DK and $D^{*} K$ scattering near threshold

C. B. Lang
Univ. Graz, Austria
in collaboration with

Sasa Prelovsek, Luka Leskovec, Daniel Mohler, Richard Woloshyn

Univ. Ljubljana, Slovenia
Fermilab, USA
TRIUMF, Canada

see also: Mohler et al., PRL 111, 222001 (2013), arXiv 1308.3157 and arXiv: 1403.8103

C \underline{s}

$$
D_{s 0}^{*}(2317)^{ \pm}
$$

Γ_{i}	Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$D_{s 0}^{*}(2317) \rightarrow D_{s}^{+} \pi^{0}$	seen
Γ_{2}	$D_{s 0}^{*}(2317) \rightarrow D_{s}^{+} \gamma$	
Γ_{3}	$D_{s 0}^{*}(2317) \rightarrow D_{s}^{*}(2112)^{+} \gamma$	
Γ_{4}	$D_{s 0}^{*}(2317) \rightarrow D_{s}^{+} \gamma \gamma$	
Γ_{5}	$D_{s 0}^{*}(2317) \rightarrow D_{s}^{*}(2112)^{+} \pi^{0}$	
Γ_{6}	$D_{s 0}^{*}(2317) \rightarrow D_{s}^{+} \pi^{+} \pi^{-}$	not seen
Γ_{7}	$D_{s 0}^{*}(2317) \rightarrow D_{s}^{+} \pi^{0} \pi^{0}$	

$D_{s 1}(2460)^{ \pm}$

Γ_{i}	Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$D_{s 1}(2460)^{+} \rightarrow D_{s}^{*+} \pi^{0}$	$(.048 \pm .011) \times 10^{1}$
Γ_{2}	$D_{s 1}(2460)^{+} \rightarrow D_{s}^{+} \gamma$	$(.018 \pm .004) \times 10^{1}$
Γ_{3}	$D_{s 1}(2460)^{+} \rightarrow D_{s}^{+} \pi^{+} \pi^{-}$	$(4.3 \pm 1.3) \times 10^{-2}$
Γ_{4}	$D_{s 1}(2460)^{+} \rightarrow D_{s}^{*+} \gamma$	$<8 \%$
Γ_{5}	$D_{s 1}(2460)^{+} \rightarrow D_{s 0}^{*}(2317)^{+} \gamma$	$\left(3.7_{-2.4}^{+5.0}\right) \times 10^{-2}$
Γ_{6}	$D_{s 1}(2460)^{+} \rightarrow D_{s}^{+} \pi^{0}$	
Γ_{7}	$D_{s 1}(2460)^{+} \rightarrow D_{s}^{+} \pi^{0} \pi^{0}$	
Γ_{8}	$D_{s 1}(2460)^{+} \rightarrow D_{s}^{+} \gamma \gamma$	

$$
D_{s 2}^{*}(2573)
$$

Γ_{i}	Mode
Γ_{1}	$D_{s 2}(2573)^{+} \rightarrow D^{0} K^{+}$
Γ_{2}	$D_{s 2}(2573)^{+} \rightarrow D^{*}(2007)^{0} K^{+}$

$$
D_{s 1}(2536)^{ \pm}
$$

$\Gamma_{i} \quad$ Mode

Fraction $\left(\Gamma_{i} / \Gamma\right)$

Γ_{1}	$D_{s 1}(2536)^{+} \rightarrow D^{*}(2010)^{+} K^{0}$	seen
Γ_{2}	$D_{s 1}(2536)^{+} \rightarrow\left(D^{*}(2010)^{+} K^{0}\right)$	
	S-wave Γ_{3}	$D_{s 1}(2536)^{+} \rightarrow\left(D^{*}(2010)^{+} K^{0}\right)$

CHARMED, STRANGE MESONS

Particles

Experiment

C \underline{s}

CHARMED, STRANGE MESONS

Particles

Results summary

Quark model:

$D_{s 0}^{*}(2317)$ and $D_{s 1}(2460)$ are above cf. Godfrey/Isgur PRD 32, 189 (1985) thresholds $D K$ and $D^{*} K$

But: threshold effects may be important

Lattice QCD:

Single hadron (css) studies give too high values
large pion mass: $D_{s 0}^{*}$ below threshold small pion mass: $D_{s 0}^{*}$ above threshold
van Beveren/Rupp PRL 91(2003) 012003 Godfrey, PRD 72, 054029 (2005)

Namekawa et al., Phys. Rev. D 84, 074505 (2011)
Mohler/Woloshyn, Phys. Rev. D 84, 054505 (2011)
Bali et al., J. Phys. Conf. Ser. 426, 012017 (2013)
Bali et al., PoS LATTICE2011, 135 (2011),
Moir et al, JHEP 05, 021 (2013)
Kalinowski et al., A. Phys. Pol. B PS. 6, 991 (2013)
Wagner et al. 1310.5513.

Include meson meson interpolators!

Interpolators

			D_{s}	$\begin{aligned} & D K \\ & D^{*} K \end{aligned}$
Lattice irrep	Quantum numbers $J^{P C}$ in irrep	Interpolator label	Operator $\bar{s} \mathrm{c}$	meson-meson
A_{1}^{+}	$0^{+}, 4^{+}, \ldots$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{gathered} \bar{q} q^{\prime} \\ \bar{q} \gamma_{i} \vec{\nabla}_{i} q^{\prime} \\ \bar{q} \gamma_{t} \gamma_{i} \vec{\nabla}_{i} q^{\prime} \\ \bar{q} \bar{\nabla}_{i} \vec{\nabla}_{i} q^{\prime} \end{gathered}$	$\begin{aligned} O_{1}^{D K} & =\left[\bar{s} \gamma_{5} u\right](\vec{p}=0)\left[\bar{u} \gamma_{5} c\right](\vec{p}=0)+\{u \rightarrow d\}, \\ O_{2}^{D K} & =\left[\bar{s} \gamma_{t} \gamma_{5} u\right](\vec{p}=0)\left[\bar{u} \gamma_{t} \gamma_{5} c\right](\vec{p}=0)+\{u \rightarrow d\} \\ O_{3}^{D K} & =\sum_{\vec{p}= \pm e_{x, y, z}}\left[\bar{s} \gamma_{5} u\right](\vec{p})\left[\bar{u} \gamma_{5} c\right](-\vec{p})+\{u \rightarrow d\} . \end{aligned}$
T_{1}^{+}	$1^{+}, 3^{+}, 4^{+}, \ldots$	$\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & \hline \end{aligned}$	$\begin{gathered} \bar{q} \gamma_{i} \gamma_{5} q^{\prime} \\ \bar{q} \epsilon_{i j k} \gamma_{j} \vec{\nabla}_{k} q^{\prime} \\ \bar{q} \epsilon_{i j k} \gamma_{t} \gamma_{j} \vec{\nabla}_{k} q^{\prime} \\ \bar{q} \gamma_{t} \gamma_{i} \gamma_{5} q^{\prime} \\ \bar{q} \gamma_{5} \vec{\nabla}_{i} q^{\prime} \\ \bar{q} \gamma_{t} \gamma_{5} \vec{\nabla}_{i} q^{\prime} \\ \bar{q} \bar{\nabla}_{i} \gamma_{j} \gamma_{5} \vec{\nabla}_{i} q^{\prime} \\ \bar{q} \bar{\nabla}_{i} \gamma_{t} \gamma_{j} \gamma_{5} \vec{\nabla}_{i} q^{\prime} \\ \hline \end{gathered}$	$\begin{aligned} O_{1, k}^{D^{*} K} & =\left[\bar{s} \gamma_{5} u\right](\vec{p}=0)\left[\bar{u} \gamma_{k} c\right](\vec{p}=0)+\{u \rightarrow d\} \\ O_{2, k}^{D^{*} K} & =\left[\bar{s} \gamma_{t} \gamma_{5} u\right](\vec{p}=0)\left[\bar{u} \gamma_{t} \gamma_{k} c\right](\vec{p}=0)+\{u \rightarrow d\} \\ O_{3, k}^{D^{*} K} & =\sum_{\vec{p}}= \pm e_{x, y, z}[2 \pi / L \end{aligned}$
T_{2}^{+}	$2^{+}, 3^{+}, 4^{+}, \ldots$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{gathered} \bar{q}\left\|\epsilon_{i j k}\right\| \gamma_{j} \vec{\nabla}_{k} q^{\prime} \\ \bar{q}\left\|\epsilon_{i j k}\right\| \gamma_{t} \gamma_{j} \vec{\nabla}_{k} q^{\prime} \end{gathered}$	

Necessary contractions

2 Configuration ensembles

- Ensemble 1:
- Hasenfratz et al., PRD 78, 014515 \& 054511 (2008)
- $n_{f}=2$ Wilson improved, 4 nHYP
- $16^{3} \times 32, \mathrm{~L}_{\mathrm{x}}=2 \mathrm{fm}$, 279 configs.
- $\mathrm{m}_{\pi}=266 \mathrm{MeV}$, $\mathrm{m}_{\mathrm{K}}=552 \mathrm{MeV}$
- Ensemble 2:
- PACS-CS, Aoki et al, PRD 79, 034503 (2009)
- $n_{f}=2+1$ Wilson improved, 3D HYP
- $32^{3} \times 64, L_{x}=2.9 \mathrm{fm}$, 196 configs.
- $\mathrm{m}_{\pi}=156 \mathrm{MeV}$, $m_{k}=504 \mathrm{MeV}$

Propagators

- Distillation
- HSC, Peardon et al., PRD80, 054506 (2009)
- $\mathrm{n}_{\mathrm{v}}=96$
- perambulators
$\tau_{i j}^{\bar{\alpha} \bar{\beta}}\left(t^{\prime}, t\right)=v_{i}^{*}\left(t^{\prime}\right) G^{\bar{\alpha} \bar{\beta}}\left(t^{\prime} ; t\right) v_{j}(t)$
- Stochastic Distillation
- Morningstar et al., PRD 83, 114505 (2011)
- $\mathrm{n}_{\mathrm{v}}=192, \mathrm{n}_{\mathrm{b}}=12, \mathrm{n}_{\mathrm{ti}}=8$
- stochastic sources

$$
S_{b}^{\bar{\alpha}[r]}(\vec{x}, c ; t)=\sum_{i} v_{i}(\vec{x}, c ; t) \eta_{i b}^{\bar{\alpha}[r]}
$$

- (half) stochastic perambulators

$$
T_{i b}^{[r]}\left(t, t^{\prime}\right)=v_{i}^{*}(t) G\left(t ; t^{\prime}\right) S_{b}^{[r]}\left(t^{\prime}\right)
$$

$\left\langle M\left(t^{\prime}\right) M^{\dagger}(t)\right\rangle=-\operatorname{tr}\left[\phi\left(t^{\prime}\right) \tau\left(t^{\prime}, t\right) \phi(t) \tau\left(t, t^{\prime}\right)\right]$

Quark mass parameters

u d

S valence

$$
\mathrm{m}_{\pi}=266(6) \mathrm{MeV}
$$

$$
m_{\pi}=156(7)
$$

$$
\begin{aligned}
& \mathrm{m}_{\Phi}=1016(12) \mathrm{MeV} \\
& \mathrm{~m}_{\mathrm{K}}=552(7) \mathrm{MeV}
\end{aligned}
$$

partially quenched
$\mathrm{m}_{\Phi}=1018(14) \mathrm{MeV}$
$\mathrm{m}_{\mathrm{K}}=504$ (7) MeV

$$
\mathrm{m}_{n \mathrm{~s}}=693(10) \mathrm{MeV}
$$

$\mathrm{m}_{\mathrm{ns}}=688(2) \mathrm{MeV}$ from
Dowdall et al., PRD 88 ,
$074504(2013)$

C
valence
valence

Fermilab method

Tune spin-average mass \bar{m} (M_{2} in the d.r.) for $\mathrm{D}, \mathrm{D}_{\mathrm{s}}$ and charmonium, respectively and determine $m-\bar{m}$
D.rel.: $E(p)=M_{1}+\frac{\mathbf{p}^{2}}{2 M_{2}}-\frac{\left(\mathbf{p}^{2}\right)^{2}}{8 M_{4}^{3}} \quad$ E.g. $\bar{m}=\frac{1}{4}\left(m_{D_{s}}+3 m_{D_{s}^{*}}\right)$

El Khadra et al., PRD 55, 3933 (1997),...,
C. Bernard et al., PRD 83, 034503 (2011)

Energy levels (a)

"Variational method"
Michael NPB259 (1985) 58
Lüscher/Wolff, NPB339 (1990) 222
Blossier et al., JHEPO904 (2009) 094

- Determine correlation matrix for many interpolators (lattice operators coupling to the given quantum channel)

$$
C_{i j}(t)=\left\langle\mathcal{O}_{i}(t) \mid \mathcal{O}_{j}^{\dagger}(0)\right\rangle
$$

- Solve the generalized eigenvalue problem, then

$$
\lambda^{(n)} \sim \exp \left(-E_{n} t\right)
$$

- The eigenstates approach the physical eigenstates when the operator basis is sufficiently complete
- Overlap factors $\left\langle n \mid \mathcal{O}_{i}\right\rangle$

Energy levels (b)

Lüscher, CMP 105(86) 153,
NP B354 (91) 531, NP B 364 (91) 237

Energy levels in finite volume \leftrightarrow phase shift in infinite volume (in the elastic region)

La

UChPT model calculations:
Döring et al., Eur. Phys. J. A 47, 139\&163 (2011) Martinez Torres et al., PRD 85, 014027 (2012) Albaladejo et al., PRD 88, 014510 (2013)

Energy levels (b)

Lüscher, CMP 105(86) 153,
NP B354 (91) 531, NP B 364 (91) 237

Energy levels in finite volume \leftrightarrow phase shift in infinite volume (in the elastic region)

UChPT model calculations:
Döring et al., Eur. Phys. J. A 47, 139\&163 (2011) Martinez Torres et al., PRD 85, 014027 (2012) Albaladejo et al., PRD 88, 014510 (2013)

Near threshold

$$
T^{-1}= \begin{cases}K^{-1}-i p & \text { for } p^{2}>0 \\ K^{-1}+|p| & \text { for } p^{2}<0\end{cases}
$$

Lüscher, CMP 105(86) 153, NP B354 (91) 531, NP B 364 (91) 237

$$
K^{-1}=\frac{2 \mathcal{Z}_{00}\left(1 ;\left(\frac{p L}{2 \pi}\right)^{2}\right)}{L \sqrt{\pi}}
$$

$$
\approx \frac{1}{a_{0}}+\frac{1}{2} r_{0} p^{2}
$$

Near threshold

$$
T^{-1}= \begin{cases}K^{-1}-i p & \text { for } p^{2}>0 \\ K^{-1}+|p| & \text { for } p^{2}<0\end{cases}
$$

threshold

$$
\begin{aligned}
& \text { Lüscher, CMP 105(86) 153, } \\
& \text { NP B354 (91) 531, NP B } 364 \text { (91) } 237 \\
& K^{-1}=\frac{2 \mathcal{Z}_{00}\left(1 ;\left(\frac{p L}{2 \pi}\right)^{2}\right)}{L \sqrt{\pi}}
\end{aligned}
$$

$$
\approx \frac{1}{a_{0}}+\frac{1}{2} r_{0} p^{2}
$$

Near threshold

$$
T^{-1}= \begin{cases}K^{-1}-i p & \text { for } p^{2}>0 \\ K^{-1}+|p| & \text { for } p^{2}<0\end{cases}
$$

Lüscher, CMP 105(86) 153,
NP B354 (91) 531, NP B 364 (91) 237
$K^{-1}=\frac{2 \mathcal{Z}_{00}\left(1 ;\left(\frac{p L}{2 \pi}\right)^{2}\right)}{L \sqrt{\pi}}$

$$
\approx \frac{1}{a_{0}}+\frac{1}{2} r_{0} p^{2}
$$

Near threshold

$$
T^{-1}= \begin{cases}K^{-1}-i p & \text { for } p^{2}>0 \\ K^{-1}+|p| & \text { for } p^{2}<0\end{cases}
$$

bound state

$$
\begin{aligned}
& \text { Lüscher, CMP 105(86) 153, } \\
& \text { NP B354 (91) 531, NP B } 364 \text { (91) } 237 \\
& \begin{aligned}
K^{-1} & =\frac{2 \mathcal{Z}_{00}\left(1 ;\left(\frac{p L}{2 \pi}\right)^{2}\right)}{L \sqrt{\pi}} \\
& \approx \frac{1}{a_{0}}+\frac{1}{2} r_{0} p^{2}
\end{aligned}
\end{aligned}
$$

$-\left|p_{B}\right|^{2}$ threshold

Near threshold

$$
T^{-1}= \begin{cases}K^{-1}-i p & \text { for } p^{2}>0 \\ K^{-1}+|p| & \text { for } p^{2}<0\end{cases}
$$

bound state

$$
\begin{aligned}
& \text { Lüscher, CMP 105(86) 153, } \\
& \text { NP B354 (91) 531, NP B } 364 \text { (91) } 237 \\
& K^{-1}=\frac{2 \mathcal{Z}_{00}\left(1 ;\left(\frac{p L}{2 \pi}\right)^{2}\right)}{L \sqrt{\pi}}
\end{aligned}
$$

$$
\approx \frac{1}{a_{0}}+\frac{1}{2} r_{0} p^{2}
$$

$$
K^{-1}=p \cot \delta(p) \text { for } p^{2}>0
$$

Near threshold

$$
T^{-1}= \begin{cases}K^{-1}-i p & \text { for } p^{2}>0 \\ K^{-1}+|p| & \text { for } p^{2}<0\end{cases}
$$

bound state

$$
-\left|p_{\mathrm{B}}\right|^{2} \quad \text { threshold }
$$

$$
\approx \frac{1}{a_{0}}+\frac{1}{2} r_{0} p^{2}
$$

$$
K^{-1}=p \cot \delta(p) \text { for } p^{2}>0
$$

Eigenstates: example $\mathrm{T}_{1}{ }^{+}$, ensemble 2

Composition of eigenstates (ensemble 2)

Identification of eigenstates (ensemble 2)

Energy levels
1.172(9) $D^{*}(1) K(-1)$ shifted
1.081(6) $\quad D^{*}(0) K(0) \quad$ shifted
1.079(5) $\quad D_{s 1}(2536) \quad$ couples
in s-wave weakly to $\mathrm{D}^{*} \mathrm{~K}$
$1.026(5) \quad D_{s 1}(2460)$

Results $\mathrm{T}_{1}{ }^{+}$

$\mathrm{T}_{1}{ }^{+}$near threshold

Ensemble 1

Ensemble 2

Results $\mathrm{A}_{1}+$

Results $\mathrm{T}_{2}{ }^{+}$

$$
\begin{aligned}
D_{s 2}^{*}(2573) \longrightarrow & \text { DK in d-wave } \\
& \text { well described by cs̄: }
\end{aligned}
$$

	$\mathrm{E}-\overline{\mathrm{m}}$
Ensemble 1	$473(19)(5) \mathrm{MeV}$
Ensemble 2	$520(8)(7) \mathrm{MeV}$
Experiment	496 MeV

Results summary

Thank you!

