Recent lattice results on topology (in memory of Pierre van Baal)

M. Müller-Preussker

Humboldt-University Berlin, Physics Department

LATTICE '14, New York, Columbia University

Pierre van Baal

Naarden, June 9, 1955 - Leiden, December 29, 2013

Pierre's CV

- B.Sc. in Physics 1977 and Mathematics 1978, Utrecht University.
- M.Sc. in Theoretical Physics 1980, Utrecht University.
- Ph.D. in Theoretical Physics 1984, advisor G. 't Hooft, Utrecht University.
- 1984-1987 Research Associate at ITP of Stony Brook and Fellow in Stony Brook's joint Math/Phys programme.
- 1987-1989 Fellow at CERN Theory Group.
- 1989 appointed as KNAW-fellow by Royal Academy of Sciences at University of Utrecht.
- 1992 appointed full professor in Field Theory and Particle Physics at Instituut-Lorentz for Theoretical Physics of the University of Leiden.

Pierre's scientific achievements

4 books $+\mathrm{O}(100)$ scientific papers

Collection of his scientific papers,
ed. by G. 't Hooft, C.P. Korthals Altes

His field theory book

A Course in FIELD THEORY

His major topics

- $\mathrm{SU}(\mathrm{N})$ gauge fields on a torus, twisted b.c.'s - 1982 ff (with Jeffrey Koller)
- "Thoughts" on Gribov copies.- 1991 ff
- Instantons from over-improved cooling - 1993 (with Margarita Garcia Perez, Antonio Gonzalez-Arroyo, Jeroen R. Snippe)
- Improved lattice actions - 1996
(with Margarita Garcia Perez, Jeroen R. Snippe)
- Nahm transformation on a torus with twisted b.c.'2-1998 f (with Margarita Garcia Perez, Antonio Gonzalez-Arroyo, Carlos Pena)
- Periodic instantons (calorons) with nontrivial holonomy - 1998 ff (large series of papers with his student Thomas C. Kraan, lateron with Falk Bruckmann, Maxim Chernodub, Daniel Nogradi et al.)

Pierre's stroke

"I had a stroke (bleeding in the head) on the evening of July 31, 2005. As a consequence of this I have accepted that since December 1, 2007 I am demoted to 20% and April 1, 2010 to 10% of a professorship. I could still teach (in a modified format), but since October 2008 I can not do it anymore. I can give seminars (twice as slow), but doing research (something new) is too difficult."
[Courtesy to Jacobus Verbaarschot]
But now we miss him.

Outline:

1. Pierre van Baal
2. Topology, instantons, calorons - a 40 years old story
3. Measuring topology on the lattice
4. Status of $\eta^{\prime}-\eta$ mixing ${ }^{\dagger}$
5. $T>0: U_{A}(1)$ symmetry restoration puzzle ${ }^{\dagger}$
6. KvBLL calorons ${ }^{\dagger}$
7. Miscellaneous
8. Summary
${ }^{\dagger}$ not covered during the talk!
9. Topology, instantons, calorons - a 40 years old story
[Belavin, Polyakov, Schwarz, Tyupkin, '75; 't Hooft, '76; Callan, Dashen, Gross, '78 -'79]

Euclidean Yang-Mills action: $\quad S[A]=-\frac{1}{2 g^{2}} \int d^{4} x \operatorname{tr}\left(G_{\mu \nu} G_{\mu \nu}\right)$
Topological charge:

$$
\begin{gathered}
Q_{t}[A] \equiv \int d^{4} x \rho_{t}(x), \rho_{t}(x)=-\frac{1}{16 \pi^{2}} \operatorname{tr}\left(G_{\mu \nu} \tilde{G}_{\mu \nu}(x)\right), \tilde{G}_{\mu \nu} \equiv \frac{1}{2} \epsilon_{\mu \nu \rho \sigma} G_{\rho \sigma} \\
Q_{t}[A] \equiv \sum_{i=1}^{q} w_{i} \in \mathbf{Z}
\end{gathered}
$$

w_{i} "windings" of continuous mappings $S^{(3)} \rightarrow S U(2)$ (homotopy classes), invariant w.r. to continuous deformations (but not on the lattice !!)

Example for topologically non-trivial field - "instanton":
[Belavin, Polyakov, Schwarz, Tyupkin, '75]

$$
\begin{gathered}
\quad-\int d^{4} x \operatorname{tr}\left[\left(G_{\mu \nu} \pm \tilde{G}_{\mu \nu}\right)^{2}\right] \geq 0 \Longrightarrow S[A] \geq \frac{8 \pi^{2}}{g^{2}}\left|Q_{t}[A]\right| \\
\text { iff } \quad S[A]=\frac{8 \pi^{2}}{g^{2}}\left|Q_{t}[A]\right|, \quad \text { then } \quad G_{\mu \nu}= \pm \tilde{G}_{\mu \nu} \quad \text { (anti) selfduality . }
\end{gathered}
$$

$\left|Q_{t}\right|=1:$ BPST one-(anti)instanton solution (singular gauge) for $S U(2)$:

$$
\mathcal{A}_{a, \mu}^{(\pm)}(x-z, \rho, R)=R^{a \alpha} \eta_{\alpha \mu \nu}^{(\pm)} \frac{2 \rho^{2}(x-z)_{\nu}}{(x-z)^{2}\left((x-z)^{2}+\rho^{2}\right)}
$$

For $S U\left(N_{c}\right)$ embedding of $S U(2)$ solutions required.

Dilute instanton gas (DIG) \longrightarrow instanton liquid (IL):
path integral "approximated" by superpositions of (anti-) instantons and represented as partition function in the modular space of instanton parameters. [Callan, Dashen, Gross, '78-'79; Ilgenfritz, M.-P., '81; Shuryak, '81- '82; Diakonov, Petrov, '84]
\Longrightarrow may explain chiral symmetry breaking, but fails to explain confinement.

Axial anomaly

$$
\begin{gathered}
\partial_{\mu} j^{\mu 5}(x)=D(x)+2 N_{f} \rho_{t}(x) \\
\text { with } \quad j^{\mu 5}(x)=\sum_{f}^{N_{f}} \bar{\psi}_{f}(x) \gamma^{\mu} \gamma^{5} \psi_{f}(x), \quad D(x)=2 i m \sum_{f=1}^{N_{f}} \bar{\psi}_{f}(x) \gamma^{5} \psi_{f}(x)
\end{gathered}
$$

$\rho_{t} \neq 0$ due to non-trivial topology \Longrightarrow solution of the $U_{A}(1)$ problem:
η^{\prime}-meson (pseudoscalar singlet) for $m \rightarrow 0$ not a Goldstone boson, $m_{\eta^{\prime}} \gg m_{\pi}$.
Related Ward identity:

$$
\begin{aligned}
4 N_{f}^{2} \int d^{4} x\left\langle\rho_{t}(x) \rho_{t}(0)\right\rangle & =2 i N_{f}\left\langle-2 m \bar{\psi}_{f} \psi_{f}\right\rangle+\int d^{4} x\langle D(x) D(0)\rangle \\
& =2 i N_{f} m_{\pi}^{2} F_{\pi}^{2}+O\left(m^{2}\right) \\
\left.\chi_{t} \equiv \frac{1}{V}\left\langle Q_{t}^{2}\right\rangle\right|_{N_{f}} & =\frac{i}{2 N_{f}} m_{\pi}^{2} F_{\pi}^{2}+O\left(m_{\pi}^{4}\right) \quad \rightarrow 0 \text { for } m_{\pi} \rightarrow 0
\end{aligned}
$$

$1 / N_{c}$-expansion, i.e. fermion loops suppressed ("quenched approximation") [Witten, '79, Veneziano '79]

$$
\chi_{t}^{q}=\left.\frac{1}{V}\left\langle Q_{t}^{2}\right\rangle\right|_{N_{f}=0}=\frac{1}{2 N_{f}} F_{\pi}^{2}\left[m_{\eta^{\prime}}^{2}+m_{\eta}^{2}-2 m_{K}^{2}\right] \simeq(180 \mathrm{MeV})^{4} .
$$

Integrating axial anomaly we get Atiyah-Singer index theorem

$$
Q_{t}[A]=n_{+}-n_{-} \in \mathbf{Z}
$$

$n_{ \pm}$number of zero modes $f_{r}(x)$ of Dirac operator $i \gamma^{\mu} \mathcal{D}_{\mu}[A]$ with chirality $\gamma_{5} f_{r}= \pm f_{r}$.
\Longrightarrow For lattice computations employ a chiral operator $i \gamma^{\mu} \mathcal{D}_{\mu}$.
\Longrightarrow Not free of lattice artifacts, use improved gauge action.

Topology becomes unique only for lattice fields smooth enough.
Sufficient (!) bound to plaquette values can be given. [Lüscher, '82].

Case $T>0: x_{4}$-periodic instantons - "calorons"

Semiclassical treatment of the partition function [Gross, Pisarski, Yaffe, '81] with "caloron" solution $\equiv x_{4}$-periodic instanton chain ($1 / T=b$)
[Harrington, Shepard, '77]

$$
\begin{gathered}
A_{\mu}^{a \mathrm{HS}}(x)=\eta_{a \mu \nu}^{(\pm)} \partial_{\nu} \log (\Phi(x)) \\
\Phi(x)-1=\sum_{k \in \mathbf{Z}} \frac{\rho^{2}}{(\vec{x}-\vec{z})^{2}+\left(x_{4}-z_{4}-k b\right)^{2}}=\frac{\pi \rho^{2}}{b|\vec{x}-\vec{z}|} \frac{\sinh \left(\frac{2 \pi}{b}|\vec{x}-\vec{z}|\right)}{\cosh \left(\frac{2 \pi}{b}|\vec{x}-\vec{z}|\right)-\cos \left(\frac{2 \pi}{b}\left(x_{4}-z_{4}\right)\right)}
\end{gathered}
$$

- $Q_{t}=-\frac{1}{16 \pi^{2}} \int_{0}^{b} d x_{4} \int d^{3} x \rho_{t}(x)= \pm 1$.
- (as for instantons) it exhibits trivial holonomy, i.e. Polyakov loop behaves as:

$$
\frac{1}{2} \operatorname{tr} \mathbf{P} \exp \left(i \int_{0}^{b} A_{4}(\vec{x}, t) d t\right) \stackrel{|\vec{x}| \rightarrow \infty}{\Longrightarrow} \pm 1
$$

Kraan - van Baal solutions

$=($ anti-) selfdual caloron solutions with non-trivial holonomy
[K. Lee, Lu, '98, Kraan, van Baal, '98-'99, Garcia-Perez et al. '99]

$$
\begin{gathered}
P(\vec{x})=\mathbf{P} \exp \left(i \int_{0}^{b=1 / T} A_{4}(\vec{x}, t) d t\right) \stackrel{|\vec{x}| \rightarrow \infty}{\Longrightarrow} \mathcal{P}_{\infty} \notin \mathbf{Z}\left(N_{c}\right) \\
\end{gathered}
$$

Action density of a single (but dissolved) $S U(3)$ caloron with $Q_{t}=1$ (van Baal, '99) \Longrightarrow not a simple $S U(2)$ embedding into $S U(3)$!!

Dissociation into caloron constituents (BPS monopoles or "dyons") gives hope for modelling confinement for $T<T_{c}$ as well as the deconfinement transition.
[Gerhold, Ilgenfritz, M.-P., '07; Diakonov, Petrov, et al., '07 - '12; Bruckmann, Dinter, Ilgenfritz, Maier, M.-P., Wagner, '12; Shuryak, Sulejmanpasic, '12-'13; Faccioli, Shuryak, '13; cf. talk by E.Shuryak]

Systematic development of the semiclassical approach + perturbation theory "resurgent trans-series expansions" ...
[Dunne, Ünsal and collaborators, '12-'14; cf. talk by M. Ünsal]
3. Measuring topology on the lattice:

Gauge field approaches:

- Field theoretic with (improved) loop discretization of $G_{\mu \nu}$ [Fabricius, Di Vecchia, G.C. Rossi, Veneziano, '81; Makhaldiani, M.-P., '83] in combination with cooling, 4d APE smearing, HYP smearing, (inverse) blocking or cycling, gradient flow, $\ldots=$ smoothing. \Longrightarrow approximate integer Q_{t}.
\Longrightarrow allows to reveal large-scale topological structures (instantons, calorons, dyons,..)
- Geometric definitions [Lüscher, '82; Woit, '83; Phillips, Stone, '86], (used with and without smoothing).

Fermionic approaches:

- Index of Ginsparg-Wilson fermion operators: $Q_{t}=n_{+}-n_{-}$ [Hasenfratz, Laliena, Niedermayer, '98; Neuberger, '01;...]
- From corresponding spectral representation of ρ_{t}

$$
\rho_{t}(x)=\operatorname{tr} \gamma_{5}\left(\frac{1}{2} D_{x, x}-1\right)=\sum_{n=1}^{N}\left(\frac{\lambda_{n}}{2}-1\right) \psi_{n}^{\dagger}(x) \gamma_{5} \psi_{n}(x)
$$

- Index from spectral flow of Hermitian Wilson-Dirac operator [Edwards, Heller, Narayanan, '98]
- Fermionic representation: [Smit, Vink, '87]

$$
N_{f} Q_{t}=\kappa \operatorname{Tr} \frac{m \gamma_{5}}{D+m}, \quad \kappa \text { renorm. factor }
$$

- Topological susceptibility from higher moments and spectral projectors

(A) Cooling versus gradient (Wilson) flow:

Cooling:
Old days lattice search for multi-instanton solutions
[Berg,'81; Iwasaki, et al., '83; Teper, '85; Ilgenfritz, Laursen, M.-P., Schierholz, '86],
lateron, for non-trivial holonomy KvBLL calorons
[Garcia Perez, Gonzalez-Arroyo, Montero, van Baal, '99; Ilgenfritz, Martemyanov, M.-P.,
Shcheredin, Veselov, '02; Ilgenfritz, M.-P., Peschka, '05]

- Solve the lattice field equation locally (for a given link variable),
- replace old by new link variable,
- step through the lattice (order not unique),
- find plateau values for the topological charge and action.
- Over-improved cooling and improved $G_{\mu \nu}$
$\Longrightarrow \quad$ for $T<T_{c}$ early and extremely stable plateaus at nearly integer Q_{t}.
[Garcia Perez, Gonzalez Arroyo, Snippe, van Baal, '94; de Forcrand, Garcia Perez, Stamatescu,
'96; Bruckmann, Ilgenfritz, Martemyanov, van Baal, '04]

Typical examples of gluodynamics for $T>0\left(Q_{t}, S\right)$.

$$
T=0.88 T_{c}
$$

$$
T=1.12 T_{c}
$$

[Bornyakov, Ilgenfritz, Martemyanov, M.-P., Mitrjushkin, '13]
Stability (decay) of plateaus for $T<T_{c}\left(T>T_{c}\right)$ related to KvBLL caloron structure and non-trivial (trivial) holonomy (dyon mass symmetry / asymmetry).

Topological susceptibility χ_{t} (for two lattice sizes and spacings):
gluodynamics
full QCD
(clover-impr. $\left.N_{f}=2, \quad m_{\pi} \simeq 1 \mathrm{GeV}\right)$

- χ_{t} smoother in full QCD (crossover) than in gluodynamics (1st order).

Should show up also in the $U_{A}(1)$ restoration.

- What about chiral limit?

Gradient flow:

Proposed and thoroughly investigated by M. Lüscher (perturbatively with P. Weisz) since 2009 (cf. talks at Lattice 2010 and 2013). Flow time evolution uniquely defined for arbitrary lattice field $\left\{U_{\mu}(x)\right\}$ by

$$
\dot{V}_{\mu}(x, \tau)=-g_{0}^{2}\left[\partial_{x, \mu} S(V(\tau))\right] V_{\mu}(x, \tau), \quad V_{\mu}(x, 0)=U_{\mu}(x)
$$

- Diffusion process continuously minimizing action, scale $\quad \lambda_{s} \simeq \sqrt{8 t}, \quad t=a^{2} \tau$.
- Allows efficient scale-setting $\left(t_{0}, t_{1}\right)$ by demanding e.g. $\left.\quad t^{2}\left\langle-\frac{1}{2} \operatorname{tr} G_{\mu \nu} G_{\mu \nu}\right\rangle\right|_{t=t_{0}, t_{1}}=0.3, \quad \frac{2}{3}$.
- Emergence of topological sectors at sufficient large length scale becomes clear.
- Renormalization becomes simple (in particular in the fermionic sector).
$\Longrightarrow \quad$ Easy to handle, theoretically sound prescription !!

Comparison gradient flow with cooling:

Pure gluodynamics:

- For given number of cooling sweeps n_{c} find gradient flow time τ yielding same Wilson plaquette action value.
- Perturbation theory: $\tau=n_{c} / 3$

$$
\tau / n_{c} \text { scaling }
$$

$$
\chi_{t}^{\frac{1}{4}} \text { vs. } \lambda_{s}
$$

- Lattice spacing dependence at fixed λ_{s} clearly visible.
- Moreover: cooling and gradient flow show same spatial topological structure. Holds also for $\rho_{t}(x)$ filtered with adjusted $\#$ ferm. (overlap) modes [Solbrig et al., '07; Ilgenfritz et al., '08].
- Comparison smearing and gradient flow for Wilson loops [cf. talk by M. Okawa]
(B) Full QCD case: mass dependence of χ_{t} ?

Only quite recently the expected chiral behavior $\chi_{t} \sim F_{\pi}^{2} m_{\pi}^{2} \sim m_{q}\langle\bar{q} q\rangle$ becomes clearly established.

SINP Kolkata group [A. Chowdhury et al., '11-'12]:

- standard Wilson gauge and fermion action $\left(N_{f}=2\right), m_{\pi} \geq 300 \mathrm{MeV}$
- Q_{t} measured after blocking-inverse blocking (smoothing) with improved ρ_{t} [DeGrand, A. Hasenfratz, Kovacs, '97; A. Hasenfratz, Nieter, '98]
- top. correlation function for varying volume and quark mass studied,
- strong lattice spacing effect seen !!

ρ_{t} corr. at diff. m_{q}

Gradient flow analysis by ALPHA collaboration
[Bruno, Schäfer, Sommer; cf. talk by M. Bruno].
$N_{f}=2$ LQCD with $\mathrm{O}(\mathrm{a})$-improved Wilson fermions and Wilson gauge action. CLS ensembles for 3 lattice spacings and $m_{\pi} \in[190,630] \mathrm{MeV}$ with $L m_{\pi}>4$.

- Study periodic as well as open b.c.'s.
- Surprise: Q_{t} autocorrelations weaker with decreasing pion mass.
- Overall fit with $\chi \mathrm{PT}$ ansatz: $t_{1} \chi_{t}=c t_{1} m_{\pi}^{2}+b \frac{a^{2}}{t_{1}}$.

Lattice artifacts quite strong.
Chiral limit requires continuum limit.
$\left.\chi_{t}\right|_{N_{f}=2}$ significantly smaller than $\left.\chi_{t}\right|_{N_{f}=0}$.

Cont. limit for grad. flow can be improved
[cf. Talks by S. Sint; D. Nogradi]

Similar gradient flow analysis by QCDSF for $N_{f}=2+1 \quad$ [Horsley et al., ' ${ }^{14]}$

- (tree-level) Symanzik improved gauge action
- (stout smeared) clover-improved Wilson fermions
- two chiral limit strategies:

$$
\left.m_{u}=m_{d}=m_{s} \quad m_{u}+m_{d}+m_{s}=\overline{(} m\right)=\text { const.. }
$$

- lines correspond to chiral fits based on flavor-singlet and flavor-octet Gell-Mann-Oakes-Renner relations and
(C) Spectral projectors applied to twisted mass fermions (ETMC):
[Cichy, Garcia Ramos, Jansen, '13; cf. talks by E. Garcia Ramos, K. Cichy]
- Represent χ_{t} via singularity-free density chain correlators [Lüscher, '04]
- treated with spectral projectors \mathbf{P}_{M} [Giusti, Lüscher, '09] projecting onto subspace of $D^{\dagger} D$ eigenmodes below threshold M^{2}
- \mathbf{P}_{M} approx. by rational function \mathbf{R}_{M} [Lüscher, Palumbo, '10]

$$
\begin{aligned}
\chi_{t} & =\frac{\left\langle\operatorname{Tr}\left\{\mathbf{R}_{M}^{4}\right\}\right\rangle}{\left\langle\operatorname{Tr}\left\{\gamma_{5} \mathbf{R}_{M}^{2} \gamma_{5} \mathbf{R}_{M}^{2}\right\}\right\rangle} \frac{\left\langle\operatorname{Tr}\left\{\gamma_{5} \mathbf{R}_{M}^{2}\right\} \operatorname{Tr}\left\{\gamma_{5} \mathbf{R}_{M}^{2}\right\}\right\rangle}{V} \\
& =\frac{Z_{S}^{2}}{Z_{P}^{2}} \frac{\left\langle\operatorname{Tr}\left\{\gamma_{5} \mathbf{R}_{M}^{2}\right\} \operatorname{Tr}\left\{\gamma_{5} \mathbf{R}_{M}^{2}\right\}\right\rangle}{V}=\frac{Z_{S}^{2}}{Z_{P}^{2}} \frac{\left\langle\mathcal{C}^{2}\right\rangle-\frac{\langle\mathcal{B}\rangle}{N}}{V}
\end{aligned}
$$

with $Z(2)$ random estimators for \mathcal{B} and $\mathcal{C}: \quad \mathcal{C}=\frac{1}{N} \sum_{k=1}^{N}\left(\mathbf{R}_{M} \eta_{k}, \gamma_{5} \mathbf{R}_{M} \eta_{k}\right)$.

- Note: renorm. constants $\frac{Z_{S}}{Z_{P}}=1$ and $\mathcal{C} \equiv Q_{t} \in \mathbb{Z}$ for $N \rightarrow \infty$ for Ginsparg-Wilson operators D (e.g. overlap).
- Authors study: $N_{f}=2, N_{f}=2+1+1$ w. r. to a, m_{q} dependence
- improved gauge actions and Wilson twisted-mass fermions used automatical $O(a)$ improvement \Longrightarrow weak a-dependence (?)
- renormalization constants Z_{S}, Z_{P} with projector method computed, find consistency with other methods
- $C \sim Q_{t}$ values turn out nicely gaussian distributed
- from χ_{t} knowing μ_{R} the light quark condensate can be estimated: works well.
- $\chi_{t} \mid$ quenched \Longrightarrow consistent with Witten-Veneziano.
[cf. Garcia Ramos' talk]
renorm. constants vs. M_{R}

$$
\left(N_{f}=2\right)
$$

$r_{0}^{4} \chi_{t}$ vs. renorm. quark mass $r_{0} \mu_{R}$

$$
\left(N_{f}=2+1+1\right)
$$

(D) Joint ETMC effort: compare various methods for Q_{t} and χ_{t} :
[cf. talk by K. Cichy]

- $N_{f}=2$ twisted mass fermions, tree level Symanzik improved gauge action
- all computations on one set of configs.:

$$
m_{\pi}=300 \mathrm{MeV}, a=.081 \mathrm{fm}, L=1.3 \mathrm{fm}
$$

- deviations possible because of different lattice scale dependence.

Preliminary: χ_{t} values

Q_{t} correlation

\Longrightarrow only stronger deviation found with fermionic (Smit-Vink) method.
\Longrightarrow quenched case with projector method not enhanced (?)

4. Status of $\eta^{\prime}-\eta$ mixing

Earlier investigations:
[N. Christ et al, '10; Dudek et al, '11, '13; Gregory et al, '12]

Recent convincing $N_{f}=2+1+1$ twisted mass fermion analysis [C. Michael, K. Ottnad, C. Urbach (ETMC), PRL 111 (2013) 18, 181602]

Most important to estimate disconnected quark diagrams:

connected $l=(u, d)$ and s diagrams

disconnected l, s diagrams

from t^{\prime} to $t^{\prime}+t$

Possible only due to various powerful noise reduction techniques
[Boucaud et al. (ETMC), '08; Jansen, Michael, Urbach (ETMC), '08]

Compute correlators

$$
\begin{gathered}
\mathcal{C}(t)_{q q^{\prime}}=\left\langle\mathcal{O}_{q}\left(t^{\prime}+t\right) \mathcal{O}_{q^{\prime}}\left(t^{\prime}\right)\right\rangle, \quad q, q^{\prime} \in l, s, c \\
\mathcal{O}_{l}=\left(\bar{u} i \gamma_{5} u+\bar{d} i \gamma_{5} d\right) / \sqrt{2}, \quad \mathcal{O}_{s}=\bar{s} i \gamma_{5} s, \quad \mathcal{O}_{c}=\bar{c} i \gamma_{5} c \text { (including fuzzy op's.) }
\end{gathered}
$$

solve generalized eigenvalue problem and find effective η^{\prime}, η masses (assume that excited states in connected contributions can be removed)

Simulations:
$a=(0.086,0.078,0.061) \mathrm{fm}, \quad L>3 \mathrm{fm}, \quad m_{\pi} L>3.5$,
$230 \mathrm{MeV} \leq m_{\pi} \leq 510 \mathrm{MeV}, \quad s$-quark mass tuned to phys. K mass.

Chiral extrapolation for η^{\prime}, η masses

$$
\begin{array}{cl}
M_{\eta}=551(8)_{\text {stat }}(6)_{\text {sys }} \mathrm{MeV} & (\mathrm{PDG} \operatorname{exp.} 547.85(2) \mathrm{MeV}) \\
M_{\eta^{\prime}}=1006(54)_{\text {stat }}(38)_{\text {sys }}(+61)_{\text {ex }} \mathrm{MeV} & \text { (PDG exp. } 957.78(6) \mathrm{MeV})
\end{array}
$$

Nice confirmation of the topological mechanism related to the axial anomaly.

Comment: $\quad \eta^{\prime}$ physics studied with staggered fermions: what about rooting ? massive Schwinger model investigated [S. Dürr, '12]
$\Longrightarrow \quad$ anomaly correctly treated, rooting effectively works.
5. $T>0: U_{A}(1)$ symmetry restoration puzzle

Question:
How $U_{A}(1)$ symmetry gets restored at or above T_{c} for $N_{f}=2$ light flavors?

Common view:

- $U_{A}(1)$ monotonously restored for $T>T_{c} \Longrightarrow$ 2nd order, O (4) universality
- $U_{A}(1)$ restored at $T=T_{c} \quad \Longrightarrow$ 1st order

Recent theoretical work:
high-order pert. study of RG flow within 3D Φ^{4} theory [Pelisetto, Vicari, '13].
Claim to find a stable FP, such that
$U_{A}(1)$ restored at $T=T_{c}$ can be accompanied by continuous transition, but with critical behavior slightly differing from $O(4)$.
[see also talk by T. Sato]
Lattice studies:
LLNL/RBC (Buchoff et al., '13), Bielefeld (Sharma et al., '13),
JLQCD (Cossu, S. Aoki et al., '13), Regensbg.-Mainz-Frankfurt (Brandt et al.)

LLNL/RBC $N_{f}=2+1$ domain wall fermion study:

- combined Iwasaki and dislocation suppressing gauge action
- compute Dirac eigenvalue spectrum, chiral condensates, susceptibities
- large volumes (up to $4 \mathrm{fm} \ldots 5.6 \mathrm{fm}$), pion mass $\simeq 200 \mathrm{MeV}$
- pseudo-critical $T_{c} \simeq 165 \mathrm{MeV}$.
- correlation functions of operators

$$
\sigma=\bar{\psi}_{l} \psi_{l}, \quad \delta^{i}=\bar{\psi}_{l} \tau^{i} \psi_{l}, \quad \eta=i \bar{\psi}_{l} \gamma^{5} \psi_{l}, \quad \pi^{i}=i \bar{\psi}_{l} \tau^{i} \gamma^{5} \psi_{l}
$$

- for their susceptibilities $\chi_{I}, \quad I=\sigma, \delta^{i}, \eta, \pi^{i} \quad\left(\right.$ correlators at $\left.q^{2}=0\right)$ hold symmetry relations

$$
\left.\begin{array}{ll}
\chi_{\sigma} & = \\
\chi_{\pi} \\
\chi_{\eta} & = \\
\chi_{\delta}
\end{array}\right\} \quad S U(2)_{L} \times S U(2)_{R}
$$

Note: $\quad \chi_{\sigma}=\chi_{\delta}+2 \chi_{d i s c}, \quad \chi_{\eta}=\chi_{\pi}-2 \chi_{5, \text { disc }} \quad$ with disconnected parts.

Main result: $U_{A}(1)$-violating renorm. susceptibilities in $\overline{M S}$ scheme.

Not vanishing around $T_{c} \simeq 165 \mathrm{MeV}!\Longrightarrow U_{A}(1)$ breaking for $T>T_{c}$.
What about the chiral limit, where top. susceptibilities are expected vanish ?
Result is supported by

- Bielefeld study with overlap valence quarks [Sharma et al., '13],
and by
- Regensburg-Mainz-Frankfurt study: comparing screening masses in pseudoscalar and scalar channel.
$N_{f}=2$ LQCD with clover-improved fermions at $m_{\pi}=540,290,200 \mathrm{MeV}$.
[Brandt et al., '12, '13 and priv. communication]
Show ratio $\left(M_{P}-M_{S}\right) / M_{V}$ vs. quark mass at T_{c}.
Does not seem to vanish in the chiral limit !

JLQCD's explorative study:

Dynamical overlap fermions $\left(N_{f}=2\right)$ studied in a fixed topological sector. Topological susceptibility from finite-volume corrections

$$
\lim _{|x| \rightarrow \infty}\langle m P(x) m P(0)\rangle_{Q}=\frac{1}{V}\left(\frac{Q^{2}}{V}-\chi_{t}-\frac{c_{4}}{2 \chi_{t} V}\right)+O\left(e^{-m_{\eta}|x|}\right)
$$

[for a systematic expansion see: Dromard, Wagner, '14 and talk by A. Dromard]

- small lattice size $16^{3} \times 8$, but various quark masses,
- eigenvalue spectrum: close to T_{c} gap for decreasing m_{q}
- represent disconnected iso-singlet scalar and pseudo-scalar meson correlators through low-lying modes.
- compare (pseudo-) scalar singlet and triplet correlators degenerate close to T_{c} for small enough m_{q}.
\Longrightarrow systematic finite volume error analysis required
\Longrightarrow JLQCD switched to domain wall fermions, so far preliminary results.
[cf. talks by G. Cossu and A. Tomiya]

6. Properties of $S U(2)$ (single) calorons with non-trivial holonomy

[K. Lee, Lu, '98, Kraan, van Baal, '98-'99, Garcia-Perez et al. '99]

$$
P(\vec{x})=\mathbf{P} \exp \left(i \int_{0}^{b=1 / T} A_{4}(\vec{x}, t) d t\right) \stackrel{|\vec{x}| \rightarrow \infty}{\Longrightarrow} \mathcal{P}_{\infty}=e^{2 \pi i \omega \tau_{3}} \notin \mathbf{Z}(2)
$$

Holonomy parameter: $0 \leq \omega \leq \frac{1}{2}, \omega=\frac{1}{4}$ - maximally non-trivial holonomy.

- (anti)selfdual with topological charge $Q_{t}= \pm 1$,
- at positions \vec{x}_{1}, \vec{x}_{2}, where local holonomy has identical eigenvalues, identify constituents \Rightarrow "dyons" or "instanton quarks", carrying opposite magnetic charge (maximally Abelian gauge),
- limiting cases:
- $\omega \rightarrow 0 \Longrightarrow$ 'old' HS caloron,
- $\left|\vec{x}_{1}-\vec{x}_{2}\right|$ small \Longrightarrow non-static single caloron $(C A L)$,
- $\left|\vec{x}_{1}-\vec{x}_{2}\right|$ large \Longrightarrow two static BPS monopoles or "dyon pair" $(D D)$ with topological charges (\sim masses)

$$
\left|Q_{t}^{\text {dyon }}\right|=2 \omega, \quad 1-2 \omega
$$

- $L(\vec{x})=\frac{1}{2} \operatorname{tr} P(\vec{x}) \rightarrow \pm 1 \quad$ close to $\quad \vec{x} \simeq \vec{x}_{1,2} \quad \Longrightarrow \quad$ "dipole" structure
- carries center vortex - percolating at maximally non-trivial holonomy [Bruckmann; Ilgenfritz, Martemyanov, Bo Zhang, '09]

Portrait of an $S U(2)$ KvBLL caloron with max. non-trivial holonomy
Action density Polyakov loop
singly localized caloron (CAL)

caloron dissolved into dyon-dyon pair (DD)

Plotted with the help of Pierre van Baal's caloron codes available at: http://www.lorentz.leidenuniv.nl/research/vanbaal/DECEASED/Caloron.html.

See also [Garcia Perez, Gonzalez-Arroyo, Montero, van Baal, '99;
Ilgenfritz, Martemyanov, Müller-Preussker, Shcheredin, Veselov, '02]

- Localization of the zero-mode of the Dirac operator:
- x_{4}-antiperiodic b.c.:
around the center with $L\left(\vec{x}_{1}\right)=-1$,

$$
\left|\psi^{-}(x)\right|^{2}=-\frac{1}{4 \pi} \partial_{\mu}^{2}[\tanh (2 \pi r \bar{\omega}) / r] \quad \text { for large } \quad d
$$

- x_{4}-periodic b.c.:
around the center with $L\left(\vec{x}_{2}\right)=+1$,

$$
\left|\psi^{+}(x)\right|^{2}=-\frac{1}{4 \pi} \partial_{\mu}^{2}[\tanh (2 \pi s \omega) / s] \quad \text { for large } \quad d
$$

Search for signatures of KvBLL calorons / dyons in MC generated fields:
[Bornyakov, Ilgenfritz, Martemyanov, M.-P.,. . ., '02 - '13;
see also F. Bruckmann, P. van Baal et al., NPB (Proc.Suppl.) 140 (2005) 635]

- Apply smoothing and/or filtering with overlap Dirac operator eigenmodes.
- Find clusters of topological charge density.
- Study their local correlations with local holonomy and Abelian monopoles.
- Study hopping of localized modes while varying fermionic b.c.'s.
[Gattringer, Pullirsch, '04]

Qualitative topological model emerging for YM theory at $T>0$, here for $S U(2)$ (analogously $S U(3)$):

Occurence of (anti) calorons and dyons at $T<T_{c}$ differs from $T>T_{c}$.
$T<T_{c}$: maximally non-trivial holonomy determined by $<L>\simeq 0$
\longrightarrow dyons have same 'mass', i.e. identical statistical weight.
$\longrightarrow \quad$ (dissociating) calorons dominate.
$\longrightarrow \quad$ topological susceptibility $\chi_{t} \neq 0$.
$T \gg T_{c}$: trivial holonomy determined by $<L>\simeq \pm 1$
\longrightarrow dyons have different 'mass', i.e. different statistical weight.
$\longrightarrow \quad$ heavy dyons are missing, i.e. complete calorons are suppressed.
$\longrightarrow \quad$ topological susceptibility gets suppressed $\chi_{t} \rightarrow 0$, while (light) magnetic monopoles are surviving (spatial Wilson loop area law).

Simulating caloron ensembles

[Gerhold, Ilgenfritz, M.-P., '07]
Model: random superpositions of KvBLL calorons.

Influence of the holonomy

- put (anti-) calorons randomly in a 3d box with open b.c.'s, with same asymptotic holonomy for all (anti)calorons: $\mathcal{P}_{\infty}=\exp 2 \pi i \omega \tau_{3}$, $\omega=0$ - trivial versus $\omega=1 / 4$ - maximally non-trivial,
- fix parameters as for IL model and lattice scale: temperature: $T=1 \mathrm{fm}^{-1} \simeq T_{c}, \quad$ density: $n=1 \mathrm{fm}^{-4}$, scale size: (a) fixed $\rho=0.33 \mathrm{fm}$
(b) distribution $D(\rho) \propto \rho^{7 / 3} \exp \left(-c \rho^{2}\right)$, such that $\bar{\rho}=0.33 \mathrm{fm}$,
- for measurements use a $32^{3} \times 8$ lattice grid and lattice observables.

Polyakov loop correlator \rightarrow quark-antiquark free energy

$$
F(R)=-T \log \langle L(\vec{x}) L(\vec{y})\rangle, \quad R=|\vec{x}-\vec{y}|
$$

with trivial $(\omega=0)$ and maximally non-trivial holonomy $(\omega=0.25)$.

\Rightarrow Non-trivial (trivial) holonomy creates long-distance coherence (incoherence) and (de)confines for standard instanton or caloron liquid model parameters.
\Rightarrow More realistic model describing the temperature dependence is possible

Dyon gas ensembles and confinement [cf. talk by e. Shuryak]

Polyakov, '77:
Confinement evolves from magnetic monopoles effectively in 3D.
Here: monopoles $=$ dyons $\left(\right.$ KvBLL caloron constituents) for $0<T<T_{c}$.

Conjecture for Yang-Mills theory at $0<T<T_{C}$:
rewrite integration measure over KvBLL caloron moduli space in terms of dyon degrees of freedom.

Diakonov, Petrov, '07:
proposed integration measure (Abelian fields; no antidyons, i.e. CP is violated).
Dyon ensemble statistics analytically solved \Longrightarrow confinement.

However, observation from numerical simulation:
Moduli space metric satisfies positivity only for a small fraction of dyon configurations and only for low density.
[Bruckmann, Dinter, Ilgenfritz, M.-P., Wagner, '09].

Simplify the model:

- Far-field limit, i.e. purely Abelian monopole fields, non-trivial holonomy.
- Neglect moduli space metric, take random monopole gas.
- Compute free energy of a static quark-antiquark pair $F_{\bar{Q} Q}(d)$ from Polyakov loop correlators.
[Bruckmann, Dinter, Ilgenfritz, Maier, M.-P., Wagner, '12]
- Exact solution: $\quad F_{\bar{Q} Q}\left(\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\right)=-T \ln \left\langle P(\mathbf{r}) P^{\dagger}\left(\mathbf{r}^{\prime}\right)\right\rangle \sim \frac{\pi}{2} \frac{\rho}{T}\left|\mathbf{r}-\mathbf{r}^{\prime}\right|+$ const.
- Simulation in a finite box requires to deal with long-range tails of the fields.
\Longrightarrow Ewald's method used e.g. in plasma physics [P. Ewald, '21]
\Longrightarrow find nice agreement with exact result.
\Longrightarrow Further work required!

7. Miscellaneous

I apologize for not having discussed various topics in detail, which might have been also of interest for Pierre van Baal:

- open b.c.s suppressing HMC's autocorrelation for Q_{t} :
[Chowdhury et al., '14; Bruno, S. Schäfer, Sommer, '14; cf. talk by G. Mc Glynn]
- simulation of θ-vacua with Langevin techniques or dual variables: [cf. talks by L. Bongiovanni; T. Kloiber]
- fixed topology considerations:
[cf. talks by J. Verbaarschot; U. Gerber; A. Dromard; H. Fukaya]
- ongoing discussions about the vacuum structure and topological excitations: [cf. talks by M. Ünsal; M. Ogilvie; A. Shibata; M. Hasegawa; N. Cundy; H.B. Thacker; D. Trewartha; P. de Forcrand]
- phase structure at differing m_{u}, m_{d} masses:
[Creutz, '13; cf. talk by S. Aoki]
- topology in related theories (G_{2} YM theory; $N=1$ SUSY on the lattice): [Ilgenfritz, Maas, '12; cf. talk by P. Giudice]
- chiral magnetic effect in QCD with constant magnetic background field:
[Bruckmann, Buividovich, Sulejmanpasic, '13; Bali et al. '14]

8. Summary

- Topological aspects in QCD occur naturally and have phenomenological impact. Standard instanton gas/liquid remains phenomenologically important: chiral symmetry breaking, solution of $U_{A}(1), \ldots$, but fails to explain confinement.
- Computation of the topological susceptibility with new methods (gradient flow, spectral projector method) on a promising way. Keep track of lattice artifacts and study the continuum limit !!
- Solution of the $\eta^{\prime}-\eta$ mixing problem now in a good shape.
- $U_{A}(1)$ restoration at $T>T_{c}$ seems to be close to be solved, but chiral limit? Looks like slow restauration above T_{c}. Then for $N_{f}=2$ more likely $O(4)$ scenario.
- $0<T<T_{c}$: KvBLL caloron and dyon gas models with non-trivial holonomy very encouraging for description of confinement

$$
[\rightarrow \text { talk by E. Shuryak }]
$$

- Calorons and dyon dissociation provide way to improve systematically semiclassical approach $[\rightarrow$ talk by M. Ünsal].

Thanks to all those who provided material, sorry to those, I could not mention, thank you all for your attention.

Thank you, Pierre,

 your vision and ideas are alive.

