Review of Hadronic Structure in Lattice QCD

Martha Constantinou

University of Cyprus

Lattice 2014

New York, USA June 23rd, 2014

<ロ><日><日><日><日><日><日><日><日><日><日><日</p>

Thanks for the material received from:

- Constantia Alexandrou (ETMC)
- Gunnar Bali (RQCD)
- Ming Gong (χ QCD)
- Rajan Gupta (PNDME)
- Christos Kallidonis (ETMC)
- Giannis Koutsou (ETMC)
- Derek Leinweber (CSSM)
- Keh-Fei Liu (χQCD)
- Stefan Meinel (LHPC)
- Shigami Ohta (RBC/UKQCD)
- Benjamin Owen (CSSM)
- Haris Panagopoulos (Cyprus Group)
- Thomas Rae (Mainz Group)
- Phiala Shanahan (CSSM)
- Carsten Urbach (ETMC)
- > Yi-Bo Yang (χ QCD)
- James Zanotti (QCDSF/UKQCD, CSSM)

OUTLINE

A Nucleon Sector

- Axial charge
- Electromagnetic form factors
- Dirac & Pauli radii
- Quark momentum fraction
- Nucleon Spin
- B Hyperon Form Factors
 - Hyperon EM form factors
 - Axial form factors
- **C** Mesons
 - Pion momentum fraction
 - *ρ*-meson EM form factors
- **D** Conclusions

LQCD meets Nature

Rich experimental activities in major facilities: JLab, MAMI, MESA, etc

- Investigation of baryon and meson structure
- Origin of mass and spin
- New physics searches: $(g-2)_{\mu}$, dark photon searches
- proton radius puzzle
- the list is long...

Proton Radius Puzzle

 $< r_p^2 >$ from muonic hydrogen μp 7.7 σ smaller than elastic e - p scattering

- measured energy difference between the 2P and 2S states of muonic hydrogen
- μp: 10 times more accurate than other measurements
- very sensitive to the proton size
- no obvious way to connect with other measurements (4% diff)

[R. Pohl et al. Nature 466, 213-217 (2010)]

12GeV Upgrade at JLab

Physics Program for CLAS12 (Selected Hadron Experiments)

- The Longitudinal Spin Structure of the Nucleon
- Nucleon Resonance Studies with CLAS12
- Meson spectroscopy with low Q² electron scattering
- ► High Precision Measurement of the Proton Charge Radius
- and many more....

Light-by-Light scattering at LHC

[D. d' Enterria and G. G. Silveira, arXiv:1305.7142]

- Never observed directly
- Indirectly observed by its effects on anomalous magnetic moments of electrons and muons
- Photon-photon collisions in ultraperipheral collisions of proton have been detected
- arXiv:1305.7142: LCH could detect LbyL (5.5-14 TeV) due to:
- > 'quasireal' photons fluxes in EM interactions of protons and lead ions

Nucleon on the Lattice in a nutshell

Contributing diagrams:

Connected

Computation of 2pt- and 3pt-functions:

$$2\mathrm{pt}: \quad G(\vec{q},t) = \sum_{\vec{x}_f} e^{-i\vec{x}_f \cdot \vec{q}} \Gamma^{\mathbf{0}}_{\beta\alpha} \left\langle J_{\alpha}(\vec{x}_f,t_f) \overline{J}_{\beta}(0) \right\rangle$$

 $egin{aligned} \Gamma^0 &\equiv rac{1}{4}(1+\gamma_0) \ \Gamma^2 &\equiv \Gamma^0 \cdot \gamma_5 \cdot \gamma_i \ & ext{and other variations} \end{aligned}$

$$3pt: \quad G_{\mathcal{O}}(\mathbf{\Gamma}^{\kappa}, \vec{q}, t) = \sum_{\vec{x}_{f}, \vec{x}} e^{i\vec{x}\cdot\vec{q}} e^{-i\vec{x}_{f}\cdot\vec{p}'} \mathbf{\Gamma}^{\kappa}_{\beta\alpha} \left\langle J_{\alpha}(\vec{x}_{f}, t_{f}) \mathcal{O}(\tilde{\mathbf{x}}, \mathbf{t}) \overline{J}_{\beta}(0) \right\rangle$$

★ Construction of optimized ratio:

$$R_{\mathcal{O}}(\Gamma, \vec{q}, t) = \frac{G_{\mathcal{O}}(\Gamma, \vec{q}, t)}{G(\vec{0}, t_f)} \times \sqrt{\frac{G(-\vec{q}, t_f - t)G(\vec{0}, t)G(\vec{0}, t_f)}{G(\vec{0}, t_f - t)G(-\vec{q}, t)G(-\vec{q}, t_f)}}$$
$$\underset{\substack{t_f \to \infty \\ t - t_i \to \infty}}{\overset{t_f \to \infty}{\Pi(\Gamma, \vec{q})}}$$

Plateau Method: Most common method

*Renormalization: connection to experiments

 $\Pi^R(\Gamma,\vec{q}) = \frac{\mathbb{Z}_{\mathcal{O}}}{\Pi(\Gamma,\vec{q})}$

★ Extraction of form factors

e.g. Axial current:

$$A_{\mu}^{3} \equiv \bar{\psi} \gamma_{\mu} \gamma_{5} \frac{\tau^{3}}{2} \psi \Rightarrow \bar{u}_{N}(p') \left[\mathbf{G}_{\mathbf{A}}(\mathbf{q}^{2}) \gamma_{\mu} \gamma_{5} + \mathbf{G}_{\mathbf{p}}(\mathbf{q}^{2}) \frac{q_{\mu} \gamma_{5}}{2 m_{N}} \right] u_{N}(p)$$

Isovector Combination: (u-d)

★ disconnected contributions cancel out

★ Simpler renormalization

A1. NUCLEON AXIAL CHARGE

The chosen one

- ★ Lattice data from 'plateau' methods
- \star Latest achievement: lattice results at physical m_{π}
- ★ No necessity of chiral extrapolation
- ★ Different strategies for addressing systematic uncertainties

• $g_A^{\exp} = 1.2701(25)$ [PRD'12]
• governs the rate of β -decay
determined directly from lattice data (no fit necessary)
• m_{π} $>$ 200MeV: lattice results below exp.: ~10-15%
Selected Works: T. Yamazaki et al. (RRC/UKOCD.) [arXiv:0801.4016]
J.D. Bratt et at. (LHPC), [arXiv:1001.3620]
C. Alexandrou et al. (ETMC), [arXiv:1012.0857]
S. Collins et al. (QCDSF/UKQCD), [arXiv:1101.2326]
B.B. Brandt et al. (CLS/MAINZ), [arXiv:1106.1554]
G.S. Bali et al. (QCDSF), [arXiv:1112.3354]
S. Capitani et al. (CLS/MAINZ), [arXiv:1205.0180]
J.R. Green et al. (LHPC), [arXiv:1209.1687]
J.R. Green et al. (LHPC), [arXiv:1211.0253]
B.J. Owen et al. (CSSM), [arXiv:1212.4668]
R. Horsley et al. (QCDSF), [arXiv:1302.2233]
C. Alexandrou et al. (ETMC), [arXiv:1303.5979]
T. Bhattacharya et al. (PNDME), [arXiv:1306.5435]
S. Ohta et al. (RBC/UKQCD), [arXiv:1309.7942]
G.S. Bali et al. (RQCD), [arXiv:1311.7041]
A.J. Chambers et al. (QCDSF/UKQCD), [arXiv:1405.3019]

A1. NUCLEON AXIAL CHARGE

The chosen one

- ★ Lattice data from 'plateau' methods
- \star Latest achievement: lattice results at physical m_{π}
- ★ No necessity of chiral extrapolation
- ★ Different strategies for addressing systematic uncertainties

• $g_A^{\exp} = 1.2701(25)$ [PRD'12]

- governs the rate of β-decay
- determined directly from lattice data (no fit necessary)
- $m_\pi\!>\!\!200 {\rm MeV}$: lattice results below exp.: $\sim\!10\text{-}15\%$

Possible origin of systematics

- → Cut-off Effects
- → Excited State Contamination
 - · adjustment of source-sink separation
 - 2-state fit
 - summation method
- → Finite Volume Effects

Investigation of volume effects as lattice box increases

→ not being at the physical point

Cut-off effects

Continuum extrapolation requires 3 lattice spacings

1st Conclusion: a < 0.1 fm is sufficient

Excited State Contamination

Plateau Method: single-state fit

Summation Method

$$\sum_{t=t_i}^{t_f} R(t_i, t, t_f) = \text{const.} + \frac{\mathcal{M} T_{\text{sink}}}{\mathcal{M} T_{\text{sink}}} + \mathcal{O}\bigg(e^{-\binom{T_{\text{sink}}}{\mathcal{D}}\Delta(p'))}\bigg) + \mathcal{O}\bigg(e^{-\binom{T_{\text{sink}}}{\mathcal{D}}\Delta(p))}\bigg)$$

- suppressed excited states (exponentials decaying with $T_{\rm sink}$)
- Matrix element extracted from the slope
- Alternatively: sum over $t_i + 1 \le t \le t_f 1$

1 Plateau Method: single-state

⇐ RQCD (2014):

[G.Bali et al. (RQCD), 2014]

- *m*_π=285MeV
 - g_A not sensitive on $T_{
 m sink}$: 0.49-1.19 fm

ETMC (2013): \Rightarrow [S.Dinter et al. (ETMC), arXiv:1108.1076] m_{π} =373MeV

 g_A not sensitive on $T_{\rm sink}$

2 Summation Method

⇐ ETMC (2013):

[S.Dinter et al. (ETMC), arXiv:1108.1076]

- $\sim m_{\pi} = 373 \text{MeV}$
- No curvature is seen in slope
- No detectable excited states

[G.Bali et al. (RQCD), 2014]

*m*_π=285MeV

 g_A not sensitive on T_{sink} : 0.49-1.19 fm

ETMC (2013): => [S.Dinter et al. (ETMC), arXiv:1108.1076]

- $\sim m_{\pi}$ =373MeV
- g_A not sensitive on T_{sink}

2 Summation Method

⇐ ETMC (2013):

[S.Dinter et al. (ETMC), arXiv:1108.1076]

- $\sim m_{\pi} = 373 \text{MeV}$
- $T_{
 m sink}$: 0.3 fm-1.3 fm
- No curvature is seen in slope
- No detectable excited states

O Two-state fit on 3pt-functions

C PNDME (2013):

[T. Bhattacharya (PNDME), arXiv:1306.5435]

- $m_{\pi}=310$ MeV
- Largest difference for $T_{\rm sink} < 1$ fm
- All fits in agreement

2nd Conclusion: $T_{sink} > 1$ fm safe*

* based on m_{π} angle 300MeV

O Feynman-Hellmann Approach:

$$S \rightarrow S(\lambda) = S + \lambda \sum_{x} \overline{q}(x) i \gamma_5 \gamma_3 q(x)$$
$$\Delta q = \left. \frac{\partial E(\lambda)}{\partial \lambda} \right|_{\lambda=0} = \frac{1}{2M} \langle N | \overline{q} i \gamma_5 \gamma_3 q | N \rangle$$

- External spin operator in S_{fermion}
- Δq : linear response of nucleon energies
- Statistical Precision

CSSM/QCDSF/UKQCD (2014): [A.J.Chambers et al., arXiv:1405.3019]

$$m_{\pi} = 470 \text{MeV}$$

Talk by J. Zanotti

RBC/UKQCD (2014): DWF $N_f = 2+1$

- A factor of 20 improvement in computational efficiency
- A sloppy calculation costs ~1/65 of an exact calculation
- the speedup with AMA: ~15-29 times

Talk by S.Ohta

Improvement Technique: All-Mode-Avaraging (AMA) [E.Shintani et. al. arXiv:1402.0244]

signal/noise
$$\sim \sqrt(N_{
m meas}) imes e^{-(m_N + 3 \, m_\pi/2)}$$

- ★ Reduction of statistical error for a given number of gauge configurations
- \star Significant increase of $N_{
 m meas}$ at low computational cost
- Improved operator:

$$\langle \mathcal{O}^{\mathrm{impr}} \rangle = \langle \mathcal{O}^{\mathrm{approx}} \rangle + \langle \mathcal{O}^{\mathrm{rest}} \rangle$$

 $\mathcal{O}^{\rm approx}$: not precise but cheap $\mathcal{O}^{\rm rest}$: correction term

$$\mathcal{O}^{\rm rest} = \mathcal{O}^{\rm exact} - \mathcal{O}^{\rm approx}$$

AMA result:

$$\boldsymbol{O}_{\mathrm{AMA}} = \frac{1}{N_{\mathrm{apprx}}} \sum_{i=1}^{N_{\mathrm{apprx}}} \boldsymbol{O}_{\mathrm{apprx}}^{i} + \frac{1}{N_{\mathrm{exact}}} \sum_{j=1}^{N_{\mathrm{exact}}} \left(\boldsymbol{O}_{\mathrm{exact}}^{j} - \boldsymbol{O}_{\mathrm{apprx}}^{j}\right)$$

Finite Volume Effects

- PNDME (m_{π} =128MeV) : L_s =5.76 fm, a=0.09 fm
- ETMC (m_{π} =135MeV) : L_s =4.37 fm, a=0.091 fm
- LHPC (m_{π} =149MeV) : L_s =5.57 fm, a=0.116 fm
- RQCD ($m_{\pi} = 150/157$ MeV): $L_s = 4.48/3.36$ fm, a = 0.07 fm
- QCDSF (m_{π} =158MeV) : L_s =3.41 fm, a=0.071 fm
- QCDSF/UKQCD (m_{π} =170MeV) : L_s =3.36 fm, a=0.07 fm
- RBC ($m_{\pi} = 170 \text{MeV}$) : $L_s = 4.6 \text{ fm}, a = 0.141 \text{ fm}$

[S. Collins et al. (QCDSF/UKQCD), arXiv:1101.2326]:

'Simulations in the region $L~m_\pi>3$ are expected to have sufficiently small finite size effects'

Finite Volume Effects

- PNDME (m_{π} =128MeV) : L_s =5.76 fm, a=0.09 fm
- ETMC (m_{π} =135MeV) : L_s =4.37 fm, a=0.091 fm
- LHPC (m_{π} =149MeV): L_s =5.57 fm, a=0.116 fm
- RQCD ($m_{\pi} = 150/157$ MeV) : $L_s = 4.48/3.36$ fm, a = 0.07 fm
- QCDSF (m_{π} =158MeV) : L_s =3.41 fm, a=0.071 fm
- QCDSF/UKQCD (m_{π} =170MeV) : L_s =3.36 fm, a=0.07 fm

• RBC ($m_{\pi} = 170 \text{MeV}$) : $L_s = 4.6 \text{ fm}, a = 0.141 \text{ fm}$

Volume effects still unclear [S. Collins et al. (QCDSF/UKQCD), arXiv:1101.2326]:

'Simulations in the region $L~m_\pi>3$ are expected to have sufficiently small finite size effects'

Axial Charge: Summary

High statistical analyses to date reveal:

• Cutoff effects small for: $a < 0.1 \, \text{fm}$

> No excited states for: $T_{\rm sink} > 1 \, {\rm fm}$

Finite Volume effects: $L m_{\pi} > 3$

<ロ> <部> <至> <至> <至> <至> <三> <0 <0</p>

A2. Nucleon EM form factors

$$\langle N(\boldsymbol{p}',\boldsymbol{s}')|\gamma_{\mu}|N(\boldsymbol{p},\boldsymbol{s})\rangle \sim \bar{u}_{N}(\boldsymbol{p}',\boldsymbol{s}') \bigg[\mathbf{F_{1}(q^{2})}\gamma_{\mu} + \mathbf{F_{2}(q^{2})} \frac{i\,\sigma^{\mu\rho}\,\,q_{\rho}}{2m_{N}} \bigg] u_{N}(\boldsymbol{p},\boldsymbol{s})$$

Disconnected Insertion

$$\text{Sachs FFs:} \ G_E(Q^2) = F_1(Q^2) - \frac{Q^2}{4m_N^2}F_2(Q^2), \quad G_M(Q^2) = F_1(Q^2) + F_2(Q^2)$$

Quark loops with hierarchical probing [A.Stathopoulos et al., arXiv:1302.4018]

- Gain depends on observable: for EM significant improvement
- Allows to increase the level of spatial dilution at any stage while reusing existing data
- Improves the stochastic estimator $Tr[A^{-1}] = E\{z^{\dagger}A^{-1}z\}$ (z: noise vector)
- deterministic orthonormal vectors (Hadamard)
- **Optimal distance** k for $A_{i,j}^{-1} \approx 0$ obtained using probing
- Recursive probing (results from level i 1 is used at level i)
- Multi coloring of sites is done hierarchically
- Bias is removed by using a random starting vector
- **b** Up to factor of 10 speed up ($32^3 \times 64$ clover lattice)

A3. Dirac & Pauli radii

Lattice data for plateau method

- \star Estimation of radii strongly depends on small Q^2
- \star Need access for momenta close to zero \Rightarrow
- \star larger volumes

Avoid model dependence-fits:

Poster by K.Ottnad (ETMC)

Systematic Effects

- \star Upward tendency with increase of $T_{
 m sink}$
- \star Summation agrees with larger $T_{
 m sink}$ value
- 🔶 Chiral extrapolation of summation method agrees with exp

A4. Quark Momentum Fraction

1-D Vector current: $\mathcal{O}^{\mu\nu} \equiv \bar{\psi} \gamma^{\{\mu} \stackrel{\leftrightarrow}{D}^{\nu\}} \psi \Rightarrow \mathbf{A}_{20}(\mathbf{q}^2), \ \mathbf{B}_{20}(\mathbf{q}^2), \ \mathbf{C}_{20}(\mathbf{q}^2)$ $\langle x \rangle_q = A_{20}(0)$

Renormalization

Control of lattice artifacts (non-Lorentz invariant):

$$\frac{\sum_{\rho} p_{\rho}^4}{\left(\sum_{\rho} p_{\rho}^2\right)^2} < 0.4$$
(empirically)

A. Subtraction of $\mathcal{O}(g^2 a^2)$ perturbative terms

- [C. Alexandrou et al. (ETMC), arXiv:1006.1920][M. Constantinou et al. (ETMC), arXiv:0907.0381]
- B. Complete Subtraction of $\mathcal{O}(g^2)$ artifacts
- [M. Constantinou et al. (QCDSF), 2014]
- the second seco
 - Dirac equation solved with momentum source
 - # of inversion depends on # of momenta considered
 - Application of any operator
 - High statistical accuracy

A5. Nucleon Spin

Spin Sum Rule:

$$\frac{1}{2} = \sum_{q} J^{q} + J^{G} = \sum_{q} \left(L^{q} + \frac{1}{2} \Delta \Sigma^{q} \right) + J^{G}$$
Quark Spin
Quark Spin
$$J^{q} = \frac{1}{2} \left(A_{20}^{q} + B_{20}^{q} \right), \quad L^{q} = J^{q} - \Sigma^{q}, \quad \Sigma^{q} = g_{A}^{q}$$

Extraction from LQCD:

$$igstar{}$$
 Individual quark contributions \Rightarrow disconnected insertion contributes

Renormalization of Disconnected Contributions

- Requirement of renormalization for the singlet operators
- $> Z_{\mathcal{O}}^{\text{singlet}}$ unknown non-perturbatively
- $> Z^{s}_{\mathcal{O}} Z^{ns}_{\mathcal{O}}$ first appears to 2 loops in perturbation theory
- Recent perturbative results for [H.Panagopoulos et al. (Cyprus Group), 2014] Axiat: $Z_A^s - Z_A^{ns}$ Scalar: $Z_S^s - Z_S^{ns}$
- Applicable for various actions: (Wilson, Clover, SLiNC, TM) $_F$ & (Wilson, t.I. Symanzik, Iwasaki, DBW2) $_G$

tree-level Symanzik gluons:

$$Z_A^{\rm s} - Z_A^{\rm ns} = \frac{g^4 \ C_{\rm f} \ N_{\rm f}}{\left(16 \ \pi^2\right)^2} \left(-2.0982 + 12.851 c_{\rm sw} + 3.3621 c_{\rm sw}^2 - 1.7260 c_{\rm sw}^3 - 0.0164 c_{\rm sw}^4 - 6 \log(a^2 \mu^2)\right)$$

Talk by H. Panagopoulos

DI for g_A lower the total value

Nucleon Spin

Results 0.4 Contributions to nucleon spin 0.3 0.2 ∇: DI (ETMC) 0.1 0 -0.1 0.05 0.15 0.2 0.25 Ω 0.1 m_{π}^2 (GeV²) Most results only CI TMF: include $Z_A^s - Z_A^{ns}$ $m_{\pi} = 135 \text{ MeV: } J^{u} \sim 0.25 , J^{d} \sim 0$ $\succ L^{u+d} \sim 0 (L^u, L^d \text{ cancel out})$ $\sim m_{\pi} = 135 \text{ MeV: } \Delta \Sigma^{u}, \ \Delta \Sigma^{d} \text{ agrees with}$ exp.

Contributions to nucleon spin 0.2 L^d 0 -0.2 -0.4 0 0.05 0.1 0.15 0.2 0.25 m_{π}^2 (GeV²) Contributions to nucleon spin 0.4 $\frac{1}{2}\Lambda\Sigma$ 0.2 ∇: DI (ETMC) 0 -0.2 0 0.05 0.1 0.15 0.2 0.25 m2 (GeV2)

[S.N.Syritsyn et al. (LHPC), arXiv:1111.0718] [A.Sternbeck et al. (QCDSF), arXiv:1203.6579] [C.Alexandrou et al. (ETMC), arXiv:1303.5979]

○ LHPC '11 (DWF/asqtad, $N_{\rm f}$ =2+1) ● LHPC '11 (DWF, $N_{\rm f}$ =2+1) ▲ QCDSF '12 (Clover, $N_{\rm f}$ =2) □ ETMC '10 (TMF, $N_{\rm f}$ =2) ■ ETMC '13 (TMF, $N_{\rm f}$ =2+1+1) ★ ETMC '14 (TMF& $c_{\rm csw}$, $N_{\rm f}$ =2)

Nucleon Spin

 \Box ETMC '10 (TMF, $N_{\rm f}$ =2) \blacksquare ETMC '13 (TMF, $N_{\rm f}$ =2+1+1) \star ETMC '14 (TMF& $c_{
m sw}$, $N_{\rm f}$ =2)

 $\star m_{\pi} = 135$ MeV: Agreement with exp

★ DI: lowers the total value

HYPERON

FORM

FACTORS

Hyperon EM form factors

$$\langle B(p',s')|j_{\mu}(q)|B(p,s)\rangle = \overline{u}(p',s') \left[\gamma_{\mu}F_{1}(Q^{2}) + \frac{i\sigma_{\mu\nu}q^{\nu}}{2m_{B}}F_{2}(Q^{2}) \right] u(p,s)$$
Sachs FFs : $G_{E}(Q^{2}) = F_{1}(Q^{2}) - \frac{Q^{2}}{4m_{N}^{2}}F_{2}(Q^{2}), \quad G_{M}(Q^{2}) = F_{1}(Q^{2}) + F_{2}(Q^{2})$

D1. G_E , G_M of Hyperons

- Connected χ PT':
 - valence and sea quarks are treated separately
 - disconnected contractions may be omitted
- Extrapolation on each Q^2 separately

[P.E. Shanahan et al. (CSSM & QCDSF/UKQCD), arXiv:1401.5862, 1403.1965]

D2. G_M^s of Λ (1405)

- contains strange quark, but lighter than other excited spin-1/2 baryons
- superposition of molecular meson-baryon states $(\pi \Sigma \& \overline{K}N)$?
- > 1^{st} lattice computation of the EM FFs of $\Lambda(1405)$ (variational approach)
- ▷ in $\overline{K}N$: s-quark does not contribute in G_M

 \bigstar Approaching the physical point: $G^s_M \to 0$ [D.Leinweber et al. (CSSM), 2014] [B.J.Menadue et al., arXiv:1109.6716]

Axial charges of hyperons

Axial matrix element:

 $\langle B(p')|\bar{\psi}(x) \gamma_{\mu} \gamma_{5} \psi(x)|B(p)\rangle \Big|_{q^{2}=0}$

Connected part

- First promising results at the physical point

Talk by C. Alexandrou

MESONS

▲□▶▲母▶▲글▶▲글▶ ヨニ 이의

E1. Pion Quark distribution function

[C.Urbach et al. (ETMC), 2014]: $N_{\rm f}$ =2, 2+1+1 TMF, $N_{\rm f}$ =2 TMF & clover

Lowest moment with H(4)-operator:

$$\mathcal{O}_{44}(x) = \frac{1}{2}\bar{u}(x)[\gamma_4 \stackrel{\leftrightarrow}{D}_4 - \frac{1}{3}\sum_{k=1}^3 \gamma_k \stackrel{\leftrightarrow}{D}_k]u(x)$$

$$\langle x \rangle_{\pi^+}^{\text{bare}} = \frac{1}{2 \, m_\pi^2} \, \langle \pi, \vec{0} | \mathcal{O}_{44} | \pi, \vec{0} \rangle$$

- No external momentum is needed in the calculation
- Stochastic time slice sources:
 - less inversions
 - statistical accuracy
- disconnected contributions not included

 $\begin{aligned} & \text{phenomenology: } \left< x \right>_{\pi^+} = 0.0217(11) \\ & \text{[K. Wijesooriya et al., nucl-ex/0509012]} \end{aligned}$ $\begin{aligned} & \text{[R. Baron et al. (ETMC), arXiv:0710.1560]} \\ & \text{[D. Brommel (QCDSF/UKQCD) Pos(LATTICE) 2007, 140]} \\ & \text{[G. Bali et al. (RQCD), arXiv:1311.7639]} \\ & \text{[C. Urbach et al. (ETMC), 2014]} \end{aligned}$

E2. ρ -meson EM form factors

[B.J.Owen et al. (CSSM), 2014] $N_{\rm f}$ =2+1 Clover

 $\langle \rho(p',s')|j_{\mu}|\rho(p,s)\rangle$: $\mathbf{G_C(q^2)}, \mathbf{G_M(q^2)}, \mathbf{G_Q(q^2)}$

Variational approach

- automatic method for suppressing excited state effects
- separation of the correlators for individual energy eigenstates
 - ⇒ rapid ground state dominance
 - ⇒ access to excited states
- Set of operators: various source and sink smearings $\chi^i_{
 ho}(x)=ar{d}(x)\gamma^i\,u(x)$
- 4 levels of smearing \Rightarrow 4×4 correlation matrix
- substantial improvement for G_M and G_Q

Blue points: variational method (VM) Red points: standard method (SM)

★ G_M , G_Q (VM): plateau right after the current insertion ★ G_M (SM): plateau at later timeslices ★ G_Q (SM): No plateau identification ★ G_C : plateau of VM earlier that in the SM

first excitation of ρ -meson

CONCLUSIONS

Breakthrought: Simulating the physical world!

Dedication of human force and computational resources on:

- Control of statistical uncertainties ⇒ noise reduction techniques crucial
- comprehensive study of systematic uncertainties
- removal of excited states where necessary
- cross-checks between methods
- Simulations at different lattice spacings and volumes
- study of DI at lower masses (Target: physical m_{π} !)
 - challenging task
 - exploid techniques: AMA, hierarchical probing, others
 - usage of GPUs
 - current computations of DI provide bounds

Nucleon spin: include dynamical simulations for gluon angular momentum

- Difficulties with renormalization and mixing
- rely on perturbation theory
- Exciting results emerging from other particles

THANK YOU

メロトメ母トメミトメミト ミニのへ

BACKUP SLIDES

メロトメ母トメミトメミト ミニのへ

1 Plateau Method: single-state fit

LHPC (2012): [J.R.Green et al. (LHPC), arXiv:1211.0253]

- $\succ m_{\pi} \geq 149 \text{MeV}$
- ▶ light m_{π} : $g_A \checkmark$ with $T_s \checkmark$
- $\succ L_t/a \geq 48: g_A$ with T_s \blacksquare
- Indication of thermal pion states

Finite Volume Effects

Black diamond: summation (LHPC)

▲ Black triangles: volume corrected (QCDSF)

B2. Nucleon Axial form factors

TMF, $N_{\rm f}=2$, $N_{\rm f}=2+1+1$ and TMF & clover , $N_{\rm f}=2$

• G_p strongly dependent on the lowest values of Q^2

B2. Nucleon Axial form factors

TMF, $N_{\rm f}=2$, $N_{\rm f}=2+1+1$ and TMF & clover , $N_{\rm f}=2$

• G_p strongly dependent on the lowest values of Q^2

Generalized pencil-of-function

- Better extraction of states contributing to a correlator
- Variational method using 3pt-functions with 3 equally spaced sink locations

$$\mathbf{C}^{3-\mathrm{pt}}(t_i,t,t_f) = \begin{pmatrix} C^{3-\mathrm{pt}}(t_i,t,t_f) & C^{3-\mathrm{pt}}(t_i,t,t_f+\tau) \\ C^{3-\mathrm{pt}}(t_i,t+\tau,t_f+\tau) & C^{3-\mathrm{pt}}(t_i,t+\tau,t_f+2\tau) \end{pmatrix}$$

Computational cost ×3, but better ground signal

NUCLEON

CHARGES

▲□▶▲@▶▲콜▶▲콜▶ = -00

B1. Scalar Charge $g_S \equiv \langle N | \bar{u}u - \bar{d}d | N \rangle$

• g_S, g_T provide constrains for scalar interactions at the TeV scale

LHPC: $m_{\pi} = 149 - 356 \text{MeV}$

TMF: $N_{\rm f}$ =2+1+1, m_{π} =373MeV [A.Abdel-Rehim et al. (ETMC), arXiv:1310.6339]

TMF & c_{SW} : $N_f=2$, $m_{\pi}=135$ MeV [C.Alexandrou et al. (ETMC), 2014]

B2. Tensor Charge

