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• QCD phase diagram
• Criticality
• Chiral crossover
• Deconfinement and fluctuations
• Equation of state
• Hadrons in the plasma
• Beyond QCD
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Finite-temperature QCD on the lattice

• the phase structure of QCD 
(and QCD-like theories)
• implications for the physics of 

the early universe and neutron 
stars
• connection to heavy-ion 

experimental program
• (maybe) black hole physics
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Collins, Perry, PRL 34 (1975)
Cabbibo, Parisi PLB 59 (1975)



Possible criticality: Columbia plot
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Possible criticality: order parameters
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• Polyakov loop:

• Chiral condensate:

• Chiral susceptibility:
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• Chiral condensate:

• Chiral susceptibility:

• Polyakov loop:

Possible criticality: order parameters
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Real world
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• No order parameter at the physical point
• Can define chiral crossover temperature from the peak of 

the disconnected chiral susceptibility (light quark masses 
are small)
• Deconfinement – susceptibilities of conserved charges:

χBQS
klm =

∂(k+l+m)[P (µB , µQ, µS)/T 4]

∂(µB/T )k∂(µQ/T )l∂(µS/T )m

����
�µ=0

• Deconfinement – equation of state P (T ), ε(T )



Chiral crossover temperature
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• well established with staggered
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Bhattacharya et al. [HotQCD], 1402.5175
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• new: 2+1 domain-wall at the physical pion mass(!)

Tc = 155(9) MeV

Jun 23, 2014

Talk: Schroeder, Thu
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Chiral crossover temperature



Crossover region, 2+1 Wilson
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• Stout improved
• Pion down to 280 MeV
• Condensate decreasing in 

the right direction



Hadron Resonance Gas model
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Figure 6. Left panel: isospin susceptibility as a function of the temperature. Right panel: electric
charge susceptibility as a function of the temperature. In both panels, the different dots correspond
to different Nt values. The red band is the continuum extrapolation. The black curve is the HRG
model prediction for these observables. The dashed line shows the ideal gas limit.
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Figure 7. Left: quadratic fluctuation of baryon number as a function of the temperature. The
different symbols correspond to different Nt values, the red band is the continuum extrapolation
and the black, solid curve is the HRG model result. The ideal gas limit is shown by the black,
dashed line. Right: comparison between all diagonal susceptibilities, rescaled by the corresponding
ideal gas limit, as functions of the temperature.

temperatures it agrees with the HRG model result, and it shows a rapid rise across the

transition. It reaches the ideal gas limit much faster than the other observables under

study, yet there is a window of about 100 MeV above Tc, where its value is still smaller

than one. In analogy with χus
11, this observable also gives us information on bound state

survival above Tc.

For convenience we tabulate our continuum results in Table 1.
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Electric charge fluctuations
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FIG. 5. Fluctuations of net strangeness (left) and electric charge (right) in units of T 2. Calculations of fK have been used
to fix the temperature scale. Also shown are extrapolated results taking into account O(a2) corrections (i) using a linear fit
(crosses) and (ii) using the exponential Ansatz given in Eq. (12) (band). The HRG model result and the SB limit is given by
the solid lines.
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FIG. 6. Net baryon number fluctuations in units of T 2 (left) and the ratio of net baryon number and net electric charge
fluctuations (right). Calculations of fK have been used to fix the temperature scale. Also shown are fit results taking into
account O(a2) corrections (crosses). For χB

2 /χ
Q
2 we also show the ratio of continuum extrapolations (band). The HRG model

result and the SB limit is given by the solid lines.

dependence of the pion spectrum, i.e., the anomalously large RMS pion mass suppresses fluctuations in the electric
charge and has a much smaller effect on the baryon and strangeness charges. In short, a continuum extrapolation
without including the effects of taste symmetry breaking is insufficient.
The distorted HRG model, which modifies the log of the partition function by replacing Mπ by MRMS

π in the pion
contribution, exp(−Mπ/T ), however, does describe the data well. In general, the HRG model defined in Eq. 7 suggests
that, in this temperature regime, cut-off effects in any quantity f may be accounted for by an exponential Ansatz of
the form

f(Nτ , T ) = a(T ) + b(T ) e−c(T )/N2

τ , (12)

which, at high temperatures where cut-off effects become small, reduces to the linear fit in 1/N2
τ , i.e., f(Nτ , T ) "

ã(T ) + b̃(T )/N2
τ . We, therefore, analyze our data for χ̂Q,S

2 in the transition region, 150 ≤ T ≤ 190 MeV, from the
low to high temperature phase of (2+1)-flavor QCD using fits linear and quadratic in 1/N2

τ as well as the exponential
Ansatz given in Eq. (12). In the case of χ̂B

2 , as shown in Fig. 7, the statistical errors are too large to obtain stable
results with the exponential Ansatz so only the linear and quadratic fits are considered. Note that for temperatures
T<∼170 MeV the quadratic fit results in large errors in χ̂B

2 , whereas the linear fits are well behaved and lead to a
χ2/dof less than unity in the entire range of temperatures T ≥ 150 MeV. We use the difference between the quadratic
and linear fit results to estimate systematic errors in the continuum extrapolated value of χ̂B

2 .

Borsanyi et al. [WB], JHEP1201(2012)
Bazavov et al. [HotQCD], PRD86 (2012)

• Relevant for heavy-ion 
experiments

HISQ Stout
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Figure 6. Left panel: isospin susceptibility as a function of the temperature. Right panel: electric
charge susceptibility as a function of the temperature. In both panels, the different dots correspond
to different Nt values. The red band is the continuum extrapolation. The black curve is the HRG
model prediction for these observables. The dashed line shows the ideal gas limit.
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Figure 7. Left: quadratic fluctuation of baryon number as a function of the temperature. The
different symbols correspond to different Nt values, the red band is the continuum extrapolation
and the black, solid curve is the HRG model result. The ideal gas limit is shown by the black,
dashed line. Right: comparison between all diagonal susceptibilities, rescaled by the corresponding
ideal gas limit, as functions of the temperature.

temperatures it agrees with the HRG model result, and it shows a rapid rise across the

transition. It reaches the ideal gas limit much faster than the other observables under

study, yet there is a window of about 100 MeV above Tc, where its value is still smaller

than one. In analogy with χus
11, this observable also gives us information on bound state

survival above Tc.

For convenience we tabulate our continuum results in Table 1.
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Electric charge fluctuations
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FIG. 5. Fluctuations of net strangeness (left) and electric charge (right) in units of T 2. Calculations of fK have been used
to fix the temperature scale. Also shown are extrapolated results taking into account O(a2) corrections (i) using a linear fit
(crosses) and (ii) using the exponential Ansatz given in Eq. (12) (band). The HRG model result and the SB limit is given by
the solid lines.
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FIG. 6. Net baryon number fluctuations in units of T 2 (left) and the ratio of net baryon number and net electric charge
fluctuations (right). Calculations of fK have been used to fix the temperature scale. Also shown are fit results taking into
account O(a2) corrections (crosses). For χB

2 /χ
Q
2 we also show the ratio of continuum extrapolations (band). The HRG model

result and the SB limit is given by the solid lines.

dependence of the pion spectrum, i.e., the anomalously large RMS pion mass suppresses fluctuations in the electric
charge and has a much smaller effect on the baryon and strangeness charges. In short, a continuum extrapolation
without including the effects of taste symmetry breaking is insufficient.
The distorted HRG model, which modifies the log of the partition function by replacing Mπ by MRMS

π in the pion
contribution, exp(−Mπ/T ), however, does describe the data well. In general, the HRG model defined in Eq. 7 suggests
that, in this temperature regime, cut-off effects in any quantity f may be accounted for by an exponential Ansatz of
the form

f(Nτ , T ) = a(T ) + b(T ) e−c(T )/N2

τ , (12)

which, at high temperatures where cut-off effects become small, reduces to the linear fit in 1/N2
τ , i.e., f(Nτ , T ) "

ã(T ) + b̃(T )/N2
τ . We, therefore, analyze our data for χ̂Q,S

2 in the transition region, 150 ≤ T ≤ 190 MeV, from the
low to high temperature phase of (2+1)-flavor QCD using fits linear and quadratic in 1/N2

τ as well as the exponential
Ansatz given in Eq. (12). In the case of χ̂B

2 , as shown in Fig. 7, the statistical errors are too large to obtain stable
results with the exponential Ansatz so only the linear and quadratic fits are considered. Note that for temperatures
T<∼170 MeV the quadratic fit results in large errors in χ̂B

2 , whereas the linear fits are well behaved and lead to a
χ2/dof less than unity in the entire range of temperatures T ≥ 150 MeV. We use the difference between the quadratic
and linear fit results to estimate systematic errors in the continuum extrapolated value of χ̂B

2 .
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Figure 6. Left panel: isospin susceptibility as a function of the temperature. Right panel: electric
charge susceptibility as a function of the temperature. In both panels, the different dots correspond
to different Nt values. The red band is the continuum extrapolation. The black curve is the HRG
model prediction for these observables. The dashed line shows the ideal gas limit.
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temperatures it agrees with the HRG model result, and it shows a rapid rise across the

transition. It reaches the ideal gas limit much faster than the other observables under

study, yet there is a window of about 100 MeV above Tc, where its value is still smaller

than one. In analogy with χus
11, this observable also gives us information on bound state

survival above Tc.

For convenience we tabulate our continuum results in Table 1.
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FIG. 5. Fluctuations of net strangeness (left) and electric charge (right) in units of T 2. Calculations of fK have been used
to fix the temperature scale. Also shown are extrapolated results taking into account O(a2) corrections (i) using a linear fit
(crosses) and (ii) using the exponential Ansatz given in Eq. (12) (band). The HRG model result and the SB limit is given by
the solid lines.
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dependence of the pion spectrum, i.e., the anomalously large RMS pion mass suppresses fluctuations in the electric
charge and has a much smaller effect on the baryon and strangeness charges. In short, a continuum extrapolation
without including the effects of taste symmetry breaking is insufficient.
The distorted HRG model, which modifies the log of the partition function by replacing Mπ by MRMS

π in the pion
contribution, exp(−Mπ/T ), however, does describe the data well. In general, the HRG model defined in Eq. 7 suggests
that, in this temperature regime, cut-off effects in any quantity f may be accounted for by an exponential Ansatz of
the form

f(Nτ , T ) = a(T ) + b(T ) e−c(T )/N2

τ , (12)

which, at high temperatures where cut-off effects become small, reduces to the linear fit in 1/N2
τ , i.e., f(Nτ , T ) "

ã(T ) + b̃(T )/N2
τ . We, therefore, analyze our data for χ̂Q,S

2 in the transition region, 150 ≤ T ≤ 190 MeV, from the
low to high temperature phase of (2+1)-flavor QCD using fits linear and quadratic in 1/N2

τ as well as the exponential
Ansatz given in Eq. (12). In the case of χ̂B

2 , as shown in Fig. 7, the statistical errors are too large to obtain stable
results with the exponential Ansatz so only the linear and quadratic fits are considered. Note that for temperatures
T<∼170 MeV the quadratic fit results in large errors in χ̂B

2 , whereas the linear fits are well behaved and lead to a
χ2/dof less than unity in the entire range of temperatures T ≥ 150 MeV. We use the difference between the quadratic
and linear fit results to estimate systematic errors in the continuum extrapolated value of χ̂B

2 .

Borsanyi et al. [WB], JHEP1201(2012)
Bazavov et al. [HotQCD], PRD86 (2012)

• Pion-dominated, large 
taste-breaking effects

HISQ Stout



Freeze-out parameters
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• Ratios of electric charge cumulants can be measured 
experimentally, can define thermometer and baryometer 
(discussed at Lattice2013)
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• 4stout, 2+1+1, electric charge kurtosis
• Physical pion mass, Nt = 6, ..., 24
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• 4stout, 2+1+1, electric charge kurtosis
• Physical pion mass, Nt = 6, ..., 24

Talk: Borsanyi, Mon
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• Trace anomaly:

• Requires UV subtractions, very computationally extensive

• New scheme: calculate 
entropy in the moving 
frame, shifted 
boundary conditions
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FIG. 2. The step-scaling function (left) and the entropy density normalized to the SB value (right) versus the temperature.
The dashed lines (red) are the SB values, while the dotted-dashed lines (blue) are the perturbation theory ones from Ref. [19].

β L0/a �T0k�(1,0,0) ZT

6.0403 3 −5.4278(22) 10−3 1.585(6)

6.2257 4 −1.7262(5) 10−3 1.523(6)

6.3875 5 −0.7203(5) 10−3 1.497(4)

6.5282 6 −0.3536(5) 10−3 1.484(6)

β L0/a �T0k�(1,1,1) ZT

6.2670 3 −6.584(11) 10−4 1.528(6)

6.4822 4 −2.187(3) 10−4 1.475(6)

6.6575 5 −0.9251(19) 10−4 1.456(3)

6.7981 6 −0.4524(14) 10−4 1.439(6)

TABLE II. The bare vacuum expectation values of �T0k�ξ
at the reference temperature T0 for ξ = (1, 0, 0) and (1, 1, 1).
The renormalization constant ZT at the corresponding eight
β values is also reported.

expect to reduce the latter error to the same level of the
former once the renormalization constant is determined
in the full range 0 ≤ g20 ≤ 1 [15]. Taking into account
that the entire computation required a few million of core
hours on BG/Q, the precision reached shows the poten-
tiality of the strategy.

The results for the entropy density are in agreement
with those in Refs. [1, 18], and for T > 2Tc with the
more precise ones in Ref. [2]. Our data differ by several

standard deviations from those in Ref. [2] in the inter-
val Tc < T < 2Tc. A more detailed comparison will be
presented in Ref. [15], where more points will be added
in this low-temperature region. The step-scaling func-
tion at T ∼ 15Tc is already compatible with the high-
temperature limit within the half a percent uncertainty
quoted. The entropy density, however, still differs from
the Stefan-Boltzmann value by rougly 5% at T � 20Tc.
To compare with the known perturbative formula [19],
we use ΛMS r0 = 0.586(48) [12, 13] and we fix the O(g6)
undetermined coefficient by matching the perturbative
value of the entropy density with our data at the largest
temperature T � 20Tc. The results are shown in Fig. 2.
Despite the good agreement, it must be said that the
contribution from the various orders in the perturbative
series is oscillating. At our largest temperature the con-
tribution of O(g6) is roughly 40% of the total correc-
tion to the entropy density given by the other terms, see
Ref. [15] for more details.
On a more theoretical side, the results presented in

this Letter are a direct non-perturbative verification of
the consequences of Lorentz invariance at finite T.
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Equation of state of a relativistic theory from a moving frame
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We propose a new strategy for determining the equation of state of a relativistic thermal quantum
field theory by considering it in a moving reference system. In this frame an observer can measure
the entropy density of the system directly from its average total momentum. In the Euclidean path
integral formalism, this amounts to compute the expectation value of the off-diagonal components
T0k of the energy-momentum tensor in presence of shifted boundary conditions. The entropy is thus
easily measured from the expectation value of a local observable computed at the target temperature
T only. At large T , the temperature itself is the only scale which drives the systematic errors, and
the lattice spacing can be tuned to perform a reliable continuum limit extrapolation while keeping
finite-size effects under control. We test this strategy for the four-dimensional SU(3) Yang-Mills
theory. We present precise results for the entropy density and its step-scaling function in the
temperature range 0.9Tc − 20Tc. At each temperature, we consider four lattice spacings in order
to extrapolate the results to the continuum limit. As a byproduct we also determine the ultraviolet
finite renormalization constant of T0k by imposing suitable Ward identities. These findings establish
this strategy as a solid, simple and efficient method for an accurate determination of the equation
of state of a relativistic thermal field theory over several orders of magnitude in T .

Introduction.— Relativistic thermal quantum field theo-
ries are of central importance in many areas of research
in physics. The equation of state (EOS) of Quantum
Chromo Dynamics (QCD) is a very basic property of
strongly-interacting matter that is of absolute interest in
particle and nuclear physics, and in cosmology. It is also
a crucial input in the analysis of data collected at the
heavy-ion colliders.

Lattice QCD is the only known theoretical framework
where the EOS can be determined from first principles
in the interesting range of temperature values. Since
the perturbative expansion converges very slowly, the
full computation of the EOS has to be done numerically
over several orders of magnitude in T . Severe unphysi-
cal contributions hinder the standard way of computing
the pressure and the energy density. The expansion of
the free energy in the bare parameters, and the subtrac-
tion of ultraviolet power divergences make the compu-
tation of the EOS technically difficult and numerically
very demanding [1–4] (see Ref. [5] for a recent review).
Temperatures higher than a few hundreds MeV are still
unreachable with staggered fermions. The computation
remains prohibitive with Wilson fermions. The obsta-
cles, however, are not rooted in the physics content of
the EOS, but in the strategy adopted for its computa-
tion. This calls for a conceptual progress able to trigger
new computational strategies, which in turn are capable
to reach the goal of a precise computation of the EOS in
a generic discretization of the theory.

The underlying Lorentz symmetry of relativistic ther-
mal theories offers an elegant and simple solution to this
problem. In these theories the entropy is proportional to
the total momentum of the system as measured by an ob-
server in a moving frame. Remarkably, the corresponding
Euclidean path integral formulation is rather simple. It
corresponds to inserting a shift ξ in the spatial directions

when closing the boundary conditions of a field φ in the
compact direction of length L0 [6–9]

φ(L0,x) = φ(0,x− L0 ξ) . (1)

In the thermodynamic limit, the invariance of the dynam-
ics under the SO(4) group implies that the free energy
density f(L0, ξ) satisfies [6–8]

f(L0, ξ) = f(L0

�
1 + ξ2,0) . (2)

Hence the free energy does not depend on L0 and ξ sep-
arately but on the combination L0

�
1 + ξ2 = T−1 which

fixes the inverse temperature of the system. This redun-
dancy implies that the thermal distributions of the total
energy and momentum are related, and interesting Ward
identities (WIs) follow. In particular, the entropy density
can be written as [6]

s(T )

T 3
= − (1 + ξ2)

ξk

�T0k�ξ
T 4

, (3)

where �·�ξ stands for the expectation value computed
with a non-zero shift ξ. No ultraviolet power-divergent
contributions need to be subtracted from �T0k�ξ.
In this Letter we explore a new computational strategy

for determining the EOS of a relativistic thermal quan-
tum field theory based on Eq. (3). We illustrate the
power of the method in the SU(3) Yang-Mills theory,
where we determine the entropy density of the system in
the range 0.9Tc−20Tc. This is a particularly interesting
theory since it is the limit of QCD in absence of fermions
(or with infinitely heavy fermions), and it can be used
to test new ideas and numerical methods without facing
the problems of simulating dynamical fermions. Since it
relies on Lorentz invariance only, the strategy is directly
applicable to any relativistic thermal theory and, in par-
ticular, to QCD.
Entropy density from the lattice.— We regularize the
four-dimensional SU(3) Yang–Mills theory on a square
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• Shifted boundary conditions in the fixed scale approach
• Enable to reach various temperatures at the same lattice 
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• Reconstruction of the spectral function, real and imaginary 
part of the potential Talk: Rothkopf, Wed

• Singlet and octet potential Rossi, Testa, PRD87 (2013)

• Charmonium S-wave potential Allton et al., publication in preparation
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• Challenge: reconstruct spectral functions from Euclidean 
correlators

2

II. MESON CORRELATORS AND SPECTRAL
FUNCTIONS

In this section we discuss the relation between the Eu-
clidean meson correlators and spectral functions at finite
temperature. It is straightforward to take the zero tem-
perature limit.

Most dynamic properties of the finite temperature sys-
tem are incorporated in the spectral function. The spec-
tral function σH(p0, "p) for a given mesonic channel H in
a system at temperature T can be defined through the
Fourier transform of the real time two point functions
D> and D< or equivalently as the imaginary part of the
Fourier transformed retarded correlation function [22],

σH(p0, "p) =
1

2π
(D>

H(p0, "p) − D<
H(p0, "p))

=
1

π
ImDR

H(p0, "p)

D>(<)
H (p0, "p) =

∫

d4p

(2π)4
eip·xD>(<)

H (x0, "x) (1)

D>
H(x0, "x) = 〈JH(x0, "x), JH(0,"0)〉

D<
H(x0, "x) = 〈JH(0,"0), JH(x0, "x)〉, x0 > 0 (2)

In the present paper we study local meson operators
of the form

JH(t, x) = q̄(t, x)ΓHq(t, x) (3)

with

ΓH = 1, γ5, γµ, γ5γµ, γµγν (4)

for scalar, pseudo-scalar, vector, axial-vector and tensor
channels. The relation of these quantum number chan-
nels to different meson states is given in Tab. I.

The correlators D>(<)
H (x0, "x) satisfy the well-known

Kubo-Martin-Schwinger (KMS) condition [22]

D>
H(x0, "x) = D<(x0 + i/T, "x). (5)

Inserting a complete set of states and using Eq. (5), one
gets the expansion

σH(p0, "p) = (2π)2

Z

∑

m,n(e−En/T ± e−Em/T ) ×
〈n|JH(0)|m〉|2δ4(pµ − kn

µ + km
µ ) (6)

where Z is the partition function, and kn(m) refers to the
four-momenta of the state |n(m)〉.

A stable mesonic state contributes a δ function-like
peak to the spectral function:

σH(p0, "p) = |〈0|JH |H〉|2ε(p0)δ(p
2 − m2

H), (7)

where mH is the mass of the state. For a quasi-particle
in the medium one gets a smeared peak, with the width
being the thermal width. As one increases the temper-
ature the width increases and at sufficiently high tem-
peratures, the contribution from the meson state in the

spectral function may be sufficiently broad so that it is
not very meaningful to speak of it as a well defined state
any more. The spectral function as defined in Eq. (6)
can be directly accessible by high energy heavy ion exper-
iments. For example, the spectral function for the vector
current is directly related to the differential thermal cross
section for the production of dilepton pairs [23]:

dW

dp0d3p
|#p=0 =

5α2
em

27π2

1

p2
0(e

p0/T − 1)
σ(p0, "p). (8)

Then presence or absence of a bound state in the spectral
function will manifest itself in the peak structure of the
differential dilepton rate.

In finite temperature lattice calculations, one calcu-
lates Euclidean time propagators, usually projected to a
given spatial momentum:

GH(τ, "p) =

∫

d3xei#p.#x〈TτJH(τ, "x)JH(0,"0)〉 (9)

This quantity is an analytical continuation of D>(x0, "p)

GH(τ, "p) = D>(−iτ, "p). (10)

Using this equation and the KMS condition one can easily
show that GH(τ, "p) is related to the spectral function, Eq.
(1), by an integral equation (see e.g. appendix B of Ref.
[11]):

G(τ, "p) =

∫ ∞

0
dωσ(ω, "p)K(ω, τ)

K(ω, τ) =
cosh(ω(τ − 1/2T ))

sinh(ω/2T )
. (11)

This equation is the basic equation for extracting the
spectral function from meson correlators. Methods to do
this will be discussed in the next section. Equation (11)
is valid in the continuum. Formally the same spectral
representation can be written for the Euclidean correlator
calculated on the lattice Glat(τ, "p). The corresponding
spectral function, however, will be distorted by the effect
of the finite lattice spacing. These distortions have been
calculated in the free theory [24, 25].

III. BAYESIAN ANALYSIS OF MESON
CORRELATORS

The obvious difficulty in the reconstruction of the spec-
tral function from Eq. (11) is the fact that the Euclidean
correlator is calculated only at O(10) data points on the
lattice, while for a reasonable discretization of the in-
tegral in Eq. (11) we need O(100) degrees of freedom.
The problem can be solved using Bayesian analysis of the
correlator, where one looks for a spectral function which
maximizes the conditional probability P [σ|DH ] of hav-
ing the spectral function σ given the data D and some
prior knowledge H (for reviews see [26, 27]). Different

• Needed to understand the fate of various heavy quarkonia 
states in the plasma, calculate transport properties
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Figure 5.19: Electrical conductivity for temperatures 1.1 Tc, 1.2 Tc and 1.4 Tc, with sys-
tematic error estimates as laid out in section 5.6.2, with a maximal ω0 = 1.5 and
∆ω = 0.1, see also tables 5.5 and 5.6. To compare the temperature dependence, re-
sults are given in units of temperature T (left) and in units of the critical temperature
Tc (right).

correlators normalized by the quark number susceptibility as T 2 ·Gii(τT )/χq ·Gfree
V (τT ).

The ratios are smooth so they allow for a cubic spline interpolation on the coarser
lattices. The continuum extrapolation is well behaved and removes lattice cutoff effects
down to distances τT = 0.125 at 1.1 Tc and τT = 0.142 at 1.2 Tc.

Spectral functions have been extracted successfully from the continuum extrapolated
correlators at all three temperatures by using a phenomenologically motivated ansatz.
This rather simple ansatz, consisting of a Breit-Wigner peak and a continuum contri-
bution, see eq. (5.7), is found to provide a good descriptions of the data set at all three
temperatures.

A systematic error analysis was performed via a parametrized modification of the
ansatz, by truncating the continuum contributions, see eq. (5.19). It is found that an
increasing continuum cutoff can not be fully compensated by an enhanced Breit-Wigner
peak, thus the truncated ansatz yields an inferior description of the data set. This allows
to find an upper limit for the Breit-Wigner contribution.

The spectral function is linked to the dilepton rate, which thus can be calculated for
all three temperatures. A summarizing plot of the spectral functions and associated
dilepton rates is provided in fig. 5.13.

In the low frequency limit, the spectral function also gives access to the electrical
conductivity as an important transport coefficient. With the systematic error estimates
in place, lower and upper bounds for the electrical conductivity have been calculated.

Within these limits, the conductivity shows no clear temperature dependence, see
fig. 5.19. The systematic error analysis – as currently employed – implies a low limit
for the electrical conductivity at each temperature. The upper limit is influence by
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Figure 5.13: Spectral functions obtained by fitting eq. (5.19) to data (left) and dilepton

rates (right) calculated by eq. (5.1) from the spectral functions. The thin lines

represent the spectral function obtained with systematic error estimates as laid out

in section 5.7. The free spectral function (Born) is given in eq. (5.6), the HTL results

follow [62].

ω0 ∆ω (1 + κ)/χq 2cBW/Γ Γ 2
3χq

cBW
Γ χ/d.o.f Data

– –
1.216(5) 1.353(23) 2.058(85) 0.387(7) 0.52 RS

1.215(3) 1.328(12) 2.110(34) 0.380(4) 0.65 ST

0.0

0.5

1.217(5) 1.399(20) 1.963(74) 0.401(6) 0.97 RS

0.5 1.218(5) 1.420(19) 1.923(69) 0.406(6) 1.24 RS

1.0 1.219(4) 1.497(15) 1.783(57) 0.429(5) 2.71 RS

1.0 1.219(4) 1.595(8) 1.643(16) 0.456(3) 2.81 ST

1.5

0.0 1.222(4) 1.609(12) 1.607(45) 0.461(4) 6.99 RS

0.1 1.222(4) 1.705(11) 1.506(39) 0.488(3) 4.71 RS

0.1 1.213(2) 1.675(7) 1.528(14) 0.479(3) 5.50 ST

0.25 1.222(4) 1.728(11) 1.481(38) 0.495(3) 5.37 RS

0.5 1.222(4) 1.632(12) 1.572(43) 0.467(4) 8.27 RS

1.75 0.5 1.206(4) 2.139(8) 1.247(26) 0.612(2) 2.21 RS

Table 5.5: Results for fits of eqs. (5.7) and (5.19) to data, at 1.1 Tc. Values ω0 and ∆ω

in eq. (5.19) are motivated in the discussion of systematic errors.
2
3χq

cBW
Γ relates to

the electrical conductivity as given in eq. (5.8). Columns 3 to 5 directly relate to fit

variables, see eq. (5.12) and the discussion there. Abbreviations in the column Data
denote the dataset used in the fit, where RS is the dataset with resampling error

estimates, ST the dataset with standard errors, see section 5.5.3. Correlator data

points with τT ≥ 0.1875 enter into the fit.
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rates (right) calculated by eq. (5.1) from the spectral functions. The thin lines

represent the spectral function obtained with systematic error estimates as laid out

in section 5.7. The free spectral function (Born) is given in eq. (5.6), the HTL results

follow [62].

ω0 ∆ω (1 + κ)/χq 2cBW/Γ Γ 2
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Γ χ/d.o.f Data

– –
1.216(5) 1.353(23) 2.058(85) 0.387(7) 0.52 RS

1.215(3) 1.328(12) 2.110(34) 0.380(4) 0.65 ST

0.0

0.5

1.217(5) 1.399(20) 1.963(74) 0.401(6) 0.97 RS

0.5 1.218(5) 1.420(19) 1.923(69) 0.406(6) 1.24 RS

1.0 1.219(4) 1.497(15) 1.783(57) 0.429(5) 2.71 RS

1.0 1.219(4) 1.595(8) 1.643(16) 0.456(3) 2.81 ST

1.5

0.0 1.222(4) 1.609(12) 1.607(45) 0.461(4) 6.99 RS

0.1 1.222(4) 1.705(11) 1.506(39) 0.488(3) 4.71 RS

0.1 1.213(2) 1.675(7) 1.528(14) 0.479(3) 5.50 ST

0.25 1.222(4) 1.728(11) 1.481(38) 0.495(3) 5.37 RS

0.5 1.222(4) 1.632(12) 1.572(43) 0.467(4) 8.27 RS

1.75 0.5 1.206(4) 2.139(8) 1.247(26) 0.612(2) 2.21 RS

Table 5.5: Results for fits of eqs. (5.7) and (5.19) to data, at 1.1 Tc. Values ω0 and ∆ω

in eq. (5.19) are motivated in the discussion of systematic errors.
2
3χq

cBW
Γ relates to

the electrical conductivity as given in eq. (5.8). Columns 3 to 5 directly relate to fit

variables, see eq. (5.12) and the discussion there. Abbreviations in the column Data
denote the dataset used in the fit, where RS is the dataset with resampling error

estimates, ST the dataset with standard errors, see section 5.5.3. Correlator data

points with τT ≥ 0.1875 enter into the fit.
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Figure 5.19: Electrical conductivity for temperatures 1.1 Tc, 1.2 Tc and 1.4 Tc, with sys-
tematic error estimates as laid out in section 5.6.2, with a maximal ω0 = 1.5 and
∆ω = 0.1, see also tables 5.5 and 5.6. To compare the temperature dependence, re-
sults are given in units of temperature T (left) and in units of the critical temperature
Tc (right).

correlators normalized by the quark number susceptibility as T 2 ·Gii(τT )/χq ·Gfree
V (τT ).

The ratios are smooth so they allow for a cubic spline interpolation on the coarser
lattices. The continuum extrapolation is well behaved and removes lattice cutoff effects
down to distances τT = 0.125 at 1.1 Tc and τT = 0.142 at 1.2 Tc.

Spectral functions have been extracted successfully from the continuum extrapolated
correlators at all three temperatures by using a phenomenologically motivated ansatz.
This rather simple ansatz, consisting of a Breit-Wigner peak and a continuum contri-
bution, see eq. (5.7), is found to provide a good descriptions of the data set at all three
temperatures.

A systematic error analysis was performed via a parametrized modification of the
ansatz, by truncating the continuum contributions, see eq. (5.19). It is found that an
increasing continuum cutoff can not be fully compensated by an enhanced Breit-Wigner
peak, thus the truncated ansatz yields an inferior description of the data set. This allows
to find an upper limit for the Breit-Wigner contribution.

The spectral function is linked to the dilepton rate, which thus can be calculated for
all three temperatures. A summarizing plot of the spectral functions and associated
dilepton rates is provided in fig. 5.13.

In the low frequency limit, the spectral function also gives access to the electrical
conductivity as an important transport coefficient. With the systematic error estimates
in place, lower and upper bounds for the electrical conductivity have been calculated.

Within these limits, the conductivity shows no clear temperature dependence, see
fig. 5.19. The systematic error analysis – as currently employed – implies a low limit
for the electrical conductivity at each temperature. The upper limit is influence by
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Table 5.5: Results for fits of eqs. (5.7) and (5.19) to data, at 1.1 Tc. Values ω0 and ∆ω

in eq. (5.19) are motivated in the discussion of systematic errors.
2
3χq

cBW
Γ relates to

the electrical conductivity as given in eq. (5.8). Columns 3 to 5 directly relate to fit

variables, see eq. (5.12) and the discussion there. Abbreviations in the column Data
denote the dataset used in the fit, where RS is the dataset with resampling error

estimates, ST the dataset with standard errors, see section 5.5.3. Correlator data

points with τT ≥ 0.1875 enter into the fit.
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Figure 2. The sensitivity of the reconstruction on the prior function. Note that the widths of
the peaks have large systematic errors, as can be seen from the reconstruction with different prior
functions.
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Figure 3. The temperature dependence of the reconstucted spectral functions.
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SO(N) and SU(N) equivalences

In our research so far, we have been calculating various physical properties of
SO(N) gauge theories. Our original motivation was to investigate the large-N
orbifold equivalence between SO(2N) and SU(N) gauge theories, following re-
cent papers1 that showed that there is a large-N orbifold equivalence between
SU(N) QCD and an SO(2N) QCD-like theories, so that the physical character-
istics of these theories match at the large-N limit. (In fact the large-N equality
of the pure gauge theories goes back to Lovelace’s work2 in the early 1980s.)
This is interesting as it may reveal a new approach towards the fermion sign
problem in lattice QCD since there is no such problem in the SO(2N) theory.
So if SU(3) is close to SU(∞) and, for example, SO(6) turns out to be close
to SO(∞), one can imagine doing finite chemical potential calculations in the
SO(6) theory in order to obtain a good approximation to the finite chemical
potential physics of SU(3) QCD.

In our Lattice 2013 talk, we presented our lattice results in D = 2 + 1
dimensions in SO(2N) pure gauge theories to obtain a large-N limit for the
glueball mass spectrum and string tensions. There are existing results for these
observables in the corresponding SU(N) theories345. Our results show that these
observables match at the large-N limit for the SO(2N) theory678 and the SU(N)
theory. This would seem to verify the equivalence between these gauge theories.

SO(N) and SU(N) deconfining temperatures

In our Lattice 2014 talk, we are presenting our lattice results for SO(N) decon-
fining temperatures in D = 2+ 1 dimensions. We display the SO(2N) values in
Figure 1. We can obtain a large-N limit for the deconfining temperature using
’t Hooft’s argument that, if we keep the ’t Hooft coupling g2N constant, then
the physics of SO(N) gauge theories has a common large-N limit with O(1/N)
corrections, compared to O(1/N2) corrections for SU(N). We can then com-
pare the SO(2N → ∞) result to the SU(N → ∞) deconfining temperature9.
We present these large-N limits in (1).

Tc√
σ

����
SO(∞)

= 0.9076(41)

Tc√
σ

����
SU(∞)

= 0.9030(29) (1)

1
e.g. A. Cherman, M. Hanada, and D. Robles-Llana, Phys. Rev. Lett. 106, 091603 (2011)

2
C. Lovelace, Nucl. Phys. B201 (1982) 333

3
A. Athenodorou, B. Bringoltz, and M. Teper, JHEP 1102 (2011) 030

4
B. Bringoltz and M. Teper, Phys. Lett. B645: 383−388 (2007)

5
B. Lucini and M. Teper, Phys. Rev. D 66, 097502 (2002)

6
F. Bursa, R. Lau, and M. Teper, JHEP 1305:025,2013

7
R. Lau and M. Teper, arXiv:1311.1453

8
R. Lau and M. Teper, in preparation

9
J. Liddle and M. Teper, arXiv:0803.2128

Talk: Lau, Fri



Beyond QCD

Alexei Bazavov (UI/UCR) 24/27Jun 23, 2014

• Gauge-gravity duality

We performed Monte Carlo simulation of the
dual gauge theory in the parameter regime cor-
responding to a black hole, which is destabilized
due to quantum gravity effects. Our results for
the mass of the black hole agree precisely with a
prediction (12) obtained from independent cal-
culations in gravity theory at the leading order
of quantum corrections. Thus, we obtain quan-
titative evidence that the dual gauge theory pro-
vides a correct description of the black hole,
including quantum gravity effects.
Superstring theory contains closed strings and

open strings. The former mediates gravitational
force, whereas the latter mediates gauge inter-
actions such as the electromagnetic force. The
theory also contains objects called D-branes (13),
on which open strings can end. The dynamical
property of D-branes, including the oscillation of
open strings, is described by a gauge theory (14),
which is a generalization of quantum electro-
dynamics. As a particular type of D-branes, we
consider D-particles, which look like pointlike
objects.
Let us consider the low-energy limit, which

enables us to view strings as particles. If we fur-
thermore neglect quantum effects, the full su-
perstring theory can be well approximated by a
generalized version of Einstein’s gravity theory,
which describes gravity classically in terms of the
curvature associated with the space-time geom-
etry. Within these approximations, N D-particles
are expressed as a black hole. When N, the num-
ber of D-particles, is large, the size of the black
hole is large and the geometry is weakly curved
compared with the typical scale of quantum
gravity. Hence, quantum gravity effects can be
neglected. On the other hand, quantum gravity
effects become important as N becomes small.
According to the gauge-gravity duality con-

jecture (see Fig. 1), superstring theory in the
presence of the black hole made of D-particles is
equivalent to the gauge theory that describes
the system of D-particles (15). As the gauge theory
is well defined at arbitrary N, it should capture
the full quantum nature of superstring theory,
including gravity, if the conjecture is true. Al-
though there are many pieces of evidence for
the gauge-gravity duality at N = ∞, where the
classical approximation is fully justified on the
gravity side (16), very little is known about it at
the level of quantum gravity (17).
The gauge theory that describes the system of

N D-particles is a quantum mechanical system
specified with the following action (18, 19)

S ¼ N
l
∫
b

0
dttr

1
2
ðDtXiÞ2 − 1

4
½Xi;Xj %2 þ

!

1
2 yaDtya − 1

2 yaðgiÞab½Xi;yb%
)

(1)

We have introduced the fields Xi(t) (i = 1, 2,…, 9)
andya(t) (a = 1, 2,…, 16), which areN×N bosonic
and fermionic Hermitian matrices depending
on the “imaginary time” t. In the above equation,
l is the coupling constant of the gauge theory,
and the repeated indices are implicitly summed
over. Intuitively, the diagonal elements of Xi

describe the positions of N D-particles in nine
spatial directions (20), whereas the off-diagonal
elements correspond to strings connecting dif-
ferent D-particles. We have also defined the
covariant derivative Dt and the 9d gamma ma-
trices gi (supplementary text). The range of t is
restricted to 0 ≤ t ≤ b ≡ 1=T , with T being the
temperature of the system, which should be
identified with the Hawking temperature of the
corresponding black hole on the gravity side.
The partition function Z is defined as the sum

of the Boltzmann factors exp(–S) for all field con-
figurations, where S is the action given by Eq. 1.
Then the internal energy, which is the basic quan-
tity we calculate, is defined by E ¼ −ð∂=∂bÞlog Z.
The internal energy actually corresponds to E =
M(T) – M(0) on the gravity side, where M(T) de-
notes the mass of the black hole as a function of
T. In what follows, we assume that E and T are
madedimensionless bynormalizing themwith l1/3.

From the calculation on the gravity side (12),
the internal energy is expected to behave as
(supplementary text)

1
N2

Egravity ¼ 7:41T 2:8 − 5:77T 0:4 1
N2

ð2Þ

up toO(1/N4) terms at sufficiently low temperature
[O(x) is a mathematical symbol that implies a
quantity of the order of x]. The goal of our study is
to see whether the gauge theory can reproduce
Eq. 2, including the quantum gravity effects rep-
resented by the O(1/N2) term. On the other hand,
the effects of the Hawking radiation, which rep-
resent nonlocal quantum effects in the black hole
geometry, can be shown to be negligible in the
parameter regime considered here (supplemen-
tary text). The possibility of probing such effects
at much lower temperature shall be discussed
as future work toward the end of this article.

Fig. 1. The gauge-gravity duality conjecture. Black holes in superstring theory are conjectured to
be described by the dual gauge theory.

Fig. 2. The internal energy Egauge/N
2 obtained for the metastable bound states in the L → ∞ limit

as a function of T. Results for N = 3 (squares), N = 4 (circles), and N = 5 (diamonds) are shown. The
data points and the fitting curve for N = 5 are slightly shifted along the horizontal axis so that the data
points and the error bars for N = 4 and 5 do not overlap. Error bars indicate the standard errors. (Inset)
Extrapolation to L → ∞ based on the ansatz E = Egauge + O(1/L) for N = 4 and T = 0.10.
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We performed Monte Carlo simulation of the
dual gauge theory in the parameter regime cor-
responding to a black hole, which is destabilized
due to quantum gravity effects. Our results for
the mass of the black hole agree precisely with a
prediction (12) obtained from independent cal-
culations in gravity theory at the leading order
of quantum corrections. Thus, we obtain quan-
titative evidence that the dual gauge theory pro-
vides a correct description of the black hole,
including quantum gravity effects.
Superstring theory contains closed strings and

open strings. The former mediates gravitational
force, whereas the latter mediates gauge inter-
actions such as the electromagnetic force. The
theory also contains objects called D-branes (13),
on which open strings can end. The dynamical
property of D-branes, including the oscillation of
open strings, is described by a gauge theory (14),
which is a generalization of quantum electro-
dynamics. As a particular type of D-branes, we
consider D-particles, which look like pointlike
objects.
Let us consider the low-energy limit, which

enables us to view strings as particles. If we fur-
thermore neglect quantum effects, the full su-
perstring theory can be well approximated by a
generalized version of Einstein’s gravity theory,
which describes gravity classically in terms of the
curvature associated with the space-time geom-
etry. Within these approximations, N D-particles
are expressed as a black hole. When N, the num-
ber of D-particles, is large, the size of the black
hole is large and the geometry is weakly curved
compared with the typical scale of quantum
gravity. Hence, quantum gravity effects can be
neglected. On the other hand, quantum gravity
effects become important as N becomes small.
According to the gauge-gravity duality con-

jecture (see Fig. 1), superstring theory in the
presence of the black hole made of D-particles is
equivalent to the gauge theory that describes
the system of D-particles (15). As the gauge theory
is well defined at arbitrary N, it should capture
the full quantum nature of superstring theory,
including gravity, if the conjecture is true. Al-
though there are many pieces of evidence for
the gauge-gravity duality at N = ∞, where the
classical approximation is fully justified on the
gravity side (16), very little is known about it at
the level of quantum gravity (17).
The gauge theory that describes the system of

N D-particles is a quantum mechanical system
specified with the following action (18, 19)

S ¼ N
l
∫
b

0
dttr

1
2
ðDtXiÞ2 − 1

4
½Xi;Xj %2 þ

!

1
2 yaDtya − 1

2 yaðgiÞab½Xi;yb%
)

(1)

We have introduced the fields Xi(t) (i = 1, 2,…, 9)
andya(t) (a = 1, 2,…, 16), which areN×N bosonic
and fermionic Hermitian matrices depending
on the “imaginary time” t. In the above equation,
l is the coupling constant of the gauge theory,
and the repeated indices are implicitly summed
over. Intuitively, the diagonal elements of Xi

describe the positions of N D-particles in nine
spatial directions (20), whereas the off-diagonal
elements correspond to strings connecting dif-
ferent D-particles. We have also defined the
covariant derivative Dt and the 9d gamma ma-
trices gi (supplementary text). The range of t is
restricted to 0 ≤ t ≤ b ≡ 1=T , with T being the
temperature of the system, which should be
identified with the Hawking temperature of the
corresponding black hole on the gravity side.
The partition function Z is defined as the sum

of the Boltzmann factors exp(–S) for all field con-
figurations, where S is the action given by Eq. 1.
Then the internal energy, which is the basic quan-
tity we calculate, is defined by E ¼ −ð∂=∂bÞlog Z.
The internal energy actually corresponds to E =
M(T) – M(0) on the gravity side, where M(T) de-
notes the mass of the black hole as a function of
T. In what follows, we assume that E and T are
madedimensionless bynormalizing themwith l1/3.

From the calculation on the gravity side (12),
the internal energy is expected to behave as
(supplementary text)

1
N2

Egravity ¼ 7:41T 2:8 − 5:77T 0:4 1
N2

ð2Þ

up toO(1/N4) terms at sufficiently low temperature
[O(x) is a mathematical symbol that implies a
quantity of the order of x]. The goal of our study is
to see whether the gauge theory can reproduce
Eq. 2, including the quantum gravity effects rep-
resented by the O(1/N2) term. On the other hand,
the effects of the Hawking radiation, which rep-
resent nonlocal quantum effects in the black hole
geometry, can be shown to be negligible in the
parameter regime considered here (supplemen-
tary text). The possibility of probing such effects
at much lower temperature shall be discussed
as future work toward the end of this article.

Fig. 1. The gauge-gravity duality conjecture. Black holes in superstring theory are conjectured to
be described by the dual gauge theory.

Fig. 2. The internal energy Egauge/N
2 obtained for the metastable bound states in the L → ∞ limit

as a function of T. Results for N = 3 (squares), N = 4 (circles), and N = 5 (diamonds) are shown. The
data points and the fitting curve for N = 5 are slightly shifted along the horizontal axis so that the data
points and the error bars for N = 4 and 5 do not overlap. Error bars indicate the standard errors. (Inset)
Extrapolation to L → ∞ based on the ansatz E = Egauge + O(1/L) for N = 4 and T = 0.10.
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• Solve the gauge side (with lattice techniques) to study 
formation of a black hole

Hanada et al., Science 344 (2014)
Hanada, Maltz, Susskind, 1405.1732
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• Columbia plot along the three-flavor line
Talks: Nakamura, Tue; Jin, Tue

Talks: Kovacs, Wed; Giordano, Wed; Pittler, Wed

• Properties of the spectrum of the Dirac operator at low and 
high temperature Giordano, Kovacs, Pittler, PRL 112 (2014)

• Jet quenching parameter
Panero, Rummukainen, Schäfer, PRL 112 (2014)

• ChPT at finite temperature
Talk: Robaina, Fri
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Conclusions

• Agreement on the chiral crossover temperature among staggered 
and now chiral fermions

• Simulations with Wilson fermions are catching up
• Lattice calculations reached the level of precision to test 

phenomenological models and make connection to heavy-ion 
experiments

• Lattice provides hints about thermodynamic relevance of the yet-
unobserved states in the strange and charm sector

• Agreement between the 2+1 HISQ and stout equation of state
• New techniques for calculating the equation of state
• Good progress in reconstruction of spectral functions, new 

techniques introduced
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