# Weak interactions of kaons and pions

# Nicolas Garron School of Maths, Trinity College Dublin



Lattice 2014, Columbia University, June 24, 2014

# Outline

**1** Decay constants  $f_K$ ,  $f_{\pi}$  and  $f_K/f_{\pi}$ 

2 K<sub>/3</sub>

- **3** Neutral kaon mixing ( $B_K$  and BSM contributions)
- 4  $K \rightarrow \pi \pi$

Rare kaon decays not covered in this talk (see plenary by Chris Sachrajda)

# Situation before lattice 2014

# FLAG'13 $f_K/f_{\pi} = 1.194(5) \quad n_f = 2 + 1 + 1$ $f_K/f_{\pi} = 1.192(5) \quad n_f = 2 + 1$ $f_K/f_{\pi} = 1.205(6)(17) \quad n_f = 2$







| Fermilab/ | MILC [ A. Bazavov            | et al., Phys.Rev.Lett. 110 (2013) 172003 & PoS LATTICE 2013]                           |
|-----------|------------------------------|----------------------------------------------------------------------------------------|
| 2013      | $f_{K^+}/f_{\pi^+} = 1.1947$ | $(26)_{\rm stat} (33)_{s^2  {\rm extrap}} (17)_{\rm FV} (2)_{\rm EM}$                  |
| 2014      | $f_{K^+}/f_{\pi^+} = 1.1956$ | $(10)_{\rm stat} {}^{+23}_{-14} _{a^2} {}^{2}_{\rm extrap} (10)_{\rm FV} (5)_{\rm EM}$ |

- $n_f = 2 + 1 + 1$  Highly-Improved Staggered Quark (HISQ)
- $\blacksquare~a\sim 0.06, 0.09, 0.12, 0.15~{\rm fm}$
- $\blacksquare \ m_\pi \sim 135,200 \ {\rm MeV} \ {\rm and} \ m_\pi L > 3.3$

# See talk by Javad Komijani, Wednesday@12:10

# RBC-UKQCD PRELIMINARY (draft in final stage)

 $\begin{array}{lll} f_{\pi} & = & 0.1298(9)_{\rm stat}(4)_{\chi}(2)_{\rm FV} \ {\rm GeV} \\ f_{K} & = & 0.1556(8)_{\rm stat}(2)_{\chi}(1)_{\rm FV} \ {\rm GeV} \\ f_{K}/f_{\pi} & = & 1.199(5)_{\rm stat}(6)_{\chi}(1)_{\rm FV} \end{array}$ 

### $n_f = 2 + 1$ Domain-Wall fermions

- New Möbius ensembles [Brower, Neff, Orginos '12] combined with existing Shamir ensembles.
- **a**  $\sim$  0.084, 1.144 fm, 48<sup>3</sup>  $\times$  96  $\times$  12 and 64<sup>3</sup>  $\times$  128  $\times$  12
- Physical pion masses  $m_\pi \sim 130~{
  m MeV}$  and  $m_\pi L > 3.5$
- Finer ensemble  $a \sim 0.06$ ,  $32^3 \times 64 \times 12$  with  $m_{\pi} \sim 360 \text{ MeV} \Rightarrow m_{\pi}L \sim 3.8$ )

| K <sub>13</sub> |
|-----------------|
|                 |

Obtain  $|V_{us}f_{+}(0)|$  from the experimental rate

$$\Gamma_{K\to\pi l\nu} = C_K^2 \frac{G_F^2 m_K^5}{192\pi^2} I S_{EW} \left[ 1 + 2\Delta_{SU(2)} + 2\Delta_{EM} \right] |V_{us} f_+(0)|^2$$

where:

I is the phase space integral evaluated from the shape of the experimental form factor  $\Delta_{SU(2)}$  is the ispospin breaking correction  $S_{EW}$  is the short distance electroweak correction  $\Delta_{FM}$  is the long distance electromagnetic correction

and  $f_+(0)$  is the form factor defined from (q = p - p')

 $\langle \pi(p')|V_{\mu}|K(p)
angle = (p_{\mu}+p'_{\mu})f_{+}(q^{2}) + (p_{\mu}-p'_{\mu})f_{-}(q^{2}) \quad \text{with } V_{\mu}=\bar{s}\gamma_{\mu}u$ 

 $\Rightarrow$  determine  $f_+(0)$  from the lattice to constraint  $V_{us}$ 

# $K_{I3}$ semileptonic form factor II.

Use the the scalar form factor  $f_0(q^2) = f_+(q^2) + \frac{q^2}{m_K^2 - m_\pi^2} f_-(q^2)$  $\langle \pi(p') | V_\mu | K(p) \rangle_{q^2=0} = \frac{m_K^2 - m_\pi^2}{m_s - m_u} f_+(0)$ 

• Compute  $f_0(q^2)$  for several negative values of  $q^2$ 

Interpolate to  $q^2 = 0$  (or use twisted boundary conditions) [RBC-UKQCD]

Or compute  $f_+(0)$  from [Fermilab Lattice and MILC Collaborations Bazavov, et al. '13]

$$f_{+}(0) = f_{0}(0) = rac{m_{s} - m_{l}}{m_{K}^{2} - m_{\pi}^{2}} \langle \pi(p') | S | K(p) \rangle$$

Form factor can be obtained from  $\langle \pi(p')|S|K(p)\rangle$  and from  $\langle \pi(p')|V_{\mu}|K(p)\rangle$ 

# Situation before lattice 2014

# FLAG'13 $f_{+}(0) = 0.9661(32)$ $n_{f} = 2 + 1$ $f_{+}(0) = 0.9560(57)(62)$ $n_{f} = 2$



# **RBC-UKQCD**

- $\blacksquare$  New ensembles  $48^3$  and  $64^3$  at the physical point
- Results obtained from the vector current

# See talk by David Murphy, Monday@6:10

| Lattice           | $m_{\pi}$ (MeV) | $f_{+}^{K\pi}(0)$ | Stat. error |
|-------------------|-----------------|-------------------|-------------|
| 241               | 678             | 0.9992(1)         | 0.01%       |
| 241               | 563             | 0.9956(4)         | 0.04%       |
| 241               | 422             | 0.9870(9)         | 0.09%       |
| 241               | 334             | 0.9760(43)        | 0.4%        |
| 241               | 334             | 0.9858(28)        | 0.3%        |
| 48I (PRELIMINARY) | 139             | 0.9727(25)        | 0.3%        |
| 32ID              | 248             | 0.9771(21)        | 0.2%        |
| 32ID              | 171             | 0.9710(45)        | 0.5%        |
| 321               | 398             | 0.9904(17)        | 0.2%        |
| 321               | 349             | 0.9845(23)        | 0.2%        |
| 321               | 295             | 0.9826(35)        | 0.4%        |
| 64I (PRELIMINARY) | 139             | 0.9701(22)        | 0.2%        |

Nicolas Garron (Trinity College Dublin)

Weak interactions of kaons and pions

# lattice 2014 update for $K_{I3}$

# ETMc

- 2+1+1 Twisted Mass / Osterwalder-Seiler fermions
- Results obtained from the vector current
- Preliminary result:

 $f_{+}(0) = 0.9683(50)_{stat+fit}(42)_{chiral}$ 





# $K^0-K^0$ mixing, $K ightarrow \pi\pi$ and CP violation

# Background: Kaon decays and CP violation

- First discovery of CP violation was made in kaon system in 1964 (Christenson, Cronin, Fitch and Turlay)
- Noble prize in 1980 (Cronin and Fitch)
- Very nice measurements of both direct and indirect CP violation

 $\left\{ \begin{array}{ll} \operatorname{Re}\left(\frac{\varepsilon'}{\varepsilon}\right) &= (1.65\pm0.26)\times10^{-3}\\ \\ |\varepsilon| &= (2.228\pm0.011)\times10^{-3} \end{array} \right.$ 

Theoretically:

Relate indirect CP violation parameter ( $\epsilon$ ) to neutral kaon mixing ( $B_K$ ) Still lacking a quantitative description of direct CP violation ( $\epsilon'$ )

Sensitivity to new physics

# Background: Kaon decays and CP violation

 $\begin{array}{l} \mbox{Flavour eigenstates } \left( \begin{array}{c} {\cal K}^0_0 = \overline{s}\gamma_5 d \\ {\cal K}^0_0 = \overline{d}\gamma_5 s \end{array} \right) \neq \mbox{CP eigenstates } |{\cal K}^0_{\pm}\rangle = \frac{1}{\sqrt{2}} \{ |{\cal K}^0\rangle \mp |\overline{{\cal K}}^0\rangle \} \mbox{ They are mixed in the } \\ \mbox{physical eigenstates } \left\{ \begin{array}{c} |{\cal K}_L\rangle & \sim & |{\cal K}^0_-\rangle + \overline{\varepsilon}|{\cal K}^0_+\rangle \\ |{\cal K}_S\rangle & \sim & |{\cal K}^0_+\rangle + \overline{\varepsilon}|{\cal K}^0_-\rangle \end{array} \right. \end{array}$ 

Direct and indirect CP violation in  $K \rightarrow \pi \pi$ 



$$\epsilon = \frac{A(K_L \to (\pi\pi)_{I=0})}{A(K_S \to (\pi\pi)_{I=0})} = |\epsilon| e^{i\phi_{\epsilon}} \sim \overline{\epsilon}$$

# $K \rightarrow \pi\pi$ amplitudes

Two isospin channels:  $\Delta \textit{I}=1/2$  and  $\Delta \textit{I}=3/2$ 

 $K \rightarrow (\pi \pi)_{I=0,2}$ 

Corresponding amplitudes defined as

 $A[K \rightarrow (\pi \pi)_{\rm I}] = A_{\rm I} \exp(i\delta_{\rm I})$  /w I = 0, 2  $\delta$  = strong phases

 $\Delta I = 1/2$  rule

$$\omega = rac{\mathrm{Re}A_2}{\mathrm{Re}A_o} \sim 1/22$$
 (experimental number)

Amplitudes are related to the parameters of CP violation  $\varepsilon, \varepsilon'$  via

$$\epsilon' = \frac{i\omega \exp(i\delta_2 - \delta_0)}{\sqrt{2}} \left[ \frac{\operatorname{Im}(A_2)}{\operatorname{Re}A_2} - \frac{\operatorname{Im}A_0}{\operatorname{Re}A_0} \right]$$

$$\epsilon = e^{i\phi_{\epsilon}} \left[ \frac{\mathrm{Im}\langle \bar{K}^{0} | \mathcal{H}_{\mathrm{eff}}^{\Delta S=2} | \mathcal{K}^{0} \rangle}{\Delta m_{\mathcal{K}}} + \frac{\mathrm{Im}A_{0}}{\mathrm{Re}A_{0}} \right]$$

 $\Rightarrow$  Related to  $K^0 - \bar{K}^0$  mixing

Nicolas Garron (Trinity College Dublin)

In the Standard Model,  $K^0 - \bar{K}^0$  mixing dominated by box diagrams with W exchange, e.g.



Operator product expansion

$$H_{\rm eff}^{\Delta S=2} = \frac{G_F^2 m_W^2}{16\pi^2} \times F({\rm SM \ free \ parameters}) \times C(\mu) \mathcal{O}_{LL}^{\Delta S=2}(\mu)$$

Factorise the non-perturbative contribution

$$\langle ar{K}^0 | \mathcal{O}_{LL}^{\Delta S=2}(\mu) | K^0 
angle = rac{8}{3} F_K^2 M_K^2 \mathcal{B}_K(\mu) \qquad \mathrm{w} / \ \mathcal{O}_{LL}^{\Delta S=2} = (ar{s} \gamma_\mu (1-\gamma_5) d) (ar{s} \gamma^\mu (1-\gamma_5) d)$$

 $B_K$  is the SM kaon bag parameter

$$B_{\mathcal{K}}(\mu) = \frac{\langle \bar{\mathcal{K}}^{0} | \mathcal{O}_{LL}^{\Delta S=2}(\mu) | \mathcal{K}^{0} \rangle}{\langle \bar{\mathcal{K}}^{0} | \mathcal{O}_{LL}^{\Delta S=2}(\mu) | \mathcal{K}^{0} \rangle_{_{\mathrm{VS}}}}$$

Nicolas Garron (Trinity College Dublin)

In the Standard Model,  $K^0 - \bar{K}^0$  mixing dominated by box diagrams with W exchange, e.g.



 $K_L - K_S$  mass difference, long distance contributions:

See plenary talk by Chris Sachrajda, Saturday@10:30 In the SM, only one four-quark operator

$$\mathcal{O}_{(V-\mathcal{A}) imes(V-\mathcal{A})}^{\Delta S=2}=(ar{s}_lpha\gamma_\mu(1-\gamma_5)d_lpha)(ar{s}_eta\gamma^\mu(1-\gamma_5)d_eta)$$

Usually parametrised by its bag parameter (renormalization scheme and scale dependent)

$$B_{\mathcal{K}} = \frac{\langle \bar{K}^0 | \mathcal{O}_{LL}^{\Delta S=2}(\mu) | \mathcal{K}^0 \rangle}{\langle \bar{K}^0 | \mathcal{O}_{LL}^{\Delta S=2} | \mathcal{K}^0 \rangle_{\mathsf{VS}}} = \frac{\langle \bar{K}^0 | \mathcal{O}_{LL}^{\Delta S=2}(\mu) | \mathcal{K}^0 \rangle}{\frac{8}{3} m_{\mathcal{K}}^2 f_{\mathcal{K}}^2}$$

Define the Renormalisation-Group-Invariant  $\hat{B}_{K}$  by

$$\hat{B}_{K} = \left(rac{ar{g}(\mu)^2}{4\pi}
ight)^{-\gamma_0/(2eta_0)} \exp\left\{\int_0^{ar{g}(\mu)} dg\left(rac{\gamma(g)}{eta(g)} + rac{\gamma_0}{eta_0 g}
ight)
ight\} B_K(\mu) \; .$$

Traditionally: give  $B_K^{\overline{\mathrm{MS}}}(2 \text{ GeV})$  or  $\hat{B}_K$  or  $B_K^{\overline{\mathrm{MS}}}(2 \text{ GeV})$ .

Recently, lattice community starts giving results at a higher scale.

# Status before lattice 2014

FLAG [Aoki et al., '13-14]



# Status before lattice 2014

BMW '11 [Dürr, Fodor, Hoelbling, Katz, Krieg, Kurth, Lellouch, Lippert, McNeil, Portelli, Szabó, PLB '11]

 $\hat{B}_{K} = 0.7727(81)_{stat}(34)_{sys}(77)_{PT}$ 

- 2+1 HEX-smeared clover-improved Wilson fermions,
- Four lattice spacings a ~ 0.054 0.093 fm
- Pion masses down to the physical point
- Non-perturbative-renormalization (NPR) through RI-MOM scheme

RBC-UKQCD '12 [Arthur, Blum, Boyle, Christ, N.G., Hudspith, Izubuchi, Jung, Kelly, Lytle, Mawhinney, Murphy, Ohta, Sachrajda,

Soni, Yu, Zanotti], PRD'12

$$\hat{B}_{\mathcal{K}} = 0.758(11)_{ ext{stat}}(10)_{\chi}(4)_{ ext{FV}}(16)_{ ext{PT}}$$

- 2+1 Domain-Wall fermions
- $a \sim 0.14$  fm, IDSDR,  $m_{\pi} \sim 170$  MeV (partially quenched 140 MeV)
- $a \sim 0.85, 0.11 \text{ fm}$  IW  $m_{\pi}$  down to  $\sim 290 \text{ MeV}$
- NPR with 2 RI-SMOM schemes

# Status before lattice 2014

SWME '14 [Bae, Jang, Jeong, Jung, H.J.Kim, Ja.Kim, Jo.Kim, K.Kim, S.Kim, Lee, Jaehoon Leem, Pak, Park, Sharpe, Yoon]  $\hat{B}_{K} = 0.7379(47)_{stat}(365)_{sys}$ • 2 + 1 HYP-smeared staggered on aqstqd (MILC) ensembles • Four lattice spacings  $a \sim 0.045 - 0.12$  fm • Pion masses down to 200 MeV • Renormalisation: 1-loop matching to  $\overline{MS}$ 

# ETMc

 $\hat{B}_{K} = 0.729(25)(17)$ 

- 2 flavours twisted mass (2 + 1 + 1 in progress)
- Four lattice spacings  $a \sim 0.045 0.12 \text{ fm}$
- $\blacksquare$  Pion masses down to 200  $\,{\rm MeV}$
- Non-perturbative-renormalization (NPR) through RI-MOM scheme

Running between two energy scales  $\mu_1$  and  $\mu_2$ 

$$Z(\mu_1)=U(\mu_1,\mu_2)Z(\mu_2)$$

Comparison of the non-perturbative running in RI-MOM with perturbation theory (NLO)



# lattice 2014 update

### **RBC-UKQCD PRELIMINARY** [Work in progress, draft in final stage]

### $n_f = 2 + 1$ Domain-Wall fermions

- New Möbius ensembles combined with existing Shamir ensembles.
- **a** ~ 0.084, 0.144 fm,  $48^3 \times 96 \times 12$  and  $64^3 \times 128 \times 12$
- Physical quark masses  $m_{\pi} \sim 130 \text{ MeV}$  and  $m_{\pi}L > 3.5$
- Finer ensemble  $a \sim 0.06$ ,  $32^3 \times 64 \times 12$  with  $m_{\pi} \sim 360 \text{ MeV} \Rightarrow m_{\pi}L \sim 3.8$

### $n_f = 2 + 1 + 1$ Domain-Wall fermions (Möbius) in progress



# lattice 2014 update



- $\blacksquare$  The matching to  $\overline{\mathrm{MS}}$  is done at Next-to-leading order
- Difficult to estimate the corresponding systematic error
- NNLO matching factors (between MOM and  $\overline{\mathrm{MS}}$ ) on the wishlist
- RBC-UKQCD uses several intermediate (SMOM) scheme and take the difference for the estimate of the syst. error
- At 2 or 3 GeV this is significantly larger than the naive estimate
- At 5 GeV this error is 1% (see talk by Julien Frison)

### See [F. Gabbiani et al '96]

In the SM, neutral kaon mixing occurs through W-exchanges  $\rightarrow (V - A) \times (V - A)$ 

$$O_1^{\Delta s=2} = \left( ar{s}_lpha \, \gamma_\mu (1-\gamma_5) d_lpha 
ight) \left( ar{s}_eta \, \gamma_\mu (1-\gamma_5) d_eta 
ight),$$

Invariant under Fierz arrangement  $\Rightarrow$  only one color structure

Beyond the SM, other Dirac structure appear at high energy

Low energy description: generic  $\Delta S = 2$  effective Hamiltonian  $H^{\Delta S=2} = \sum_{i=1}^{5} C_i(\mu) O_i^{\Delta S=2}(\mu)$ .

SUSY basis

$$\begin{array}{lll} O_{2}^{\Delta S=2} & = & \left( \overline{s}_{\alpha} \left( 1 - \gamma_{5} \right) d_{\alpha} \right) \left( \overline{s}_{\beta} \left( 1 - \gamma_{5} \right) d_{\beta} \right) \\ O_{3}^{\Delta S=2} & = & \left( \overline{s}_{\alpha} \left( 1 - \gamma_{5} \right) d_{\beta} \right) \left( \overline{s}_{\beta} \left( 1 - \gamma_{5} \right) d_{\alpha} \right) \\ O_{4}^{\Delta S=2} & = & \left( \overline{s}_{\alpha} \left( 1 - \gamma_{5} \right) d_{\alpha} \right) \left( \overline{s}_{\beta} \left( 1 + \gamma_{5} \right) d_{\beta} \right) \\ O_{5}^{\Delta S=2} & = & \left( \overline{s}_{\alpha} \left( 1 - \gamma_{5} \right) d_{\beta} \right) \left( \overline{s}_{\beta} \left( 1 + \gamma_{5} \right) d_{\alpha} \right) \end{array}$$

Parity partners are redundant if Parity is conserved

On the lattice: compute  $\langle \bar{K}^0 | O_i^{\Delta S=2} | K^0 \rangle$ 

• Mixing pattern given by  $SU(3)_L \times SU(3)_R$  decomposition

| $3 \times 3$             | = | $6 + \bar{3}$      |
|--------------------------|---|--------------------|
| $\bar{3} \times \bar{3}$ | = | $\overline{6} + 3$ |
| $\overline{3} \times 3$  | = | 1 + 8              |

$$\begin{array}{rcl} O_2^{\Delta S=2} &=& \left(\bar{s}_{\alpha}(1-\gamma_5)d_{\alpha}\right)\left(\bar{s}_{\beta}(1-\gamma_5)d_{\beta}\right)\\ O_3^{\Delta S=2} &=& \left(\bar{s}_{\alpha}(1-\gamma_5)d_{\beta}\right)\left(\bar{s}_{\beta}(1-\gamma_5)d_{\alpha}\right)\\ \text{Under }SU_L(3) \longrightarrow \bar{s}_Rd_L\bar{s}_Rd_L \quad \text{Symmetric } \Rightarrow 6_L \end{array}$$

• Mixing pattern given by  $SU(3)_L \times SU(3)_R$  decomposition

| $3 \times 3$             | = | $6 + \bar{3}$      |
|--------------------------|---|--------------------|
| $\bar{3} \times \bar{3}$ | = | $\overline{6} + 3$ |
| $\overline{3} \times 3$  | = | 1 + 8              |

$$\begin{array}{rcl} O_2^{\Delta S=2} &=& \left(\bar{s}_{\alpha}(1-\gamma_5)d_{\alpha}\right)\left(\bar{s}_{\beta}(1-\gamma_5)d_{\beta}\right)\\ O_3^{\Delta S=2} &=& \left(\bar{s}_{\alpha}(1-\gamma_5)d_{\beta}\right)\left(\bar{s}_{\beta}(1-\gamma_5)d_{\alpha}\right)\\ \text{Under }SU_R(3) \longrightarrow \bar{s}_Rd_L\bar{s}_Rd_L & \text{Symmetric } \Rightarrow \bar{6}_R \end{array}$$

• Mixing pattern given by  $SU(3)_L \times SU(3)_R$  decomposition

| $3 \times 3$             | = | $6 + \bar{3}$      |
|--------------------------|---|--------------------|
| $\bar{3} \times \bar{3}$ | = | $\overline{6} + 3$ |
| $\overline{3} \times 3$  | = | 1 + 8              |

$$\begin{array}{rcl} O_4^{\Delta S=2} &=& (\bar{s}_\alpha(1-\gamma_5)d_\alpha) \left(\bar{s}_\beta(1+\gamma_5)d_\beta\right) \\ O_5^{\Delta S=2} &=& (\bar{s}_\alpha(1-\gamma_5)d_\beta) \left(\bar{s}_\beta(1+\gamma_5)d_\alpha\right) \end{array}$$
  
Under  $SU_L(3) \longrightarrow \bar{s}_R d_L \bar{s}_L d_R$  Non-flavour singlet  $\Rightarrow 8_L$ 

• Mixing pattern given by  $SU(3)_L \times SU(3)_R$  decomposition

| $3 \times 3$             | = | $6 + \bar{3}$      |
|--------------------------|---|--------------------|
| $\bar{3} \times \bar{3}$ | = | $\overline{6} + 3$ |
| $\overline{3} \times 3$  | = | 1 + 8              |

$$\begin{array}{rcl} O_4^{\Delta S=2} &=& (\bar{s}_\alpha(1-\gamma_5)d_\alpha) \left(\bar{s}_\beta(1+\gamma_5)d_\beta\right) \\ O_5^{\Delta S=2} &=& (\bar{s}_\alpha(1-\gamma_5)d_\beta) \left(\bar{s}_\beta(1+\gamma_5)d_\alpha\right) \end{array}$$
  
Under  $SU_R(3) \longrightarrow \overline{s}_R d_L \overline{s}_L d_R$  Non-flavour singlet  $\Rightarrow 8_R$ 

- $O_1 \in (27, 1)$  renormalises multiplicatively
- $O_2, O_3 \in (6, \overline{6})$  mix together
- $O_4, O_5 \in (8, 8)$  mix together
- Renormalization matrix is block diagonal  $1_{(27,1)} + (2 \times 2)_{(6,\bar{6})} + (2 \times 2)_{(8,8)}$

• In the chiral limit 
$$O_1 \to m_P^2$$
 and  $O_{i\geq 2} \to \mathrm{Cst}$ 

$$\Rightarrow \mathsf{Expect} \ \frac{\langle \bar{K}^0 | \mathcal{O}_{BSM} | K^0 \rangle}{\langle \bar{K}^0 | \mathcal{O}_{SM} | K^0 \rangle} \rightarrow \frac{1}{m_P^2}$$

# Normalisation

 $\langle \bar{K}^0 | {\cal O} | K^0 \rangle$  are dimension-four quantities

Different normalisations exit

Bag parameters B's, like  $B = \frac{\langle \bar{\kappa}^0 | O_1 | \kappa^0 \rangle}{\langle \bar{\kappa}^0 | O_1 | \kappa^0 \rangle_{VS}}$ 

$$B_{1} = B_{K} = \frac{\langle \bar{K}^{0} | O_{1} | K^{0} \rangle}{\frac{8}{3} m_{K}^{2} f_{K}^{2}}$$
$$B_{i \geq 2} = \frac{\langle \bar{K}^{0} | O_{i} | K^{0} \rangle}{N_{i} \langle \bar{K}^{0} | \bar{s} \gamma_{5} d | 0 \rangle \langle 0 | \bar{s} \gamma_{5} d | K^{0} \rangle}$$

Ratios R's [Babich, N.G., Hoelbling, Howard, Lellouch, Rebbi '06 ]

$$R_i^{\rm BSM}(m_P) = \left[\frac{f_K^2}{m_K^2}\right]_{\rm expt} \left[\frac{m_K^2}{f_K^2}\frac{\langle \bar{K}^0|O_i|K^0\rangle}{\langle \bar{K}^0|O_1|K^0\rangle}\right]_{\rm latt}$$

Golden combinations G<sub>s</sub> [Bailey, Kim, Lee, Sharpe '12, Bećirević, Villadoro '04]
 Ratios or products of B parameters free of chiral logs at NLO

- $n_f = 2 + 1 \text{ Domain-Wall [RBC-UKQCD '12]}$
- $n_f = 2$  [ETMc '12] and preliminary  $n_f = 2 + 1 + 1$  Twisted Mass [ETMc @ lat'13]
- $n_f = 2 + 1$  staggered [SWME '13]

RBC-UKQCD and ETMc found compatible results, but tension observed by SWME

# Update from SWME

# See poster by Jaehoon Leem

Different (but equivalent) choice of basis

$$\begin{array}{lll} \mathcal{O}_{2}^{\Delta S=2} & = & \left(\bar{s}_{\alpha}(1-\gamma_{5})d_{\alpha}\right)\left(\bar{s}_{\beta}(1-\gamma_{5})d_{\beta}\right) \\ \mathcal{O}_{3}^{\Delta S=2} & = & \left(\bar{s}_{\alpha}\sigma_{\mu\nu}(1-\gamma_{5})d_{\alpha}\right)\left(\bar{s}_{\beta}\sigma_{\mu\nu}(1-\gamma_{5})d_{\beta}\right) \\ \mathcal{O}_{4}^{\Delta S=2} & = & \left(\bar{s}_{\alpha}(1-\gamma_{5})d_{\alpha}\right)\left(\bar{s}_{\beta}(1+\gamma_{5})d_{\beta}\right) \\ \mathcal{O}_{5}^{\Delta S=2} & = & \left(\bar{s}_{\alpha}\gamma_{\mu}(1-\gamma_{5})d_{\alpha}\right)\left(\bar{s}_{\beta}\gamma_{\mu}(1+\gamma_{5})d_{\beta}\right) \end{array}$$

BSM bag parameters defined by

$$B_{i} = \frac{\langle \bar{K}^{0} | O_{i}^{\Delta S=2} | K^{0} \rangle}{N_{i} \langle \bar{K}^{0} | \bar{s} \gamma_{5} d | 0 \rangle \langle 0 | \bar{s} \gamma_{5} d | K^{0} \rangle}$$

where  $N_{2...5} = 5/3, 4, -2, 4/3$ 

Golden combinations G<sub>i</sub>

$$\begin{array}{rcl} G_{23} & = & \frac{B_2}{B_3} & & G_{45} & = & \frac{B_4}{B_5} \\ G_{24} & = & B_2 \times B_4 & & G_{21} & = & \frac{B_2}{B_K} \end{array}$$

• No  $\chi^{al}$  logs at NLO

D

# slide from Jaehoon Leem

# Preliminary Result

- We obtain BSM B-parameters  $B_i$  from the results of golden combination  $G_i$  and  $B_K$ .
- The dominant systematic error comes from the perturbative matching.(4.4%)

|               | SW              | ME            | RBC&UKQCD        | ETM                 |
|---------------|-----------------|---------------|------------------|---------------------|
|               | $\mu=2{ m GeV}$ | $\mu = 3$ GeV | $\mu=3~{ m GeV}$ | $\mu = 3  { m GeV}$ |
| $B_K$         | 0.537(04)(24)   | 0.518(04)(23) | 0.53(2)          | 0.51(2)             |
| $B_2$         | 0.576(05)(25)   | 0.532(05)(23) | 0.43(5)          | 0.47(2)             |
| $B_3^{Buras}$ | 0.385(05)(17)   | 0.363(05)(16) | N.A.             | N.A.                |
| $B_3^{SUSY}$  | 0.862(07)(38)   | 0.785(07)(34) | 0.75(9)          | 0.78(4)             |
| $B_4$         | 0.914(29)(40)   | 0.913(32)(40) | 0.69(7)          | 0.75(3)             |
| $B_5$         | 0.661(20)(29)   | 0.660(22)(29) | 0.47(6)          | 0.60(3)             |

 $\sim 3\sigma$  discrepancy/tension for  $B_{4,5}$ 

- Is the tension due to the matching to  $\overline{\mathrm{MS}}$  ?
- Systematic errors dominated by the perturbative renormalization procedure
- NPR implementation is on the way

See talk by Jangho Kim, Tuesday@5:10

# RBC-UKQCD [Boyle, N.G., Hudspith, Lytle, Sachrajda ]

- **R**<sub>i</sub> from 2 + 1 Domain-Wall fermions
- Main limitation of previous work: single lattice spacing and only RI-MOM scheme
- New lattice spacing and NPR with RI-SMOM schemes

Non-perturbative renormalisation matrix can be obtained with great precision

- Volume source [Göckeler et al, QCDSF '98] ⇒ tiny statistical errors
- Keep the momenta orientation fixed and use twisted boundary condition  $\Rightarrow$  control disctretisation effects
- Non-Exceptional kinematic (RI-SMOM) to avoid unwanted IR effects (chiral symmetry breaking, pole subtraction)

Unfortunately, the 1 – loop matching coefficient RI-SMOM  $\rightarrow \overline{MS}$  are not known for the (6,  $\overline{6}$ ) operators (for the (8, 8) we can use [Lehner & Sturm '11])

In RI-MOM (exceptional kinematic), the pole subtractions seem to be mandatory

 $\Rightarrow$  hard to estimate the associated systematic error

# Lattice 2014 update



-0.2

# Lattice 2014 update





- 2+1 Domain-Wall on asqtad (MILC configurations)
- Same setup as used for *B<sub>K</sub>* [Laiho & Van de Water'11]
- 3 lattice spacings

# see talk by Maxwell Hansen

$$K o \pi\pi$$

# Overview of the computation

Some references: [Bernard @ TASI'89, RBC PRD'01, Lellouch @ Les houches '09]

Operator Product expansion



Describe  $K \to (\pi \pi)_{I=0,2}$  with an effective Hamiltonian

$$H^{\Delta s=1} = \frac{G_F}{\sqrt{2}} \Big\{ \sum_{i=1}^{10} \left( V_{ud} V_{us}^* z_i(\mu) - V_{td} V_{ts}^* y_i(\mu) \right) Q_i(\mu) \Big\}$$

Short distance effects factorized in the Wilson coefficients  $y_i, z_i$ 

Long distance effects factorized in the matrix elements

$$\langle \pi \pi | Q_i | K \rangle \longrightarrow$$
 Lattice

Nicolas Garron (Trinity College Dublin)



$$Q_1 = (\bar{s}d)_{V-A}(\bar{u}u)_{V-A}$$
  $Q_2 = \text{color mixed}$ 



$$\begin{split} &Q_7 = \frac{3}{2}(\bar{s}d)_{\mathrm{V-A}} \sum_{q=u,d,s} e_q(\bar{q}q)_{\mathrm{V+A}} \qquad Q_8 = \text{color mixed} \\ &Q_9 = \frac{3}{2}(\bar{s}d)_{\mathrm{V-A}} \sum_{q=u,d,s} e_q(\bar{q}q)_{\mathrm{V-A}} \qquad Q_{10} = \text{color mixed} \end{split}$$

# 4-quark operators



$$egin{aligned} Q_3 &= (ar{s}d)_{\mathrm{V}-\mathrm{A}} \sum_{q=u,d,s} (ar{q}q)_{\mathrm{V}-\mathrm{A}} & Q_4 = ext{color mixed} \ Q_5 &= (ar{s}d)_{\mathrm{V}-\mathrm{A}} \sum_{q=u,d,s} (ar{q}q)_{\mathrm{V}+\mathrm{A}} & Q_6 = ext{color mixed} \end{aligned}$$

Irrep of  $SU(3)_L \otimes SU(3)_R$ 

$$\overline{3} \otimes 3 = 8+1$$
  
 $\overline{8} \otimes 8 = 27 + \overline{10} + 10 + 8 + 8 + 1$ 

Decomposition of the 4-quark operators gives

$$\begin{array}{rcl} Q_{1,2} & = & Q_{1,2}^{(27,1),\Delta I=3/2} + Q_{1,2}^{(27,1),\Delta I=1/2} + Q_{1,2}^{(8,8),\Delta I=1/2} \\ Q_{3,4} & = & Q_{3,4}^{(8,1),\Delta I=1/2} \\ Q_{5,6} & = & Q_{5,6}^{(8,1),\Delta I=1/2} \\ Q_{7,8} & = & Q_{7,8}^{(8,8),\Delta I=3/2} + Q_{7,8}^{(8,8),\Delta I=1/2} \\ Q_{9,10} & = & Q_{9,10}^{(27,1),\Delta I=3/2} + Q_{9,10}^{(27,1),\Delta I=1/2} + Q_{9,10}^{(8,8),\Delta I=1/2} \end{array}$$

Only 7 are independent: one (27, 1) four (8, 1), and two (8, 8),  $\Rightarrow$  we called them Q'

$$(27,1) \quad Q'_1 = Q'_1^{(27,1),\Delta I=3/2} + Q'_1^{(27,1),\Delta I=1/2}$$

$$\begin{array}{rcl} (8,1) & Q_2' & = & Q_2'^{(8,1),\Delta I = 1/2} \\ & Q_3' & = & Q_3'^{(8,1),\Delta I = 1/2} \\ & Q_5' & = & Q_5'^{(8,1),\Delta I = 1/2} \\ & Q_6' & = & Q_6'^{(8,1),\Delta I = 1/2} \end{array}$$

$$\begin{array}{rcl} (8,8) & Q_7' & = & Q_7'^{(8,8),\Delta I=3/2} + Q_7'^{(8,8),\Delta I=1/2} \\ & Q_8' & = & Q_8'^{(8,8),\Delta I=3/2} + Q_8'^{(8,8),\Delta I=1/2} \end{array}$$

Only 7 are independent: one (27, 1) four (8, 1), and two (8, 8),  $\Rightarrow$  we called them Q'

$$(27,1) \quad Q'_1 = Q'_1^{(27,1),\Delta I=3/2} + Q'_1^{(27,1),\Delta I=1/2}$$

$$\begin{array}{rcl} (8,1) & Q_2' & = & Q_2'^{(8,1),\Delta I = 1/2} \\ & Q_3' & = & Q_3'^{(8,1),\Delta I = 1/2} \\ & Q_5' & = & Q_5'^{(8,1),\Delta I = 1/2} \\ & Q_6' & = & Q_6'^{(8,1),\Delta I = 1/2} \end{array}$$

$$\begin{array}{rcl} (8,8) & Q_7' & = & Q_7'^{(6,6),\Delta I=3/2} + Q_7'^{(8,6),\Delta I=1/2} \\ & Q_8' & = & Q_8'^{(8,8),\Delta I=3/2} + Q_8'^{(8,8),\Delta I=1/2} \end{array}$$

# ${\cal K} ightarrow (\pi\pi)_{I=2}$ by the RBC-UKQCD collaborations

# A<sub>2</sub> from RBC-UKQCD

[Blum, Boyle, Christ, N.G., Goode, Izubuchi, Jung, Kelly, Lehner, Lightman, Liu, Lytle, Mawhinney, Sachrajda, Soni, Sturm, PRL'12, PRD'12]

- 2+1 Domain-Wall on IDSDR  $a \sim 0.14$  fm
- lightest unitary pion mass  $\sim 170 \text{ MeV}$  (partially quenched 140 MeV)
- NPR thourgh RI-SMOM schemes

### Overview of the computation

- Lellouch-Lüscher method [Lellouch Lüscher '00] to obtain the physical matrix element from the finite-volume Euclidiean amplitude and the derivative of the phase shift
- Combine
  - Wigner-Eckart theorem (Exact up to isospin symmetry breaking )

$$\langle \pi^{+}(p_{1})\pi^{0}(p_{2})|O_{\Delta I_{Z}=1/2}^{\Delta I=3/2}|K^{+}\rangle = 3/2\langle \pi^{+}(p_{1})\pi^{+}(p_{2})|O_{\Delta I_{Z}=3/2}^{\Delta I=3/2}|K^{+}\rangle$$

and then compute the unphysical process  $K^+ o \pi^+ \pi^+$ 

- Use Anti-periodic B.C. to eliminate the unwanted (wrong-kinematic) state [Sachrajda & Villadoro '05]
- Renormalise at low energy  $\mu_0 \sim 1.1 \text{ GeV}$  on the IDSDR and run non-perturbatively using finer lattices to  $\mu = 3 \text{ GeV}$  and match to  $\overline{\mathrm{MS}}$  [Arthur, Boyle 10, Arthur, Boyle, N.G., Kelly, Lytle 11]

$$\lim_{a_1 \to 0} \underbrace{\left[ Z(\mu_1, a_1) Z^{-1}(\mu_0, a_1) \right]}_{\text{fine lattice}} \times \underbrace{Z(\mu_0, a_0)}_{\text{coarse lattice}} = Z(\mu_1, a_0)$$

# A<sub>0</sub> from RBC-UKQCD

### "Pilot" computation of the full process

[T. Blum, Boyle, Christ, N.G., Goode, Izubuchi, Lehner, Liu, Mawhinney, Sachrajda, Soni, Sturm, Yin, Zhou, PRD'11].

Unphysical:

- "Heavy" pions (lightest  $\sim m_{\pi} \sim 300 \text{ MeV}$ ), small volume
- Non-physical kinematics: pions at rest

# A<sub>0</sub> from RBC-UKQCD

### "Pilot" computation of the full process

[T. Blum, Boyle, Christ, N.G., Goode, Izubuchi, Lehner, Liu, Mawhinney, Sachrajda, Soni, Sturm, Yin, Zhou, PRD'11].

Unphysical:

- "Heavy" pions (lightest  $\sim m_{\pi} \sim 300 \text{ MeV}$ ), small volume
- Non-physical kinematics: pions at rest

But "complete":

- Two-pion state
- All the contractions of the 7 fourk-operators are computed
- Renormalisation done non-perturbatively

# A<sub>0</sub> from RBC-UKQCD

### "Pilot" computation of the full process

[T. Blum, Boyle, Christ, N.G., Goode, Izubuchi, Lehner, Liu, Mawhinney, Sachrajda, Soni, Sturm, Yin, Zhou, PRD'11].

### Unphysical:

- "Heavy" pions (lightest  $\sim m_{\pi} \sim 300 \text{ MeV}$ ), small volume
- Non-physical kinematics: pions at rest

But "complete":

- Two-pion state
- All the contractions of the 7 fourk-operators are computed
- Renormalisation done non-perturbatively

obtain

# Toward an quantitative understanding of the $\Delta I = 1/2$ rule

We combine our physical computation of  $\Delta I = 3/2$  part is our non-physical computation of the  $\Delta I = 1/2$ 

|                    | 1/ <i>a</i><br>[GeV] | $m_{\pi}$<br>[MeV] | <i>m</i> <sub>K</sub><br>[MeV] | ReA <sub>2</sub><br>[10 <sup>-8</sup> GeV] | ReA <sub>0</sub><br>[10 <sup>-8</sup> GeV] | $\frac{\text{Re}A_0}{\text{Re}A_2}$ | kinematics |
|--------------------|----------------------|--------------------|--------------------------------|--------------------------------------------|--------------------------------------------|-------------------------------------|------------|
| 16 <sup>3</sup> IW | 1.73(3)              | 422(7)             | 878(15)                        | 4.911(31)                                  | 45(10)                                     | 9.1(2.1)                            | threshold  |
| 24 <sup>3</sup> IW | 1.73(3)              | 329(6)             | 662(11)                        | 2.668(14)                                  | 32.1(4.6)                                  | 12.0(1.7)                           | threshold  |
| 32 <sup>3</sup> ID | 1.36(1)              | 142.9(1.1)         | 511.3(3.9)                     | 1.38(5)(26)                                | -                                          | -                                   | physical   |
| Exp                | _                    | 135 - 140          | 494 - 498                      | 1.479(4)                                   | 33.2(2)                                    | 22.45(6)                            |            |

Pattern which could explain the  $\Delta I = 1/2$  enhancement

[Boyle, Christ, N.G., Goode, Izubuchi, Janowski, Lehner, Liu, Lytle, Sachrajda, Soni, Zhang, PRL'13]

Nicolas Garron (Trinity College Dublin)

Two kinds of contraction for each  $\Delta I = 3/2$  operator



 $\mathsf{Contraction}\ (\mathrm{I})$ 



Contraction 2

Two kinds of contraction for each  $\Delta I = 3/2$  operator



 $\mathsf{Contraction}\ (\underline{1})$ 



Contraction (2)

- ReA<sub>2</sub> is dominated by the tree level operator (EWP ~ 1%):
- Naive factorisation approach:  $2 \sim 1/3$
- Our computation:  $2 \sim -0.7$
- $\Rightarrow$  large cancellation in ReA<sub>2</sub>

Two kinds of contraction for each  $\Delta I = 3/2$  operator



 $\mathsf{Contraction}\ (\underline{1})$ 



Contraction (2)

- ReA<sub>2</sub> is dominated by the tree level operator (EWP ~ 1%):
- $\blacksquare$  Naive factorisation approach:  $\textcircled{2} \sim 1/3\textcircled{1}$
- Our computation:  $2 \sim -0.7$
- $\Rightarrow$  large cancellation in ReA<sub>2</sub>



 $\operatorname{Re}A_0$  is also dominated by the tree level operators

| i                | $Q_i^{lat}$ [GeV]     | $Q_i^{\overline{	ext{MS}}-	ext{NDR}}$ [GeV] |
|------------------|-----------------------|---------------------------------------------|
| 1                | $8.1(4.6) \ 10^{-8}$  | 6.6(3.1) 10 <sup>-8</sup>                   |
| 2                | $2.5(0.6) \ 10^{-7}$  | $2.6(0.5) \ 10^{-7}$                        |
| 3                | $-0.6(1.0) \ 10^{-8}$ | $5.4(6.7) \ 10^{-10}$                       |
| 4                | -                     | $2.3(2.1) \ 10^{-9}$                        |
| 5                | $-1.2(0.5) 10^{-9}$   | $4.0(2.6) 10^{-10}$                         |
| 6                | $4.7(1.7) \ 10^{-9}$  | $-7.0(2.4) 10^{-9}$                         |
| 7                | $1.5(0.1) \ 10^{-10}$ | $6.3(0.5) \ 10^{-11}$                       |
| 8                | $-4.7(0.2) 10^{-10}$  | $-3.9(0.1) 10^{-10}$                        |
| 9                | _                     | $2.0(0.6) \ 10^{-14}$                       |
| 10               | -                     | $1.6(0.5) \ 10^{-11}$                       |
| ReA <sub>0</sub> | $3.2(0.5) \ 10^{-7}$  | $3.2(0.5) \ 10^{-7}$                        |

ReA<sub>0</sub> is also dominated by the tree level operators

| i                | $Q_i^{lat}$ [GeV]     | $Q_i^{\overline{	ext{MS-NDR}}}$ [GeV] |
|------------------|-----------------------|---------------------------------------|
| 1                | $8.1(4.6) \ 10^{-8}$  | 6.6(3.1) 10 <sup>-8</sup>             |
| 2                | $2.5(0.6) \ 10^{-7}$  | $2.6(0.5) 10^{-7}$                    |
| 3                | $-0.6(1.0) 10^{-8}$   | $5.4(6.7) \ 10^{-10}$                 |
| 4                | _                     | $2.3(2.1) \ 10^{-9}$                  |
| 5                | $-1.2(0.5) 10^{-9}$   | $4.0(2.6) 10^{-10}$                   |
| 6                | $4.7(1.7) \ 10^{-9}$  | $-7.0(2.4) 10^{-9}$                   |
| 7                | $1.5(0.1) \ 10^{-10}$ | $6.3(0.5) \ 10^{-11}$                 |
| 8                | $-4.7(0.2) 10^{-10}$  | $-3.9(0.1) 10^{-10}$                  |
| 9                | _                     | $2.0(0.6) \ 10^{-14}$                 |
| 10               | -                     | $1.6(0.5) \ 10^{-11}$                 |
| ReA <sub>0</sub> | $3.2(0.5) \ 10^{-7}$  | 3.2(0.5) 10 <sup>-7</sup>             |

Dominant contribution to  $Q_2^{\rm lat}$  is  $\propto$  (2(2) – (1))  $\Rightarrow$  Enhancement in ReA<sub>0</sub>

ReA<sub>0</sub> is also dominated by the tree level operators

| i       | $Q_i^{lat}$ [GeV]      | $Q_i^{\overline{	ext{MS-NDR}}}$ [GeV] |
|---------|------------------------|---------------------------------------|
| 1       | $8.1(4.6) \ 10^{-8}$   | 6.6(3.1) 10 <sup>-8</sup>             |
| 2       | $2.5(0.6) \ 10^{-7}$   | $2.6(0.5) 10^{-7}$                    |
| 3       | $-0.6(1.0) \ 10^{-8}$  | 5.4(6.7) $10^{-10}$                   |
| 4       | -                      | $2.3(2.1) \ 10^{-9}$                  |
| 5       | $-1.2(0.5) \ 10^{-9}$  | $4.0(2.6) 10^{-10}$                   |
| 6       | $4.7(1.7) \ 10^{-9}$   | $-7.0(2.4) 10^{-9}$                   |
| 7       | $1.5(0.1) \ 10^{-10}$  | $6.3(0.5) \ 10^{-11}$                 |
| 8       | $-4.7(0.2) \ 10^{-10}$ | $-3.9(0.1) 10^{-10}$                  |
| 9       | _                      | $2.0(0.6) 10^{-14}$                   |
| 10      | -                      | $1.6(0.5) 10^{-11}$                   |
| $ReA_0$ | $3.2(0.5) \ 10^{-7}$   | 3.2(0.5) 10 <sup>-7</sup>             |

Dominant contribution to  $Q_2^{\rm lat}$  is  $\propto$  (22 – ①)  $\Rightarrow$  Enhancement in ReA<sub>0</sub>

$$\frac{\mathrm{Re}A_0}{\mathrm{Re}A_2} \sim \frac{2(2) - (1)}{(1) + (2)}$$

With this unphysical kinematics, we find

$$\frac{\text{Re}A_0}{\text{Re}A_2} = 9.1(2.1) \text{ for } m_K = 878 \text{ MeV } m_\pi = 422 \text{ MeV}$$
$$\frac{\text{Re}A_0}{\text{Re}A_2} = 12.0(1.7) \text{ for } m_K = 662 \text{ MeV } m_\pi = 329 \text{ MeV}$$

# Lattice 2014 update

 $\bullet \quad \Delta I = 3/2$ 

Main limitation on the previous computation : only one coarse lattice spacing IDSDR  $32^3 \times 64$ , with  $a^{-1} \sim 1.37 \text{ GeV} \Rightarrow a \sim 0.14 \text{ fm}$ ,  $L \sim 4.6 \text{ fm}$ 

### Current computation:

two lattice spacing,  $n_f = 2 + 1$ , large volume at the physical point

New discretisation of the Domain-Wall fermion forumlation: Möbius [Brower, Neff, Orginos '12]

- $48^3 \times 96$ , with  $a^{-1} \sim 1.729 \text{ GeV} \Rightarrow a \sim 0.11 \text{ fm}$ ,  $L \sim 5.5 \text{ fm}$
- $64^3 \times 128$  with  $a^{-1} \sim 2.358$  GeV  $\Rightarrow a \sim 0.84$  fm,  $L \sim 5.4$  fm
- $\blacksquare$  am<sub>res</sub>  $\sim 10^{-4}$

Status: Computation finished, draft in final stage

# Lattice 2014 update

 $\bullet \quad \Delta I = 3/2$ 

Main limitation on the previous computation : only one coarse lattice spacing IDSDR  $32^3 \times 64$ , with  $a^{-1} \sim 1.37 \text{ GeV} \Rightarrow a \sim 0.14 \text{ fm}$ ,  $L \sim 4.6 \text{ fm}$ 

Current computation:

two lattice spacing,  $n_f = 2 + 1$ , large volume at the physical point

New discretisation of the Domain-Wall fermion forumlation: Möbius [Brower, Neff, Orginos '12]

■  $48^3 \times 96$ , with  $a^{-1} \sim 1.729 \text{ GeV} \Rightarrow a \sim 0.11 \text{ fm}$ ,  $L \sim 5.5 \text{ fm}$ 

•  $64^3 \times 128$  with  $a^{-1} \sim 2.358$  GeV  $\Rightarrow a \sim 0.84$  fm,  $L \sim 5.4$  fm

$$am_{res} \sim 10^{-4}$$

Status: Computation finished, draft in final stage

### $\Delta I = 1/2$

Main limitation on the previous computation : non-physical kinematic

New formulation: G-parity boundary conditions

Status: First computation almost finished

# See talks by Chris Kelly and by Daiqian Zhang, Monday

Nicolas Garron (Trinity College Dublin)

Weak interactions of kaons and pions





Preliminary: systematic budget not complete

see also talk by T.Janowski @ lat'13 [Janowski, Sachrajda, Boyle, Christ, Mawhinney, Yin, Zhang, N.G., Lytle]

# Other computations of $K \rightarrow (\pi \pi)$

# ${\it K} \rightarrow \pi\pi$ with improved Wilson fermions

[N. Ishizuka , K.I. Ishikawa , A. Ukawa , T. Yoshie]

- Direct computation with 2-pion at rest
- both  $\Delta I = 1/2$  and  $\Delta I = 3/2$
- 2+1 improved Wilson fermions on Iwasaki gauge config
- $\blacksquare~32^3\times64,\,\sim0.091\,$  fm,  $L\sim2.91\,$  fm
  - Perturbative operator renormalization (1 loop) after non-perturbative subtraction of the lower dimensional operator P.

$$Q_i^{\overline{MS}}(\mu) = \sum_j Z_{ij}(\mu) \cdot \left[Q_j^{\text{lat}} - \alpha_j P\right]$$
  
 $P = \bar{s}\gamma_5 d$ ,  $\alpha_j = \frac{\langle 0|Q_j|K \rangle}{\langle 0|P|K \rangle}$ ,  $Z_{ij}(\mu)$ : 1 loop

 For calculations of the quark loops in the "eye" and the disconnected diagrams, hopping parameter expansion (4th order) and truncated solver method (N<sub>T</sub>=5) are used.

(proposed by G.S. Bali et al., (CPC 181(2010)1570))

# See talk by Naruhito Ishizuka (Monday 4:30)

Nicolas Garron (Trinity College Dublin)

Weak interactions of kaons and pions

# From Naruhito Ishizuka's talk

### Results



Nicolas Garron (Trinity College Dublin)

Ongoing effort, updated in [Endress & Pena '12, Endress, Pena, Sivalingam '14]

- Charm is kept active in the effective Hamiltonian
- Matching to SU(3) (heavy charm) and SU(4) (unphysical light charm) chiral Lagrangian
- Computation of the LEC as a function of m<sub>c</sub>
- Technically demanding, as requires to compute "eye contractions", see [Endress, Pena, Sivalingam '14]
- Implementation with quenched overlap fermions on a single lattice spacing
- First results indicate an enhancement in  $Re(A_0)/Re(A_2)$  as  $m_C$  increases.
- Hard to know at the moment if the enhancement will be enough to give a factor 20 (charm is still far from its physical value)

# Lattice 2014 update: Chromagnetic operator in $\mathcal{K} ightarrow \pi$

# ETMc

- 2+1+1 Twisted Mass / Osterwalder-Seiler fermions
- Pion mass down to  $\sim 210~{
  m MeV}$
- three lattice spacings  $a \sim 0.06 0.09 \; {
  m fm}$



See talk by Vittorio Lubicz Wednesday@10:20 and poster by Marios Costa

# Conclusions

Exciting time for kaon/pion physics

- Various collaborations are reaching the physical point
- For the decay constants, or semi-leptonic form factors, we are reaching a precision such that EM corrections become significant (see plenary talk by Antonin Portelli, Thursday@11:30)
- Computation of new quantities (eg: chromomagnetic operator)
- New computations of the neutral kaon mixing matrix elements (B<sub>K</sub> and BSM)
- Continuum limit of  $K \to (\pi \pi)_{l=2}$  at the physical point
- First realistic results of  $K \to (\pi \pi)_{I=0}$  (with physical kinematics) should be available in a few months, thanks to G-parity boundary conditions
- Various collaborations are computing the BSM neutral kaon matrix elements
- NPR is at mature stage with the RI-SMOM schemes, but some matching coefficients are highly needed: NNLO (2-loops matching) for B<sub>K</sub> and NLO (1-loop matching) or the (6, 6) BSM operators