Recent lattice results on topology (in memory of Pierre van Baal)

M. Müller-Preussker

Humboldt-University Berlin, Physics Department

LATTICE '14, New York, Columbia University

Pierre van Baal

Naarden, June 9, 1955 – Leiden, December 29, 2013

Pierre's CV

- B.Sc. in Physics 1977 and Mathematics 1978, Utrecht University.
- M.Sc. in Theoretical Physics 1980, Utrecht University.
- Ph.D. in Theoretical Physics 1984, advisor G. 't Hooft, Utrecht University.
- 1984 1987 Research Associate at ITP of Stony Brook and Fellow in Stony Brook's joint Math/Phys programme.
- 1987 1989 Fellow at CERN Theory Group.
- 1989 appointed as KNAW-fellow by Royal Academy of Sciences at University of Utrecht.
- 1992 appointed full professor in Field Theory and Particle Physics at Instituut-Lorentz for Theoretical Physics of the University of Leiden.

Pierre's scientific achievements

4 books + O(100) scientific papers

Collection of his scientific papers, ed. by G. 't Hooft, C.P. Korthals Altes His field theory book

His major topics

- SU(N) gauge fields on a torus, twisted b.c.'s 1982 ff (with Jeffrey Koller)
- "Thoughts" on Gribov copies.- 1991 ff
- Instantons from over-improved cooling 1993 (with Margarita Garcia Perez, Antonio Gonzalez-Arroyo, Jeroen R. Snippe)
- Improved lattice actions 1996 (with Margarita Garcia Perez, Jeroen R. Snippe)
- Nahm transformation on a torus with twisted b.c.'2 1998 f (with Margarita Garcia Perez, Antonio Gonzalez-Arroyo, Carlos Pena)
- Periodic instantons (calorons) with nontrivial holonomy 1998 ff (large series of papers with his student Thomas C. Kraan, lateron with Falk Bruckmann, Maxim Chernodub, Daniel Nogradi et al.)

[Courtesy to Jacobus Verbaarschot]

Pierre's stroke

"I had a stroke (bleeding in the head) on the evening of July 31, 2005. As a consequence of this I have accepted that since December 1, 2007 I am demoted to 20% and April 1, 2010 to 10% of a professorship. I could still teach (in a modified format), but since October 2008 I can not do it anymore. I can give seminars (twice as slow), but doing research (something new) is too difficult."

But now we miss him.

Outline:

- 1. Pierre van Baal
- 2. Topology, instantons, calorons a 40 years old story
- 3. Measuring topology on the lattice
- 4. Status of $\eta' \eta$ mixing [†]
- 5. T > 0: $U_A(1)$ symmetry restoration puzzle [†]
- 6. KvBLL calorons †
- 7. Miscellaneous
- 8. Summary

 † not covered during the talk !

2. Topology, instantons, calorons - a 40 years old story

[Belavin, Polyakov, Schwarz, Tyupkin, '75; 't Hooft, '76; Callan, Dashen, Gross, '78-'79]

Euclidean Yang-Mills action: $S[A] = -\frac{1}{2g^2} \int d^4x \operatorname{tr} (G_{\mu\nu}G_{\mu\nu})$ Topological charge:

$$Q_t[A] \equiv \int d^4x \ \rho_t(x), \ \rho_t(x) = -\frac{1}{16\pi^2} \ \mathrm{tr} \left(G_{\mu\nu}\tilde{G}_{\mu\nu}(x)\right), \ \tilde{G}_{\mu\nu} \equiv \frac{1}{2}\epsilon_{\mu\nu\rho\sigma}G_{\rho\sigma}.$$

$$Q_t[A] \equiv \sum_{i=1}^q w_i \in \mathbf{Z},$$

 w_i "windings" of continuous mappings $S^{(3)} \to SU(2)$ (homotopy classes), invariant w.r. to continuous deformations (but not on the lattice !!)

Example for topologically non-trivial field - "instanton":

[Belavin, Polyakov, Schwarz, Tyupkin, '75]

$$-\int d^4x \operatorname{tr}\left[(G_{\mu\nu} \pm \tilde{G}_{\mu\nu})^2\right] \ge 0 \implies S[A] \ge \frac{8\pi^2}{g^2} |Q_t[A]|$$

iff $S[A] = \frac{8\pi^2}{g^2} |Q_t[A]|$, then $G_{\mu\nu} = \pm \tilde{G}_{\mu\nu}$ (anti) selfduality.

 $|Q_t| = 1$: BPST one-(anti)instanton solution (singular gauge) for SU(2):

$$\mathcal{A}_{a,\mu}^{(\pm)}(x-z,\rho,R) = R^{a\alpha} \eta_{\alpha\mu\nu}^{(\pm)} \frac{2 \ \rho^2 \ (x-z)_{\nu}}{(x-z)^2 \ ((x-z)^2 + \rho^2)},$$

For $SU(N_c)$ embedding of SU(2) solutions required.

Dilute instanton gas (DIG) \longrightarrow instanton liquid (IL):

path integral "approximated" by superpositions of (anti-) instantons and represented as partition function in the modular space of instanton parameters. [Callan, Dashen, Gross, '78 -'79; Ilgenfritz, M.-P., '81; Shuryak, '81 - '82; Diakonov, Petrov, '84]

 \implies may explain chiral symmetry breaking, but fails to explain confinement.

$$\partial_{\mu} j^{\mu 5}(x) = D(x) + 2N_{f} \rho_{t}(x)$$

with $j^{\mu 5}(x) = \sum_{f}^{N_{f}} \bar{\psi}_{f}(x) \gamma^{\mu} \gamma^{5} \psi_{f}(x), \quad D(x) = 2im \sum_{f=1}^{N_{f}} \bar{\psi}_{f}(x) \gamma^{5} \psi_{f}(x)$

 $\rho_t \neq 0$ due to non-trivial topology \implies solution of the $U_A(1)$ problem: η' -meson (pseudoscalar singlet) for $m \to 0$ not a Goldstone boson, $m_{\eta'} \gg m_{\pi}$. Related Ward identity:

$$4N_{f}^{2} \int d^{4}x \, \langle \rho_{t}(x)\rho_{t}(0) \rangle = 2iN_{f} \langle -2m\bar{\psi}_{f}\psi_{f} \rangle + \int d^{4}x \, \langle D(x)D(0) \rangle$$
$$= 2iN_{f}m_{\pi}^{2}F_{\pi}^{2} + O(m^{2})$$
$$\chi_{t} \equiv \left. \frac{1}{V} \langle Q_{t}^{2} \rangle \right|_{N_{f}} = \left. \frac{i}{2N_{f}}m_{\pi}^{2}F_{\pi}^{2} + O(m_{\pi}^{4}) \right. \to 0 \text{ for } m_{\pi} \to 0.$$

 $1/N_c$ -expansion, i.e. fermion loops suppressed ("quenched approximation") [Witten, '79, Veneziano '79]

$$\chi_t^q = \left. \frac{1}{V} \langle Q_t^2 \rangle \right|_{N_f = 0} = \frac{1}{2N_f} F_\pi^2 \left[m_{\eta'}^2 + m_\eta^2 - 2m_K^2 \right] \simeq (180 \text{MeV})^4.$$

Axial anomaly

Integrating axial anomaly we get Atiyah-Singer index theorem

$$Q_t[A] = n_+ - n_- \in \mathbf{Z}$$

 n_{\pm} number of zero modes $f_r(x)$ of Dirac operator $i\gamma^{\mu}\mathcal{D}_{\mu}[A]$ with chirality $\gamma_5 f_r = \pm f_r$.

- \implies For lattice computations employ a chiral operator $i\gamma^{\mu}\mathcal{D}_{\mu}$.
- \implies Not free of lattice artifacts, use improved gauge action.

Topology becomes unique only for lattice fields smooth enough. Sufficient (!) bound to plaquette values can be given. [Lüscher, '82].

Case T > 0: x_4 -periodic instantons - "calorons"

Semiclassical treatment of the partition function [Gross, Pisarski, Yaffe, '81] with "caloron" solution $\equiv x_4$ -periodic instanton chain (1/T = b) [Harrington, Shepard, '77]

$$A_{\mu}^{a \text{HS}}(x) = \eta_{a \mu \nu}^{(\pm)} \ \partial_{\nu} \log(\Phi(x))$$

$$\Phi(x) - 1 = \sum_{k \in \mathbf{Z}} \frac{\rho^2}{(\vec{x} - \vec{z})^2 + (x_4 - z_4 - kb)^2} = \frac{\pi \rho^2}{b |\vec{x} - \vec{z}|} \ \frac{\sinh\left(\frac{2\pi}{b}|\vec{x} - \vec{z}|\right)}{\cosh\left(\frac{2\pi}{b}|\vec{x} - \vec{z}|\right) - \cos\left(\frac{2\pi}{b}(x_4 - z_4)\right)}$$

-
$$Q_t = -\frac{1}{16\pi^2} \int_0^b dx_4 \int d^3x \ \rho_t(x) = \pm 1.$$

- (as for instantons) it exhibits trivial holonomy, i.e. Polyakov loop behaves as:

$$\frac{1}{2} \operatorname{tr} \mathbf{P} \exp\left(i \int_0^b A_4(\vec{x}, t) \, dt\right) \stackrel{|\vec{x}| \to \infty}{\Longrightarrow} \quad \pm 1$$

Kraan - van Baal solutions

= (anti-) selfdual caloron solutions with non-trivial holonomy

[K. Lee, Lu, '98, Kraan, van Baal, '98 - '99, Garcia-Perez et al. '99]

Action density of a single (but dissolved) SU(3) caloron with $Q_t = 1$ (van Baal, '99) \implies not a simple SU(2) embedding into SU(3) !!

Dissociation into caloron constituents (BPS monopoles or "dyons") gives hope for modelling confinement for $T < T_c$ as well as the deconfinement transition.

[Gerhold, Ilgenfritz, M.-P., '07; Diakonov, Petrov, et al., '07 - '12; Bruckmann, Dinter, Ilgenfritz, Maier, M.-P., Wagner, '12; Shuryak, Sulejmanpasic, '12-'13; Faccioli, Shuryak, '13; cf. talk by E.Shuryak]

Systematic development of the semiclassical approach + perturbation theory "resurgent trans-series expansions" ...

[Dunne, Ünsal and collaborators, '12-'14; cf. talk by M. Ünsal]

3. Measuring topology on the lattice:

Gauge field approaches:

- Field theoretic with (improved) loop discretization of $G_{\mu\nu}$

[Fabricius, Di Vecchia, G.C. Rossi, Veneziano, '81; Makhaldiani, M.-P., '83] in combination with cooling, 4d APE smearing, HYP smearing, (inverse) blocking or cycling, gradient flow,... = *smoothing*.

- \implies approximate integer Q_t .
- \implies allows to reveal large-scale topological structures (instantons, calorons, dyons,..)
- Geometric definitions [Lüscher, '82; Woit, '83; Phillips, Stone, '86], (used with and without *smoothing*).

Fermionic approaches:

- Index of Ginsparg-Wilson fermion operators: $Q_t = n_+ n_-$ [Hasenfratz, Laliena, Niedermayer, '98; Neuberger, '01;...]
- From corresponding spectral representation of ρ_t

$$\rho_t(x) = \operatorname{tr} \gamma_5(\frac{1}{2}D_{x,x} - 1) = \sum_{n=1}^N (\frac{\lambda_n}{2} - 1)\psi_n^{\dagger}(x)\gamma_5\psi_n(x)$$

- Index from spectral flow of Hermitian Wilson-Dirac operator [Edwards, Heller, Narayanan, '98]
- Fermionic representation: [Smit, Vink, '87]

$$N_f Q_t = \kappa \operatorname{Tr} \frac{m \gamma_5}{D+m}, \quad \kappa \text{ renorm. factor}$$

- Topological susceptibility from higher moments and spectral projectors

[Lüscher, '04; Giusti, Lüscher, '08; Lüscher, Palombi, '10; Cichy, Garcia Ramos, Jansen, '13-'14

(A) Cooling versus gradient (Wilson) flow:

Cooling:

Old days lattice search for multi-instanton solutions [Berg,'81; Iwasaki, et al., '83; Teper, '85; Ilgenfritz, Laursen, M.-P., Schierholz, '86], lateron, for non-trivial holonomy KvBLL calorons [Garcia Perez, Gonzalez-Arroyo, Montero, van Baal, '99; Ilgenfritz, Martemyanov, M.-P., Shcheredin, Veselov, '02; Ilgenfritz, M.-P., Peschka, '05]

- Solve the lattice field equation locally (for a given link variable),
- replace old by new link variable,
- step through the lattice (order not unique),
- find plateau values for the topological charge and action.
- Over-improved cooling and improved $G_{\mu\nu}$

 \implies for $T < T_c$ early and extremely stable plateaus at nearly integer Q_t . [Garcia Perez, Gonzalez Arroyo, Snippe, van Baal, '94; de Forcrand, Garcia Perez, Stamatescu, '96; Bruckmann, Ilgenfritz, Martemyanov, van Baal, '04] Typical examples of gluodynamics for T > 0 (Q_t , S).

$$T = 0.88T_c \qquad \qquad T = 1.12T_c$$

[Bornyakov, Ilgenfritz, Martemyanov, M.-P., Mitrjushkin, '13]

Stability (decay) of plateaus for $T < T_c$ ($T > T_c$) related to KvBLL caloron structure and non-trivial (trivial) holonomy (dyon mass symmetry / asymmetry). Topological susceptibility χ_t (for two lattice sizes and spacings):

gluodynamics

full QCD (clover-impr. $N_f = 2$, $m_\pi \simeq 1 \text{ GeV}$)

- χ_t smoother in full QCD (crossover) than in gluodynamics (1st order). Should show up also in the $U_A(1)$ restoration.
- What about chiral limit ?

Gradient flow:

Proposed and thoroughly investigated by M. Lüscher (perturbatively with P. Weisz) since 2009 (cf. talks at LATTICE 2010 and 2013).

Flow time evolution uniquely defined for arbitrary lattice field $\{U_{\mu}(x)\}\$ by

$$\dot{V}_{\mu}(x,\tau) = -g_0^2 \Big[\partial_{x,\mu} S(V(\tau))\Big] V_{\mu}(x,\tau), \quad V_{\mu}(x,0) = U_{\mu}(x) \;.$$

- Diffusion process continuously minimizing action, scale $\lambda_s \simeq \sqrt{8t}$, $t = a^2 \tau$.
- Allows efficient scale-setting (t_0, t_1) by demanding e.g. $t^2 \langle -\frac{1}{2} \operatorname{tr} G_{\mu\nu} G_{\mu\nu} \rangle |_{t=t_0, t_1} = 0.3, \quad \frac{2}{3}.$
- Emergence of topological sectors at sufficient large length scale becomes clear.
- Renormalization becomes simple (in particular in the fermionic sector).

\implies Easy to handle, theoretically sound prescription !!

Comparison gradient flow with cooling:

Pure gluodynamics:

- For given number of cooling sweeps n_c find gradient flow time τ yielding same Wilson plaquette action value.
- Perturbation theory: $\tau = n_c/3$

- Lattice spacing dependence at fixed λ_s clearly visible.
- Moreover: cooling and gradient flow show same spatial topological structure. Holds also for $\rho_t(x)$ filtered with adjusted # ferm. (overlap) modes [Solbrig et al., '07; Ilgenfritz et al., '08].
- Comparison smearing and gradient flow for Wilson loops [cf. talk by M. Okawa]

(B) Full QCD case: mass dependence of χ_t ?

Only quite recently the expected chiral behavior $\chi_t \sim F_{\pi}^2 m_{\pi}^2 \sim m_q \langle \bar{q}q \rangle$ becomes clearly established.

SINP Kolkata group [A. Chowdhury et al., '11-'12]:

- standard Wilson gauge and fermion action $(N_f = 2), m_{\pi} \ge 300 \text{ MeV}$
- Q_t measured after blocking-inverse blocking (*smoothing*) with improved ρ_t [DeGrand, A. Hasenfratz, Kovacs, '97; A. Hasenfratz, Nieter, '98]
- top. correlation function for varying volume and quark mass studied,
- strong lattice spacing effect seen !!

Gradient flow analysis by ALPHA collaboration

[Bruno, Schäfer, Sommer; cf. talk by M. Bruno].

 $N_f = 2$ LQCD with O(a)-improved Wilson fermions and Wilson gauge action. CLS ensembles for 3 lattice spacings and $m_{\pi} \in [190, 630]$ MeV with $Lm_{\pi} > 4$.

- Study periodic as well as open b.c.'s.
- Surprise: Q_t autocorrelations weaker with decreasing pion mass.
- Overall fit with χ PT ansatz: $t_1\chi_t = c \ t_1m_\pi^2 + b \ \frac{a^2}{t_1}$.

Lattice artifacts quite strong. Chiral limit requires continuum limit. $\chi_t|_{N_f=2}$ significantly smaller than $\chi_t|_{N_f=0}$.

Cont. limit for grad. flow can be improved [cf. Talks by S. Sint; D. Nogradi] Similar gradient flow analysis by QCDSF for $N_f = 2 + 1$ [Horsley et al., '14]

- (tree-level) Symanzik improved gauge action
- (stout smeared) clover-improved Wilson fermions
- two chiral limit strategies:

 $m_u = m_d = m_s$

 $m_u + m_d + m_s = \overline{(m)} = \text{const.}.$

- lines correspond to chiral fits based on flavor-singlet and flavor-octet Gell-Mann-Oakes-Renner relations and

(C) Spectral projectors applied to twisted mass fermions (ETMC):

[Cichy, Garcia Ramos, Jansen, '13; cf. talks by E. Garcia Ramos, K. Cichy]

- Represent χ_t via singularity-free density chain correlators [Lüscher, '04]
- treated with spectral projectors \mathbf{P}_M [Giusti, Lüscher, '09] projecting onto subspace of $D^{\dagger}D$ eigenmodes below threshold M^2
- \mathbf{P}_M approx. by rational function \mathbf{R}_M [Lüscher, Palumbo, '10]

$$\chi_t = \frac{\langle \operatorname{Tr} \{\mathbf{R}_M^4\} \rangle}{\langle \operatorname{Tr} \{\gamma_5 \mathbf{R}_M^2 \gamma_5 \mathbf{R}_M^2\} \rangle} \frac{\langle \operatorname{Tr} \{\gamma_5 \mathbf{R}_M^2\} \operatorname{Tr} \{\gamma_5 \mathbf{R}_M^2\} \rangle}{V}$$
$$= \frac{Z_S^2}{Z_P^2} \frac{\langle \operatorname{Tr} \{\gamma_5 \mathbf{R}_M^2\} \operatorname{Tr} \{\gamma_5 \mathbf{R}_M^2\} \rangle}{V} = \frac{Z_S^2}{Z_P^2} \frac{\langle \mathcal{C}^2 \rangle - \frac{\langle \mathcal{B} \rangle}{N}}{V}$$

with Z(2) random estimators for \mathcal{B} and \mathcal{C} : $\mathcal{C} = \frac{1}{N} \sum_{k=1}^{N} (\mathbf{R}_M \eta_k, \gamma_5 \mathbf{R}_M \eta_k).$

- Note: renorm. constants $\frac{Z_S}{Z_P} = 1$ and $\mathcal{C} \equiv Q_t \in \mathbb{Z}$ for $N \to \infty$ for Ginsparg-Wilson operators D (e.g. overlap).

- Authors study: $N_f = 2$, $N_f = 2 + 1 + 1$ w. r. to a, m_q dependence
- improved gauge actions and Wilson twisted-mass fermions used automatical O(a) improvement \implies weak *a*-dependence (?)
- renormalization constants Z_S, Z_P with projector method computed, find consistency with other methods
- $C \sim Q_t$ values turn out nicely gaussian distributed
- from χ_t knowing μ_R the light quark condensate can be estimated: works well.
- χ_t |quenched \implies consistent with Witten-Veneziano.

[cf. Garcia Ramos' talk]

renorm. constants vs. M_R

(D) Joint ETMC effort: compare various methods for Q_t and χ_t :

[cf. talk by K. Cichy]

- $N_f = 2$ twisted mass fermions, tree level Symanzik improved gauge action
- all computations on one set of configs.:

Preliminary: χ_t values

 $m_{\pi} = 300 \text{ MeV}, a = .081 \text{ fm}, L = 1.3 \text{ fm}$

- deviations possible because of different lattice scale dependence.

 \implies only stronger deviation found with fermionic (Smit-Vink) method. \implies quenched case with projector method not enhanced (?)

 Q_t correlation

4. Status of $\eta' - \eta$ mixing

Earlier investigations:

[N. Christ et al, '10; Dudek et al, '11, '13; Gregory et al, '12]

Recent convincing $N_f = 2 + 1 + 1$ twisted mass fermion analysis [C. Michael, K. Ottnad, C. Urbach (ETMC), PRL 111 (2013) 18, 181602]

Most important to estimate disconnected quark diagrams:

Possible only due to various powerful noise reduction techniques [Boucaud et al. (ETMC), '08; Jansen, Michael, Urbach (ETMC), '08] Compute correlators

$$\mathcal{C}(t)_{qq'} = \langle \mathcal{O}_q(t'+t)\mathcal{O}_{q'}(t') \rangle, \quad q, q' \in l, s, c,$$

 $\mathcal{O}_l = (\bar{u}i\gamma_5 u + \bar{d}i\gamma_5 d)/\sqrt{2}, \ \mathcal{O}_s = \bar{s}i\gamma_5 s, \ \mathcal{O}_c = \bar{c}i\gamma_5 c \text{ (including fuzzy op's.)}$

solve generalized eigenvalue problem and find effective η', η masses (assume that excited states in connected contributions can be removed)

Simulations:

 $a = (0.086, 0.078, 0.061) \text{ fm}, L > 3 \text{ fm}, m_{\pi}L > 3.5,$ 230 MeV $\leq m_{\pi} \leq 510 \text{ MeV}, s$ -quark mass tuned to phys. K mass.

 $M_{\eta} = 551(8)_{\text{stat}}(6)_{\text{sys}} \text{ MeV}$ (PDG exp. 547.85(2) MeV) $M_{\eta'} = 1006(54)_{\text{stat}}(38)_{\text{sys}}(+61)_{\text{ex}} \text{ MeV}$ (PDG exp. 957.78(6) MeV) Nice confirmation of the topological mechanism related to the axial anomaly.

Comment: η' physics studied with staggered fermions: what about rooting ? massive Schwinger model investigated [S. Dürr, '12]

 \implies anomaly correctly treated, rooting effectively works.

5. T > 0: $U_A(1)$ symmetry restoration puzzle

Question:

How $U_A(1)$ symmetry gets restored at or above T_c for $N_f = 2$ light flavors?

Common view:

- $U_A(1)$ monotonously restored for $T > T_c \implies 2nd \text{ order}, O(4)$ universality
- $U_A(1)$ restored at $T = T_c \implies 1$ st order

Recent theoretical work:

high-order pert. study of RG flow within 3D Φ^4 theory [Pelisetto, Vicari, '13]. Claim to find a stable FP, such that $U_A(1)$ restored at $T = T_c$ can be accompanied by continuous transition, but with critical behavior slightly differing from O(4). [see also talk by T. Sato]

Lattice studies:

LLNL/RBC (Buchoff et al., '13), Bielefeld (Sharma et al., '13), JLQCD (Cossu, S. Aoki et al., '13), Regensbg.-Mainz-Frankfurt (Brandt et al.) LLNL/RBC $N_f = 2 + 1$ domain wall fermion study:

- combined Iwasaki and dislocation suppressing gauge action
- compute Dirac eigenvalue spectrum, chiral condensates, susceptibities
- large volumes (up to 4 fm ... 5.6 fm), pion mass $\simeq 200 \text{ MeV}$
- pseudo-critical $T_c \simeq 165$ MeV.
- correlation functions of operators

$$\sigma = \overline{\psi}_l \psi_l, \qquad \delta^i = \overline{\psi}_l \tau^i \psi_l, \qquad \eta = i \overline{\psi}_l \gamma^5 \psi_l, \qquad \pi^i = i \overline{\psi}_l \tau^i \gamma^5 \psi_l.$$

- for their susceptibilities χ_I , $I = \sigma, \delta^i, \eta, \pi^i$ (correlators at $q^2 = 0$) hold symmetry relations

Note: $\chi_{\sigma} = \chi_{\delta} + 2\chi_{disc}$, $\chi_{\eta} = \chi_{\pi} - 2\chi_{5,disc}$ with disconnected parts.

Main result: $U_A(1)$ -violating renorm. susceptibilities in \overline{MS} scheme.

Not vanishing around $T_c \simeq 165 \text{ MeV} ! \implies U_A(1)$ breaking for $T > T_c$. What about the chiral limit, where top. susceptibilities are expected vanish?

Result is supported by

- Bielefeld study with overlap valence quarks [Sharma et al., '13],

and by

- Regensburg-Mainz-Frankfurt study: comparing screening masses in pseudoscalar and scalar channel.

 $N_f = 2$ LQCD with clover-improved fermions at $m_{\pi} = 540, 290, 200$ MeV.

[Brandt et al., '12, '13 and priv. communication]

Show ratio $(M_P - M_S)/M_V$ vs. quark mass at T_c . Does not seem to vanish in the chiral limit !

JLQCD's explorative study:

Dynamical overlap fermions $(N_f = 2)$ studied in a fixed topological sector. Topological susceptibility from finite-volume corrections

$$\lim_{|x| \to \infty} \langle mP(x)mP(0) \rangle_Q = \frac{1}{V} \left(\frac{Q^2}{V} - \chi_t - \frac{c_4}{2\chi_t V} \right) + O(e^{-m_\eta |x|}).$$

[for a systematic expansion see: Dromard, Wagner, '14 and talk by A. Dromard]

- small lattice size $16^3 \times 8$, but various quark masses,
- eigenvalue spectrum: close to T_c gap for decreasing m_q
- represent disconnected iso-singlet scalar and pseudo-scalar meson correlators through low-lying modes.
- compare (pseudo-) scalar singlet and triplet correlators degenerate close to T_c for small enough m_q .
 - \implies systematic finite volume error analysis required
- \implies JLQCD switched to domain wall fermions, so far preliminary results.

[cf. talks by G. Cossu and A. Tomiya]

6. Properties of SU(2) (single) calorons with non-trivial holonomy

[K. Lee, Lu, '98, Kraan, van Baal, '98 - '99, Garcia-Perez et al. '99]

$$P(\vec{x}) = \mathbf{P} \exp\left(i \int_{0}^{b=1/T} A_4(\vec{x}, t) \ dt\right) \stackrel{|\vec{x}| \to \infty}{\Longrightarrow} \quad \mathcal{P}_{\infty} = e^{2\pi i \boldsymbol{\omega} \tau_3} \notin \mathbf{Z}(2)$$

Holonomy parameter: $0 \le \omega \le \frac{1}{2}$, $\omega = \frac{1}{4}$ – maximally non-trivial holonomy.

- (anti)selfdual with topological charge $Q_t = \pm 1$,
- at positions \vec{x}_1, \vec{x}_2 , where local holonomy has identical eigenvalues, identify constituents \Rightarrow "dyons" or "instanton quarks", carrying opposite magnetic charge (maximally Abelian gauge),
- limiting cases:
 - $\omega \to 0 \implies$ 'old' HS caloron,
 - $|\vec{x}_1 \vec{x}_2|$ small \implies non-static single caloron (*CAL*),
 - $|\vec{x}_1 \vec{x}_2|$ large \implies two static BPS monopoles or "dyon pair" (DD)with topological charges (~ masses) $|Q_t^{\text{dyon}}| = 2\omega, \ 1 - 2\omega.$

- $L(\vec{x}) = \frac{1}{2} \operatorname{tr} P(\vec{x}) \to \pm 1$ close to $\vec{x} \simeq \vec{x}_{1,2} \Longrightarrow$ "dipole" structure

- carries center vortex - percolating at maximally non-trivial holonomy [Bruckmann; Ilgenfritz, Martemyanov, Bo Zhang, '09] Portrait of an SU(2) KvBLL caloron with max. non-trivial holonomy

Action density

Polyakov loop

singly localized caloron (CAL)

Plotted with the help of Pierre van Baal's caloron codes available at: http://www.lorentz.leidenuniv.nl/research/vanbaal/DECEASED/Caloron.html. See also [Garcia Perez, Gonzalez-Arroyo, Montero, van Baal, '99; Ilgenfritz, Martemyanov, Müller-Preussker, Shcheredin, Veselov, '02]

- Localization of the zero-mode of the Dirac operator:
 - x_4 -antiperiodic b.c.:

around the center with $L(\vec{x}_1) = -1$,

$$|\psi^{-}(x)|^{2} = -\frac{1}{4\pi}\partial_{\mu}^{2} \left[\tanh(2\pi r\bar{\omega})/r \right] \text{ for large } d,$$

• x_4 -periodic b.c.:

around the center with $L(\vec{x}_2) = +1$,

$$|\psi^+(x)|^2 = -\frac{1}{4\pi}\partial^2_\mu \left[\tanh(2\pi s\omega)/s\right]$$
 for large d .

Search for signatures of KvBLL calorons / dyons in MC generated fields:

[Bornyakov, Ilgenfritz, Martemyanov, M.-P.,..., '02 - '13; see also F. Bruckmann, P. van Baal et al., NPB (Proc.Suppl.) 140 (2005) 635]

- Apply smoothing and/or filtering with overlap Dirac operator eigenmodes.
- Find clusters of topological charge density.
- Study their local correlations with local holonomy and Abelian monopoles.
- Study hopping of localized modes while varying fermionic b.c.'s. [Gattringer, Pullirsch, '04]

Qualitative topological model emerging for YM theory at T > 0, here for SU(2) (analogously SU(3)):

Occurence of (anti) calorons and dyons at $T < T_c$ differs from $T > T_c$.

- $T < T_c$: maximally non-trivial holonomy determined by $< L > \simeq 0$
- \longrightarrow dyons have same 'mass', i.e. identical statistical weight.
- \longrightarrow (dissociating) calorons dominate.
- \longrightarrow topological susceptibility $\chi_t \neq 0$.
- $T \gg T_c$: trivial holonomy determined by $< L > \simeq \pm 1$
- \rightarrow dyons have different 'mass', i.e. different statistical weight.
- \rightarrow heavy dyons are missing, i.e. complete calorons are suppressed.
- \rightarrow topological susceptibility gets suppressed $\chi_t \rightarrow 0$, while (light) magnetic monopoles are surviving (spatial Wilson loop area law).

Simulating caloron ensembles

 $[Gerhold,\,Ilgenfritz,\,M.\text{-}P.,\,\,'07]$

Model: random superpositions of KvBLL calorons.

Influence of the holonomy

- put (anti-) calorons randomly in a 3d box with open b.c.'s, with same asymptotic holonomy for all (anti)calorons: $\mathcal{P}_{\infty} = \exp 2\pi i \omega \tau_3$, $\omega = 0$ - trivial versus $\omega = 1/4$ - maximally non-trivial,
- fix parameters as for IL model and lattice scale: temperature: $T = 1 \text{ fm}^{-1} \simeq T_c$, density: $n = 1 \text{ fm}^{-4}$, scale size: (a) fixed $\rho = 0.33 \text{ fm}$ (b) distribution $D(\rho) \propto \rho^{7/3} \exp(-c\rho^2)$, such that $\overline{\rho} = 0.33 \text{ fm}$,
- for measurements use a $32^3 \times 8$ lattice grid and lattice observables.

Polyakov loop correlator \rightarrow quark-antiquark free energy

$$F(R) = -T \log \langle L(\vec{x})L(\vec{y}) \rangle, \quad R = |\vec{x} - \vec{y}|$$

with trivial ($\omega = 0$) and maximally non-trivial holonomy ($\omega = 0.25$).

⇒ Non-trivial (trivial) holonomy creates long-distance coherence (incoherence) and (de)confines for standard instanton or caloron liquid model parameters.
 ⇒ More realistic model describing the temperature dependence is possible

Dyon gas ensembles and confinement [cf. talk by E. Shuryak] Polyakov, '77: Confinement evolves from magnetic monopoles effectively in 3D. Here: monopoles = dyons (KvBLL caloron constituents) for $0 < T < T_c$.

Conjecture for Yang-Mills theory at $0 < T < T_c$: rewrite integration measure over KvBLL caloron moduli space in terms of dyon degrees of freedom.

Diakonov, Petrov, '07 :

proposed integration measure (Abelian fields; no antidyons, i.e. CP is violated). Dyon ensemble statistics analytically solved \implies confinement.

However, observation from numerical simulation:

Moduli space metric satisfies positivity only for a small fraction

of dyon configurations and only for low density.

[Bruckmann, Dinter, Ilgenfritz, M.-P., Wagner, '09].

Simplify the model:

- Far-field limit, i.e. purely Abelian monopole fields, non-trivial holonomy.
- Neglect moduli space metric, take random monopole gas.
- Compute free energy of a static quark-antiquark pair $F_{\bar{Q}Q}(d)$ from Polyakov loop correlators.

[Bruckmann, Dinter, Ilgenfritz, Maier, M.-P., Wagner, '12]

- Exact solution:
$$F_{\bar{Q}Q}(|\mathbf{r}-\mathbf{r}'|) = -T \ln \left\langle P(\mathbf{r})P^{\dagger}(\mathbf{r}') \right\rangle \sim \frac{\pi}{2} \frac{\rho}{T} |\mathbf{r}-\mathbf{r}'| + \text{const.}$$

- Simulation in a finite box requires to deal with long-range tails of the fields.

- \implies Ewald's method used e.g. in plasma physics [P. Ewald, '21]
- \implies find nice agreement with exact result.
- \implies Further work required !

7. Miscellaneous

- . . .

I apologize for not having discussed various topics in detail, which might have been also of interest for Pierre van Baal:

- open b.c.s suppressing HMC's autocorrelation for Q_t : [Chowdhury et al., '14; Bruno, S. Schäfer, Sommer, '14; cf. talk by G. Mc Glynn]
- simulation of θ -vacua with Langevin techniques or dual variables: [cf. talks by L. Bongiovanni; T. Kloiber]
- fixed topology considerations: [cf. talks by J. Verbaarschot; U. Gerber; A. Dromard; H. Fukaya]
- ongoing discussions about the vacuum structure and topological excitations:
 [cf. talks by M. Ünsal; M. Ogilvie; A. Shibata; M. Hasegawa; N. Cundy; H.B. Thacker;
 D. Trewartha; P. de Forcrand]
- phase structure at differing m_u, m_d masses: [Creutz, '13; cf. talk by S. Aoki]
- topology in related theories (G_2 YM theory; N = 1 SUSY on the lattice): [Ilgenfritz, Maas, '12; cf. talk by P. Giudice]
- chiral magnetic effect in QCD with constant magnetic background field: [Bruckmann, Buividovich, Sulejmanpasic, '13; Bali et al. '14]

8. Summary

- Topological aspects in QCD occur naturally and have phenomenological impact. Standard instanton gas/liquid remains phenomenologically important: chiral symmetry breaking, solution of $U_A(1)$, ..., but fails to explain confinement.
- Computation of the topological susceptibility with new methods (gradient flow, spectral projector method) on a promising way. Keep track of lattice artifacts and study the continuum limit !!
- Solution of the $\eta' \eta$ mixing problem now in a good shape.
- $U_A(1)$ restoration at $T > T_c$ seems to be close to be solved, but chiral limit ? Looks like slow restauration above T_c . Then for $N_f = 2$ more likely O(4) scenario.
- 0 < T < T_c: KvBLL caloron and dyon gas models with non-trivial holonomy very encouraging for description of confinement [→ talk by E. Shuryak]
- Calorons and dyon dissociation provide way to improve systematically semiclassical approach [\rightarrow talk by M. Ünsal].

Thanks to all those who provided material, sorry to those, I could not mention, thank you all for your attention.

Thank you, Pierre, your vision and ideas are alive.

