
Low energy description: generic $\Delta S=2$ effective Hamiltonian $H^{\Delta S=2}=\sum_{i=1}^{5} C_{i}(\mu) O_{i}^{\Delta S=2}(\mu)$.

SUSY basis

$$
\begin{aligned}
& O_{2}^{\Delta S=2}=\left(\bar{s}_{\alpha}\left(1-\gamma_{5}\right) d_{\alpha}\right)\left(\bar{s}_{\beta}\left(1-\gamma_{5}\right) d_{\beta}\right) \\
& O_{3}^{\Delta S=2}=\left(\bar{s}_{\alpha}\left(1-\gamma_{5}\right) d_{\beta}\right)\left(\bar{s}_{\beta}\left(1-\gamma_{5}\right) d_{\alpha}\right) \\
& O_{4}^{\Delta S=2}=\left(\bar{s}_{\alpha}\left(1-\gamma_{5}\right) d_{\alpha}\right)\left(\bar{s}_{\beta}\left(1+\gamma_{5}\right) d_{\beta}\right) \\
& O_{5}^{\Delta S=2}=\left(\bar{s}_{\alpha}\left(1-\gamma_{5}\right) d_{\beta}\right)\left(\bar{s}_{\beta}\left(1+\gamma_{5}\right) d_{\alpha}\right)
\end{aligned}
$$

Parity partners are redundant if Parity is conserved
On the lattice: compute $\left\langle\bar{K}^{0}\right| O_{i}^{\Delta S=2}\left|K^{0}\right\rangle$

Mixing

- Mixing pattern given by $S U(3)_{L} \times S U(3)_{R}$ decomposition

$$
\begin{array}{r}
3 \times 3=6+\overline{3} \\
\overline{3} \times \overline{3}=\overline{6}+3 \\
\overline{3} \times 3=1+8
\end{array}
$$

BSM operators

$$
\begin{aligned}
O_{2}^{\Delta S=2}= & \left(\bar{s}_{\alpha}\left(1-\gamma_{5}\right) d_{\alpha}\right)\left(\bar{s}_{\beta}\left(1-\gamma_{5}\right) d_{\beta}\right) \\
O_{3}^{\Delta S=2}= & \left(\bar{s}_{\alpha}\left(1-\gamma_{5}\right) d_{\beta}\right)\left(\bar{s}_{\beta}\left(1-\gamma_{5}\right) d_{\alpha}\right) \\
\text { Under } S U_{L}(3) & \longrightarrow \bar{s}_{R} d_{L} \bar{s}_{R} d_{L} \quad \text { Symmetric } \Rightarrow \sigma_{L}
\end{aligned}
$$

Mixing

- Mixing pattern given by $S U(3)_{L} \times S U(3)_{R}$ decomposition

$$
\begin{array}{r}
3 \times 3=6+\overline{3} \\
\overline{3} \times \overline{3}=\overline{6}+3 \\
\overline{3} \times 3=1+8
\end{array}
$$

BSM operators

$$
\begin{aligned}
O_{2}^{\Delta S=2}= & \left(\bar{s}_{\alpha}\left(1-\gamma_{5}\right) d_{\alpha}\right)\left(\bar{s}_{\beta}\left(1-\gamma_{5}\right) d_{\beta}\right) \\
O_{3}^{\Delta S=2}= & \left(\bar{s}_{\alpha}\left(1-\gamma_{5}\right) d_{\beta}\right)\left(\bar{s}_{\beta}\left(1-\gamma_{5}\right) d_{\alpha}\right) \\
\text { Under } S U_{R}(3) & \longrightarrow \bar{s}_{R} d_{L} \bar{s}_{R} d_{L} \quad \text { Symmetric } \Rightarrow \overline{6}_{R}
\end{aligned}
$$

Mixing

- Mixing pattern given by $S U(3)_{L} \times S U(3)_{R}$ decomposition

$$
\begin{array}{r}
3 \times 3=6+\overline{3} \\
\overline{3} \times \overline{3}=\overline{6}+3 \\
\overline{3} \times 3=1+8
\end{array}
$$

BSM operators

$$
\begin{aligned}
& O_{4}^{\Delta S=2}=\left(\bar{s}_{\alpha}\left(1-\gamma_{5}\right) d_{\alpha}\right)\left(\bar{s}_{\beta}\left(1+\gamma_{5}\right) d_{\beta}\right) \\
& O_{5}^{\Delta S=2}=\left(\bar{s}_{\alpha}\left(1-\gamma_{5}\right) d_{\beta}\right)\left(\bar{s}_{\beta}\left(1+\gamma_{5}\right) d_{\alpha}\right)
\end{aligned}
$$

Under $S U_{L}(3) \longrightarrow \bar{s}_{R} d_{L} \bar{s}_{L} d_{R} \quad$ Non-flavour singlet $\Rightarrow 8_{L}$

Mixing

- Mixing pattern given by $S U(3)_{L} \times S U(3)_{R}$ decomposition

$$
\begin{array}{r}
3 \times 3=6+\overline{3} \\
\overline{3} \times \overline{3}=\overline{6}+3 \\
\overline{3} \times 3=1+8
\end{array}
$$

BSM operators

$$
\begin{aligned}
& O_{4}^{\Delta S=2}=\left(\bar{s}_{\alpha}\left(1-\gamma_{5}\right) d_{\alpha}\right)\left(\bar{s}_{\beta}\left(1+\gamma_{5}\right) d_{\beta}\right) \\
& O_{5}^{\Delta S=2}=\left(\bar{s}_{\alpha}\left(1-\gamma_{5}\right) d_{\beta}\right)\left(\bar{s}_{\beta}\left(1+\gamma_{5}\right) d_{\alpha}\right)
\end{aligned}
$$

Under $S U_{R}(3) \longrightarrow \bar{s}_{R} d_{L} \bar{s}_{L} d_{R} \quad$ Non-flavour singlet $\Rightarrow 8_{R}$

Mixing pattern and $S U(3) \chi P T$

- $O_{1} \in(27,1)$ renormalises multiplicatively
- $O_{2}, O_{3} \in(6, \bar{\sigma})$ mix together
- $O_{4}, O_{5} \in(8,8)$ mix together
- Renormalization matrix is block diagonal $1_{(27,1)}+(2 \times 2)_{(6, \overline{6})}+(2 \times 2)_{(8,8)}$
- In the chiral limit $O_{1} \rightarrow m_{P}^{2}$ and $O_{i \geq 2} \rightarrow$ Cst

$$
\Rightarrow \operatorname{Expect} \frac{\left\langle\bar{K}^{0}\right| O_{B S M}\left|K^{0}\right\rangle}{\left\langle\bar{K}^{0}\right| O_{S M}\left|K^{0}\right\rangle} \rightarrow \frac{1}{m_{P}^{2}}
$$

Normalisation

$\left\langle\bar{K}^{0}\right| O\left|K^{0}\right\rangle$ are dimension-four quantities
Different normalisations exit

- Bag parameters $B^{\prime} s$, like $B=\frac{\left\langle\bar{K}^{0}\right| O_{1}\left|K^{0}\right\rangle}{\left\langle\bar{K}^{0}\right| O_{1}\left|K^{0}\right\rangle v s}$

$$
\begin{aligned}
B_{1}=B_{K} & =\frac{\left\langle\bar{K}^{0}\right| O_{1}\left|K^{0}\right\rangle}{\frac{8}{3} m_{K}^{2} f_{K}^{2}} \\
B_{i \geq 2} & =\frac{\left\langle\bar{K}^{0}\right| O_{i}\left|K^{0}\right\rangle}{N_{i}\left\langle\bar{K}^{0}\right| \bar{s} \gamma_{5} d|0\rangle\langle 0| \bar{s} \gamma_{5} d\left|K^{0}\right\rangle}
\end{aligned}
$$

- Ratios R^{\prime} s [Babich, N.G., Hoelbling, Howard, Lellouch, Rebbi '06]

$$
R_{i}^{\mathrm{BSM}}\left(m_{P}\right)=\left[\frac{f_{K}^{2}}{m_{K}^{2}}\right]_{\mathrm{expt}}\left[\frac{m_{K}^{2}}{f_{K}^{2}} \frac{\left\langle\bar{K}^{0}\right| O_{i}\left|K^{0}\right\rangle}{\left\langle\bar{K}^{0}\right| O_{1}\left|K^{0}\right\rangle}\right]_{\text {latt }}
$$

- Golden combinations G_{s} [Bailey, Kim, Lee, Sharpe '12, Bećirević, Villadoro '04]

Ratios or products of B parameters free of chiral logs at NLO

Situation before Lattice'14

- $n_{f}=2+1$ Domain-Wall [RBC-UKQCD '12]
- $n_{f}=2$ [ETMc '12] and preliminary $n_{f}=2+1+1$ Twisted Mass [ETMc@ lat'13]
- $n_{f}=2+1$ staggered [SWME '13]

RBC-UKQCD and ETMc found compatible results, but tension observed by SWME

Update from SWME

See poster by Jaehoon Leem

- Different (but equivalent) choice of basis

$$
\begin{aligned}
& O_{2}^{\Delta S=2}=\left(\bar{s}_{\alpha}\left(1-\gamma_{5}\right) d_{\alpha}\right)\left(\bar{s}_{\beta}\left(1-\gamma_{5}\right) d_{\beta}\right) \\
& O_{3}^{\Delta S=2}=\left(\bar{s}_{\alpha} \sigma_{\mu \nu}\left(1-\gamma_{5}\right) d_{\alpha}\right)\left(\bar{s}_{\beta} \sigma_{\mu \nu}\left(1-\gamma_{5}\right) d_{\beta}\right) \\
& O_{4}^{\Delta S=2}=\left(\bar{s}_{\alpha}\left(1-\gamma_{5}\right) d_{\alpha}\right)\left(\bar{s}_{\beta}\left(1+\gamma_{5}\right) d_{\beta}\right) \\
& O_{5}^{\Delta S=2}=\left(\bar{s}_{\alpha} \gamma_{\mu}\left(1-\gamma_{5}\right) d_{\alpha}\right)\left(\bar{s}_{\beta} \gamma_{\mu}\left(1+\gamma_{5}\right) d_{\beta}\right)
\end{aligned}
$$

- BSM bag parameters defined by

$$
B_{i}=\frac{\left\langle\bar{K}^{0}\right| O_{i}^{\Delta S=2}\left|K^{0}\right\rangle}{N_{i}\left\langle\bar{K}^{0}\right| \overline{\mathbf{s}} \gamma_{5} d|0\rangle\langle 0| \overline{\mathbf{s}} \gamma_{5} d\left|K^{0}\right\rangle}
$$

where $N_{2 \ldots 5}=5 / 3,4,-2,4 / 3$

- Golden combinations G_{i}

$$
\begin{array}{rll}
G_{23} & =\frac{B_{2}}{B_{3}} & G_{45}
\end{array}=\frac{B_{4}}{B_{5}}, ~ G_{21}=\frac{B_{2}}{B_{K}}
$$

- No $\chi^{\text {al }} \operatorname{logs}$ at NLO

SWME results and comparison

slide from Jaehoon Leem

Preliminary Result

- We obtain BSM B-parameters B_{i} from the results of golden combination G_{i} and B_{K}.
- The dominant systematic error comes from the perturbative matching.(4.4\%)

	SWME		RBC\&UKQCD	ETM
	$\mu=2 \mathrm{GeV}$	$\mu=3 \mathrm{GeV}$	$\mu=3 \mathrm{GeV}$	$\mu=3 \mathrm{GeV}$
B_{K}	$0.537(04)(24)$	$0.518(04)(23)$	$0.53(2)$	$0.51(2)$
B_{2}	$0.576(05)(25)$	$0.532(05)(23)$	$0.43(5)$	$0.47(2)$
$B_{3}^{\text {Buras }}$	$0.385(05)(17)$	$0.363(05)(16)$	N.A.	N.A.
$B_{3}^{\text {SUSY }}$	$0.862(07)(38)$	$0.785(07)(34)$	$0.75(9)$	$0.78(4)$
B_{4}	$0.914(29)(40)$	$0.913(32)(40)$	$0.69(7)$	$0.75(3)$
B_{5}	$0.661(20)(29)$	$0.660(22)(29)$	$0.47(6)$	$0.60(3)$

$\sim 3 \sigma$ discrepancy/tension for $B_{4,5}$

SWME results and comparison

- Is the tension due to the matching to $\overline{\mathrm{MS}}$?
- Systematic errors dominated by the perturbative renormalization procedure
- NPR implementation is on the way

See talk by Jangho Kim, Tuesday@5:10

Lattice 2014 update

- R_{i} from $2+1$ Domain-Wall fermions
- Main limitation of previous work: single lattice spacing and only RI-MOM scheme
- New lattice spacing and NPR with RI-SMOM schemes

Non-perturbative renormalisation matrix can be obtained with great precision

- Volume source [Göckeler et al, QCDSF '98] \Rightarrow tiny statistical errors
- Keep the momenta orientation fixed and use twisted boundary condition \Rightarrow control disctretisation effects
- Non-Exceptional kinematic (RI-SMOM) to avoid unwanted IR effects (chiral symmetry breaking, pole subtraction)

Unfortunately, the 1 - loop matching coefficient RI-SMOM $\rightarrow \overline{\mathrm{MS}}$ are not known for the $(6, \bar{\sigma})$ operators (for the $(8,8)$ we can use [Lehner \& Sturm '11])

In RI-MOM (exceptional kinematic), the pole subtractions seem to be mandatory
\Rightarrow hard to estimate the associated systematic error

Lattice 2014 update

ALPHA'14 [Papinutto, Pena, Pret]

Non-perturbative running of the $(8,8)$ operators

- $n_{f}=2$ non-perturbatively improved clover fermions
- Schrödinger functional, massless limit

■ Non-perturbative evolution between 0.438 GeV and 56 GeV

see talk by
 Mauro Papinutto Tuesday @ 2:55

Lattice 2014 update

ALPHA'14 [Papinutto, Pena, Pret]

Non-perturbative running of the $(8,8)$ operators

- $n_{f}=2$ non-perturbatively improved clover fermions

see talk by
 Mauro Papinutto Tuesday @ 2:55

Lattice 2014 update

- $2+1$ Domain-Wall on asqtad (MILC configurations)
- Same setup as used for B_{K} [Laiho \& Van de Water'11]
- 3 lattice spacings

see talk by Maxwell Hansen

$K \rightarrow \pi \pi$

Overview of the computation

Some references: [Bernard @ TASI'89, RBC PRD'01, Lellouch @ Les houches '09]
Operator Product expansion

Describe $K \rightarrow(\pi \pi)_{\mathrm{I}=0,2}$ with an effective Hamiltonian

$$
H^{\Delta s=1}=\frac{G_{F}}{\sqrt{2}}\left\{\sum_{i=1}^{10}\left(V_{u d} V_{u s}^{*} z_{i}(\mu)-V_{t d} V_{t s}^{*} y_{i}(\mu)\right) Q_{i}(\mu)\right\}
$$

Short distance effects factorized in the Wilson coefficients y_{i}, z_{i}
Long distance effects factorized in the matrix elements

$$
\langle\pi \pi| Q_{i}|K\rangle \longrightarrow \text { Lattice }
$$

4-quark operators

Current diagrams

$$
Q_{1}=(\bar{s} d)_{\mathrm{V}-\mathrm{A}}(\bar{u} u)_{\mathrm{V}-\mathrm{A}} \quad Q_{2}=\text { color mixed }
$$

4-quark operators

Electroweak penguins

$$
\begin{array}{llrl}
Q_{7} & =\frac{3}{2}(\bar{s} d)_{\mathrm{V}-\mathrm{A}} \sum_{q=u, d, s} e_{q}(\bar{q} q)_{\mathrm{V}+\mathrm{A}} & Q_{8}=\text { color mixed } \\
Q_{9} & =\frac{3}{2}(\bar{s} d)_{\mathrm{V}-\mathrm{A}} \sum_{q=u, d, s} e_{q}(\bar{q} q)_{\mathrm{V}-\mathrm{A}} & Q_{10}=\text { color mixed }
\end{array}
$$

4-quark operators

$$
\begin{aligned}
Q_{3} & =(\bar{s} d)_{\mathrm{V}-\mathrm{A}} \sum_{q=u, d, s}(\bar{q} q)_{\mathrm{V}-\mathrm{A}}
\end{aligned} Q_{4}=\text { color mixed } ~ 子 ~(\bar{s} d)_{\mathrm{V}-\mathrm{A}} \sum_{q=u, d, s}(\bar{q} q)_{\mathrm{V}+\mathrm{A}} \quad Q_{6}=\text { color mixed }
$$

$S U(3)_{L} \otimes S U(3)_{R}$ and isospin decomposition

Irrep of $S U(3)_{L} \otimes S U(3)_{R}$

$$
\begin{aligned}
& \overline{3} \otimes 3=8+1 \\
& \overline{8} \otimes 8=27+\overline{10}+10+8+8+1
\end{aligned}
$$

Decomposition of the 4-quark operators gives

$$
\begin{aligned}
Q_{1,2} & =Q_{1,2}^{(27,1), \Delta I=3 / 2}+Q_{1,2}^{(27,1), \Delta I=1 / 2}+Q_{1,2}^{(8,8), \Delta I=1 / 2} \\
Q_{3,4} & =Q_{3,4}^{(8,1), \Delta I=1 / 2} \\
Q_{5,6} & =Q_{5,6}^{(8,1), \Delta I=1 / 2} \\
Q_{7,8} & =Q_{7,8}^{(8,8), \Delta I=3 / 2}+Q_{7,8}^{(8,8), \Delta I=1 / 2} \\
Q_{9,10} & =Q_{9,10}^{(27,1), \Delta I=3 / 2}+Q_{9,10}^{(27,1), \Delta I=1 / 2}+Q_{9,10}^{(8,8), \Delta I=1 / 2}
\end{aligned}
$$

$S U(3)_{L} \otimes S U(3)_{R}$ and isospin decomposition

Only 7 are independent: one $(27,1)$ four $(8,1)$, and two $(8,8), \Rightarrow$ we called them Q^{\prime}

$$
\begin{array}{rlrl}
(27,1) & Q_{1}^{\prime} & = & Q_{1}^{\prime(27,1), \Delta I=3 / 2}+Q_{1}^{\prime(27,1), \Delta I=1 / 2} \\
(8,1) & Q_{2}^{\prime} & = & Q_{2}^{\prime(8,1), \Delta I=1 / 2} \\
Q_{3}^{\prime} & = & Q_{3}^{\prime(8,1), \Delta I=1 / 2} \\
Q_{5}^{\prime} & = & Q_{5}^{\prime(8,1), \Delta I=1 / 2} \\
Q_{6}^{\prime} & = & Q_{6}^{\prime(8,1), \Delta I=1 / 2} \\
& & \\
(8,8) & Q_{7}^{\prime} & = & Q_{7}^{\prime(8,8), \Delta I=3 / 2}+Q_{7}^{\prime(8,8), \Delta I=1 / 2} \\
& Q_{8}^{\prime} & = & Q_{8}^{\prime(8,8), \Delta I=3 / 2}+Q_{8}^{\prime(8,8), \Delta I=1 / 2}
\end{array}
$$

$S U(3)_{L} \otimes S U(3)_{R}$ and isospin decomposition

Only 7 are independent: one $(27,1)$ four $(8,1)$, and two $(8,8), \Rightarrow$ we called them Q^{\prime}

$$
\begin{array}{rlrl}
(27,1) & Q_{1}^{\prime} & = & Q_{1}^{\prime(27,1), \Delta I=3 / 2}+Q_{1}^{\prime(27,1), \Delta I=1 / 2} \\
(8,1) & Q_{2}^{\prime} & = & Q_{2}^{\prime(8,1), \Delta I=1 / 2} \\
& Q_{3}^{\prime} & = & Q_{3}^{\prime(8,1), \Delta I=1 / 2} \\
Q_{5}^{\prime} & = & Q_{5}^{\prime(8,1), \Delta I=1 / 2} \\
& Q_{6}^{\prime} & = & Q_{6}^{\prime(8,1), \Delta I=1 / 2} \\
& & & \\
(8,8) & Q_{7}^{\prime} & = & Q_{7}^{\prime(8,8), \Delta I=3 / 2}+Q_{7}^{\prime(8,8), \Delta I=1 / 2} \\
& Q_{8}^{\prime} & = & Q_{8}^{\prime(8,8), \Delta I=3 / 2}+Q_{8}^{\prime(8,8), \Delta I=1 / 2}
\end{array}
$$

$$
K \rightarrow(\pi \pi)_{I=2} \text { by the RBC-UKQCD collaborations }
$$

A_{2} from RBC-UKQCD

[Blum, Boyle, Christ, N.G.,Goode, Izubuchi, Jung, Kelly, Lehner, Lightman, Liu, Lytle, Mawhinney, Sachrajda, Soni, Sturm, PRL'12, PRD'12]

- $2+1$ Domain-Wall on IDSDR a $\sim 0.14 \mathrm{fm}$
- lightest unitary pion mass $\sim 170 \mathrm{MeV}$ (partially quenched 140 MeV)
- NPR thourgh RI-SMOM schemes

Overview of the computation

- Lellouch-Lüscher method [Lellouch Lüscher '00] to obtain the physical matrix element from the finite-volume Euclidiean amplitude and the derivative of the phase shift
- Combine
- Wigner-Eckart theorem (Exact up to isospin symmetry breaking)

$$
\left\langle\pi^{+}\left(p_{1}\right) \pi^{0}\left(p_{2}\right)\right| O_{\Delta I}^{\Delta I=3 / 2}=1 / 2\left|K^{+}\right\rangle=3 / 2\left\langle\pi^{+}\left(p_{1}\right) \pi^{+}\left(p_{2}\right)\right| O_{\Delta I_{Z}=3 / 2}^{\Delta I=3 / 2}\left|K^{+}\right\rangle
$$

and then compute the unphysical process $\mathrm{K}^{+} \rightarrow \pi^{+} \pi^{+}$

- Use Anti-periodic B.C. to eliminate the unwanted (wrong-kinematic) state [Sachrajda \& Villadoro '05]
- Renormalise at low energy $\mu_{0} \sim 1.1 \mathrm{GeV}$ on the IDSDR and run non-perturbatively using finer lattices to $\mu=3 \mathrm{GeV}$ and match to $\overline{\mathrm{MS}}$ [Arthur, Boyle '10, Arthur, Boyle, N.G. , Kelly, Lytle '11]

$$
\lim _{a_{1} \rightarrow 0} \underbrace{\left[Z\left(\mu_{1}, a_{1}\right) Z^{-1}\left(\mu_{0}, a_{1}\right)\right]}_{\text {fine lattice }} \times \underbrace{Z\left(\mu_{0}, a_{0}\right)}_{\text {coarse lattice }}=Z\left(\mu_{1}, a_{0}\right)
$$

A_{0} from RBC-UKQCD

"Pilot" computation of the full process
[T. Blum, Boyle, Christ, N.G., Goode, Izubuchi, Lehner, Liu, Mawhinney, Sachrajda, Soni, Sturm, Yin, Zhou, PRD'11].

Unphysical:
■ "Heavy" pions (lightest $\sim m_{\pi} \sim 300 \mathrm{MeV}$), small volume

- Non-physical kinematics: pions at rest

A_{0} from RBC-UKQCD

"Pilot" computation of the full process
[T. Blum, Boyle, Christ, N.G., Goode, Izubuchi, Lehner, Liu, Mawhinney, Sachrajda, Soni, Sturm, Yin, Zhou, PRD'11].

Unphysical:
■ "Heavy" pions (lightest $\sim m_{\pi} \sim 300 \mathrm{MeV}$), small volume

- Non-physical kinematics: pions at rest

But "complete":

- Two-pion state
- All the contractions of the 7 fourk-operators are computed
- Renormalisation done non-perturbatively

A_{0} from RBC-UKQCD

"Pilot" computation of the full process
[T. Blum, Boyle, Christ, N.G., Goode, Izubuchi, Lehner, Liu, Mawhinney, Sachrajda, Soni, Sturm, Yin, Zhou, PRD'11].

Unphysical:
■ "Heavy" pions (lightest $\sim m_{\pi} \sim 300 \mathrm{MeV}$), small volume

- Non-physical kinematics: pions at rest

But "complete":

- Two-pion state
- All the contractions of the 7 fourk-operators are computed
- Renormalisation done non-perturbatively
obtain

$$
\begin{aligned}
& \operatorname{Re} A_{0}=3.80(82) \times 10^{-7} \mathrm{GeV} \\
& \operatorname{Im} A_{0}=-2.5(2.2) \times 10^{-11} \mathrm{GeV}
\end{aligned}
$$

Toward an quantitative understanding of the $\Delta I=1 / 2$ rule

We combine our physical computation of $\Delta I=3 / 2$ part is our non-physical computation of the $\Delta I=1 / 2$

$1 / a$	m_{π}	m_{K}	$\operatorname{Re} A_{2}$	$\operatorname{Re} A_{0}$	$\frac{\operatorname{Re} A_{0}}{\operatorname{Re} A_{2}}$	kinematics
$[\mathrm{GeV}]$	$[\mathrm{MeV}]$	$[\mathrm{MeV}]$	$\left[10^{-8} \mathrm{GeV}\right]$	$\left[10^{-8} \mathrm{GeV}\right]$		

16^{3} IW	$1.73(3)$	$422(7)$	$878(15)$	$4.911(31)$	$45(10)$	$9.1(2.1)$	threshold
24^{3} IW	$1.73(3)$	$329(6)$	$662(11)$	$2.668(14)$	$32.1(4.6)$	$12.0(1.7)$	threshold
32^{3} ID	$1.36(1)$	$142.9(1.1)$	$511.3(3.9)$	$1.38(5)(26)$	-	-	physical

Exp - $135-140 \quad 494-498 \quad 1.479(4) \quad 33.2(2) \quad$ 22.45(6)

Pattern which could explain the $\Delta I=1 / 2$ enhancement
[Boyle, Christ, N.G., Goode, Izubuchi, Janowski, Lehner, Liu, Lytle, Sachrajda, Soni, Zhang, PRL'13]

Toward an quantitative understanding of the $\Delta I=1 / 2$ rule

Two kinds of contraction for each $\Delta I=3 / 2$ operator

Toward an quantitative understanding of the $\Delta I=1 / 2$ rule

Two kinds of contraction for each $\Delta I=3 / 2$ operator

- $\operatorname{Re} A_{2}$ is dominated by the tree level operator (EWP ~1\%):
- Naive factorisation approach: (2) $\sim 1 / 3$ (1)
- Our computation: (2) ~-0.7 (1)
\Rightarrow large cancellation in $\operatorname{Re} A_{2}$

Toward an quantitative understanding of the $\Delta I=1 / 2$ rule

Two kinds of contraction for each $\Delta I=3 / 2$ operator

Contraction (1)

Contraction (2)

- $\operatorname{Re} A_{2}$ is dominated by the tree level operator (EWP ~1\%):
- Naive factorisation approach: (2) $\sim 1 / 3(1)$
- Our computation: (2) ~-0.7 (1)
\Rightarrow large cancellation in $\operatorname{Re} A_{2}$

Toward an quantitative understanding of the $\Delta I=1 / 2$ rule
$\operatorname{Re} A_{0}$ is also dominated by the tree level operators

i	$Q_{i}^{\text {lat }}[\mathrm{GeV}]$	$Q_{i}^{\overline{\mathrm{MS}}-\mathrm{NDR}}[\mathrm{GeV}]$
1	$8.1(4.6) 10^{-8}$	$6.6(3.1) 10^{-8}$
2	$2.5(0.6) 10^{-7}$	$2.6(0.5) 10^{-7}$
3	$-0.6(1.0) 10^{-8}$	$5.4(6.7) 10^{-10}$
4	-	$2.3(2.1) 10^{-9}$
5	$-1.2(0.5) 10^{-9}$	$4.0(2.6) 10^{-10}$
6	$4.7(1.7) 10^{-9}$	$-7.0(2.4) 10^{-9}$
7	$1.5(0.1) 10^{-10}$	$6.3(0.5) 10^{-11}$
8	$-4.7(0.2) 10^{-10}$	$-3.9(0.1) 10^{-10}$
9	-	$2.0(0.6) 10^{-14}$
10	-	$1.6(0.5) 10^{-11}$
$\operatorname{Re} A_{0}$	$3.2(0.5) 10^{-7}$	$3.2(0.5) 10^{-7}$

Toward an quantitative understanding of the $\Delta I=1 / 2$ rule

$\operatorname{Re} A_{0}$ is also dominated by the tree level operators

i	$Q_{i}^{\text {lat }}[\mathrm{GeV}]$	$Q_{i}^{\overline{\mathrm{MS}}-\mathrm{NDR}}[\mathrm{GeV}]$
1	$8.1(4.6) 10^{-8}$	$6.6(3.1) 10^{-8}$
2	$2.5(0.6) 10^{-7}$	$2.6(0.5) 10^{-7}$
3	$-0.6(1.0) 10^{-8}$	$5.4(6.7) 10^{-10}$
4	-	$2.3(2.1) 10^{-9}$
5	$-1.2(0.5) 10^{-9}$	$4.0(2.6) 10^{-10}$
6	$4.7(1.7) 10^{-9}$	$-7.0(2.4) 10^{-9}$
7	$1.5(0.1) 10^{-10}$	$6.3(0.5) 10^{-11}$
8	$-4.7(0.2) 10^{-10}$	$-3.9(0.1) 10^{-10}$
9	-	$2.0(0.6) 10^{-14}$
10	-	$1.6(0.5) 10^{-11}$
$\operatorname{Re} A_{0}$	$3.2(0.5) 10^{-7}$	$3.2(0.5) 10^{-7}$

Dominant contribution to $Q_{2}^{\text {lat }}$ is $\propto(2(2)-(1)) \Rightarrow$ Enhancement in $\operatorname{Re} A_{0}$

Toward an quantitative understanding of the $\Delta I=1 / 2$ rule

$\operatorname{Re} A_{0}$ is also dominated by the tree level operators

i	$Q_{i}^{\text {lat }}[\mathrm{GeV}]$	$Q_{i}^{\overline{\mathrm{MS}}-\mathrm{NDR}}[\mathrm{GeV}]$
1	$8.1(4.6) 10^{-8}$	$6.6(3.1) 10^{-8}$
2	$2.5(0.6) 10^{-7}$	$2.6(0.5) 10^{-7}$
3	$-0.6(1.0) 10^{-8}$	$5.4(6.7) 10^{-10}$
4	-	$2.3(2.1) 10^{-9}$
5	$-1.2(0.5) 10^{-9}$	$4.0(2.6) 10^{-10}$
6	$4.7(1.7) 10^{-9}$	$-7.0(2.4) 10^{-9}$
7	$1.5(0.1) 10^{-10}$	$6.3(0.5) 10^{-11}$
8	$-4.7(0.2) 10^{-10}$	$-3.9(0.1) 10^{-10}$
9	-	$2.0(0.6) 10^{-14}$
10	-	$1.6(0.5) 10^{-11}$
$\operatorname{Re} A_{0}$	$3.2(0.5) 10^{-7}$	$3.2(0.5) 10^{-7}$

Dominant contribution to $Q_{2}^{\text {lat }}$ is \propto (2(2) - (1)) \Rightarrow Enhancement in $\operatorname{Re} A_{0}$

$$
\frac{\operatorname{Re} A_{0}}{\operatorname{Re} A_{2}} \sim \frac{2(2)-(1)}{(1)+(2)}
$$

With this unphysical kinematics, we find

$$
\begin{aligned}
& \frac{\operatorname{Re} A_{0}}{\operatorname{Re} A_{2}}=9.1(2.1) \text { for } m_{K}=878 \mathrm{MeV} m_{\pi}=422 \mathrm{MeV} \\
& \frac{\operatorname{Re} A_{0}}{\operatorname{Re} A_{2}}=12.0(1.7) \text { for } m_{K}=662 \mathrm{MeV} m_{\pi}=329 \mathrm{MeV}
\end{aligned}
$$

Lattice 2014 update

- $\Delta I=3 / 2$

Main limitation on the previous computation : only one coarse lattice spacing
IDSDR $32^{3} \times 64$, with $a^{-1} \sim 1.37 \mathrm{GeV} \Rightarrow a \sim 0.14 \mathrm{fm}, L \sim 4.6 \mathrm{fm}$
Current computation:
two lattice spacing, $n_{f}=2+1$, large volume at the physical point
New discretisation of the Domain-Wall fermion forumlation: Möbius [Brower, Neff, Orginos '12]
■ $48^{3} \times 96$, with $a^{-1} \sim 1.729 \mathrm{GeV} \Rightarrow a \sim 0.11 \mathrm{fm}, L \sim 5.5 \mathrm{fm}$
■ $64^{3} \times 128$ with $a^{-1} \sim 2.358 \mathrm{GeV} \Rightarrow a \sim 0.84 \mathrm{fm}, L \sim 5.4 \mathrm{fm}$
■ $\mathrm{am}_{\text {res }} \sim 10^{-4}$
Status: Computation finished, draft in final stage

Lattice 2014 update

- $\Delta I=3 / 2$

Main limitation on the previous computation : only one coarse lattice spacing
IDSDR $32^{3} \times 64$, with $a^{-1} \sim 1.37 \mathrm{GeV} \Rightarrow a \sim 0.14 \mathrm{fm}, L \sim 4.6 \mathrm{fm}$
Current computation:
two lattice spacing, $n_{f}=2+1$, large volume at the physical point
New discretisation of the Domain-Wall fermion forumlation: Möbius [Brower, Neff, Orginos '12]
■ $48^{3} \times 96$, with $a^{-1} \sim 1.729 \mathrm{GeV} \Rightarrow a \sim 0.11 \mathrm{fm}, L \sim 5.5 \mathrm{fm}$
■ $64^{3} \times 128$ with $a^{-1} \sim 2.358 \mathrm{GeV} \Rightarrow a \sim 0.84 \mathrm{fm}, L \sim 5.4 \mathrm{fm}$

- $a_{\text {res }} \sim 10^{-4}$

Status: Computation finished, draft in final stage

- $\Delta I=1 / 2$

Main limitation on the previous computation : non-physical kinematic
New formulation: G-parity boundary conditions

Status: First computation almost finished

See talks by Chris Kelly and by Daiqian Zhang, Monday

$K \rightarrow(\pi \pi)_{I=2}$ Lattice 2014 update

2012 [Blum, Boyle, Christ, N.G.,Goode, Izubuchi, Jung, Kelly, Lehner, Lightman, Liu, Lytle, Mawhinney, Sachrajda, Soni, Sturm, PRL'12, PRD'12]
$\operatorname{Re} A_{2}=1.381(46)_{\text {stat }}(258)_{\text {syst }} 10^{-8} \mathrm{GeV} \quad \operatorname{Im} A_{2}=-6.54(46)_{\text {stat }}(120)_{\text {syst }} 10^{-13} \mathrm{GeV}$

2014 [RBC-UKQCD Work in progress, draft in final stage]

Preliminary: systematic budget not complete
see also talk by T.Janowski @ lat'13 [Janowski, Sachrajda, Boyle, Christ, Mawhinney, Yin, Zhang, N.G., Lytle]

Other computations of $K \rightarrow(\pi \pi)$

$K \rightarrow \pi \pi$ with improved Wilson fermions

[N. Ishizuka, K.I. Ishikawa, A. Ukawa , T. Yoshie]

- Direct computation with 2-pion at rest
- both $\Delta I=1 / 2$ and $\Delta I=3 / 2$
- $2+1$ improved Wilson fermions on Iwasaki gauge config
- $32^{3} \times 64, \sim 0.091 \mathrm{fm}, L \sim 2.91 \mathrm{fm}$
- Perturbative operator renormalization (1 loop)
after non-perturbative subtraction of the lower dimensional operator P.

$$
\begin{aligned}
Q_{i}^{\mathrm{MS}}(\mu)= & \sum_{j} Z_{i j}(\mu) \cdot\left[Q_{j}^{\mathrm{lat}}-\alpha_{j} P\right] \\
& P=\bar{s} \gamma_{5} d, \alpha_{j}=\frac{\langle 0| Q_{j}|K\rangle}{\langle 0| P|K\rangle}, Z_{i j}(\mu): 1 \text { loop }
\end{aligned}
$$

- For calculations of the quark loops in the "eye" and the disconnected diagrams, hopping parameter expansion (4th order) and truncated solver method ($N_{T}=5$) are used.
(proposed by G.S. Bali et al., (CPC 181(2010)1570))

See talk by Naruhito Ishizuka (Monday 4:30)

$K \rightarrow \pi \pi$ with improved Wilson fermions

From Naruhito Ishizuka's talk

Results

Effective matrix elements :

$$
\begin{aligned}
& M_{I}\left(Q_{j}\right)(t)=\langle 0| K\left(t_{K}\right) Q_{j}(t)(\pi \pi)_{I}\left(t_{\pi}\right)|0\rangle \times \mathrm{e}^{m \kappa\left(t_{K}-t\right)+E_{\pi \pi}^{t}\left(t-t_{\pi}\right)} \\
& \quad \propto\langle K| Q_{j}|\pi \pi ; I\rangle \quad \text { for } \quad t_{K} \gg t \gg t_{\pi} \quad\left(t_{K}=24, t_{\pi}=0, t: \text { run }\right)
\end{aligned}
$$

: signals are seen in $t=[9,12]$.
Result of decay amplitudes:

	Ours	Experiment
$m_{\pi}(\mathrm{MeV})$	280	140
$\operatorname{Re} A_{2}\left(\times 10^{-8} \mathrm{GeV}\right)$	2.426 ± 0.038	1.479 ± 0.004
$\operatorname{Re} A_{0}\left(\times 10^{-8} \mathrm{GeV}\right)$	60 ± 36	33.2 ± 0.2
$\operatorname{Re} A_{0} / \operatorname{Re} A_{2}$	25 ± 15	22.45 ± 0.06
$\operatorname{Re}\left(\epsilon^{\prime} / \epsilon\right)\left(\times 10^{-3}\right)$	0.80 ± 2.54	1.66 ± 0.23

- Enhancement of $\Delta I=1 / 2$ process is seen.
- Further improvement of statics is necessary for $\epsilon^{\prime} / \epsilon$.

Role of the charm mass in $K \rightarrow \pi \pi$ with improved Wilson fermions

Ongoing effort, updated in [Endress \& Pena '12, Endress, Pena, Sivalingam '14]

- Charm is kept active in the effective Hamiltonian
- Matching to $S U(3)$ (heavy charm) and $S U(4)$ (unphysical light charm) chiral Lagrangian
- Computation of the LEC as a function of m_{c}
- Technically demanding, as requires to compute "eye contractions", see [Endress, Pena, Sivalingam '14]
- Implementation with quenched overlap fermions on a single lattice spacing
- First results indicate an enhancement in $\operatorname{Re}\left(A_{0}\right) / \operatorname{Re}\left(A_{2}\right)$ as m_{C} increases.
- Hard to know at the moment if the enhancement will be enough to give a factor 20 (charm is still far from its physical value)

Lattice 2014 update: Chromagnetic operator in $K \rightarrow \pi$

ETMc

- $2+1+1$ Twisted Mass / Osterwalder-Seiler fermions
- Pion mass down to $\sim 210 \mathrm{MeV}$
- three lattice spacings a $\sim 0.06-0.09 \mathrm{fm}$

The effective $\Delta S=1$ Hamiltonian of $\operatorname{dim}=5$ contains four magnetic operators:

$$
\mathrm{H}_{\mathrm{eff}}^{\Delta \mathrm{S}=1, \mathrm{~d}=5}=\sum_{\mathrm{i}= \pm}\left(\mathrm{C}_{\gamma}^{\mathrm{i}} \mathrm{Q}_{\gamma}^{\mathrm{i}}+\mathrm{C}_{\mathrm{g}}^{\mathrm{i}} \mathrm{Q}_{\mathrm{g}}^{\mathrm{i}}\right)+\text { h.c. }
$$

$$
\mathrm{Q}_{\gamma}^{ \pm}=\frac{\mathrm{Q}_{\mathrm{d}} \mathrm{e}}{16 \pi^{2}}\left(\overline{\mathrm{~s}}_{\mathrm{L}} \sigma^{\mu v} \mathrm{~F}_{\mu v} \mathrm{~d}_{\mathrm{R}} \pm \overline{\mathrm{S}}_{\mathrm{R}} \sigma^{\mu v} \mathrm{~F}_{\mu v} \mathrm{~d}_{\mathrm{L}}\right)
$$

$$
\mathrm{Q}_{\mathrm{g}}^{ \pm}=\frac{\mathrm{g}}{16 \pi^{2}}\left(\overline{\mathrm{~s}}_{\mathrm{L}} \sigma^{\mu \mathrm{v}} \mathrm{G}_{\mu v} \mathrm{~d}_{\mathrm{R}} \pm \overline{\mathrm{s}}_{\mathrm{R}} \sigma^{\mu \nu} \mathrm{G}_{\mu v} \mathrm{~d}_{\mathrm{L}}\right)
$$

See talk by Vittorio Lubicz
 Wednesday@10:20 and poster by Marios Costa

Conclusions

Exciting time for kaon/pion physics

- Various collaborations are reaching the physical point
- For the decay constants, or semi-leptonic form factors, we are reaching a precision such that EM corrections become significant (see plenary talk by Antonin Portelli, Thursday@11:30)
- Computation of new quantities (eg: chromomagnetic operator)
- New computations of the neutral kaon mixing matrix elements (B_{K} and BSM)
- Continuum limit of $K \rightarrow(\pi \pi)_{I=2}$ at the physical point
- First realistic results of $K \rightarrow(\pi \pi)_{I=0}$ (with physical kinematics) should be available in a few months, thanks to G-parity boundary conditions
- Various collaborations are computing the BSM neutral kaon matrix elements
- NPR is at mature stage with the RI-SMOM schemes, but some matching coefficients are highly needed: NNLO (2-loops matching) for B_{K} and NLO (1-loop matching) or the ($6, \bar{\sigma}$) BSM operators

