DK and D^{*}K scattering near threshold

C. B. Lang Univ. Graz, Austria

in collaboration with

Sasa Prelovsek, Luka Leskovec, Daniel Mohler, Richard Woloshyn

Univ. Ljubljana, Slovenia

Fermilab, USA

TRIUMF, Canada

see also: Mohler et al., PRL 111, 222001 (2013), arXiv 1308.3157 and arXiv: 1403.8103

$D_{s0}^{*}(2317)^{\pm}$

Γ_i	Mode	Fraction (Γ_i / Γ)
Γ_1	$D_{s0}^*(2317) \to D_s^+ \pi^0$	seen
Γ_2	$D_{s0}^*(2317) \rightarrow D_s^+ \gamma$	
Γ_3	$D_{s0}^{*}(2317) \rightarrow D_{s}^{*}(2112)^{+}\gamma$	
Γ_4	$D_{s0}^*(2317) \rightarrow D_s^+ \gamma \gamma$	
Γ_5	$D_{s0}^*(2317) \to D_s^*(2112)^+ \pi^0$	
Γ_6	$D_{s0}^*(2317) \to D_s^+ \pi^+ \pi^-$	
Γ_7	$D_{s0}^*(2317) \to D_s^+ \pi^0 \pi^0$	not seen

$D_{s1}(2460)^{\pm}$

Γ_i	Mode	Fraction (Γ_i / Γ)
Γ_1	$D_{s1}(2460)^+ \to D_s^{*+}\pi^0$	$(.048 \pm .011) \times 10^{1}$
Γ_2 Γ_3	$D_{s1}(2460)^+ \to D_s^+ \gamma^-$ $D_{s1}(2460)^+ \to D_s^+ \pi^+ \pi^-$	$(.018 \pm .004) \times 10^{-2}$ $(4.3 \pm 1.3) \times 10^{-2}$
Γ_4 Γ_5	$D_{s1}(2460)^+ \to D_s^{*+}\gamma$ $D_{s1}(2460)^+ \to D_{s0}^*(2317)^+\gamma$	<8 % (3.7 ^{+5.0} _{-2.4}) ×10 ⁻²
Γ_6	$D_{s1}(2460)^+ \to D_s^+ \pi^0$	2
Γ_7 Γ_8	$D_{s1}(2460)^{+} \rightarrow D_{s}^{+}\pi^{0}\pi^{0}$ $D_{s1}(2460)^{+} \rightarrow D_{s}^{+}\gamma\gamma$	

$D_{s2}^{*}(2573)$

Γ_i	Mode	Fraction (Γ_i / Γ)
Γ_1	$D_{s2}(2573)^+ \to D^0 K^+$	seen
Γ_2	$D_{s2}(2573)^+ \to D^*(2007)^0 K^+$	not seen

 $D_{s1}(2536)^{\pm}$

Γ_i	Mode	Fraction (Γ_i / Γ)
Γ_1	$D_{s1}(2536)^+ \to D^*(2010)^+ K^0$	seen
Γ2	$D_{s1}(2536)^+ \rightarrow (D^*(2010)^+ K^0)$ S-wave	
Γ ₃	$D_{s1}(2536)^+ \rightarrow (D^*(2010)^+ K^0)$ D-wave	
Γ_4	$D_{s1}(2536)^+ \to D^+ \pi^- K^+$	
Γ_5	$D_{s1}(2536)^+ \to D^*(2007)^0 K^+$	seen
Γ_6	$D_{s1}(2536)^+ \to D^+ K^0$	not seen
Γ_7	$D_{s1}(2536)^+ \to D^0 K^+$	not seen
Γ_8	$D_{s1}(2536)^+ \rightarrow D_s^{*+}\gamma$	possibly seen
Г9	$D_{s1}(2536)^+ \to D_s^+ \pi^+ \pi^-$	seen

CHARMED, STRANGE MESONS

Particles

Experiment

CHARMED, STRANGE MESONS

Particles

Experiment

3

Results summary

Quark model: $D_{s0}^*(2317)$ and $D_{s1}(2460)$ are *above* thresholds DK and D^*K

But: threshold effects may be important

Lattice QCD:

Namekawa et al., Phys. Rev. D 84, 074505 (2011) Mohler/Woloshyn, Phys. Rev. D 84, 054505 (2011) Bali et al., J. Phys. Conf. Ser. 426, 012017 (2013) Bali et al., PoS LATTICE2011, 135 (2011), Moir et al, JHEP 05, 021 (2013) Kalinowski et al., A. Phys. Pol. B PS. 6, 991 (2013) Wagner et al. 1310.5513.

cf. Godfrey/Isgur PRD 32, 189 (1985)

van Beveren/Rupp PRL 91(2003) 012003

Godfrey, PRD 72, 054029 (2005)

Single hadron (cs) studies give too high values large pion mass: D_{s0}^* below threshold

small pion mass: D^*_{s0} above threshold

Include meson meson interpolators!

Interpolators

				DK
			D_s	D^*K
Lattice	Quantum numbers	Interpolator	Operator	
irrep	J^{PC} in irrep	label	ς Σ	meson-meson
A_1^+	$0^+, 4^+, \ldots$	1	$\bar{q}q'_{a}$	$O_1^{DK} = [\bar{s}\gamma_5 u] (\vec{p} = 0) [\bar{u}\gamma_5 c] (\vec{p} = 0) + \{u \to d\} \ ,$
		2	$ar{q}\gamma_i ec{ abla}_i q'$	$O_2^{DK} = [\bar{s}\gamma_t\gamma_5 u] (\vec{p}=0) [\bar{u}\gamma_t\gamma_5 c] (\vec{p}=0) + \{u \to d\}$
		3	$\bar{q}\gamma_t\gamma_i \overrightarrow{ abla}_i q'$	$O_3^{DK} = \sum [\bar{s}\gamma_5 u](\vec{p}) [\bar{u}\gamma_5 c](-\vec{p}) + \{u \to d\}$.
		4	$\bar{q}\overline{ abla}_i\overline{ abla}_iq'$	$\vec{p} = \pm e_{x,y,z} \ 2\pi/L$
T_1^+	$1^+, 3^+, 4^+, \ldots$	1	$ar{q}\gamma_i\gamma_5 q'$	
		2	$\bar{q}\epsilon_{ijk}\gamma_j\overline{ abla}_kq'$	
		3	$ar{q}\epsilon_{ijk}\gamma_t\gamma_j\overline{ abla}_kq'$	$O_{1,k}^{D^*K} = [\bar{s}\gamma_5 u] (\vec{p} = 0) [\bar{u}\gamma_k c] (\vec{p} = 0) + \{u \to d\} ,$
		4	$ar q \gamma_t \gamma_i \gamma_5 q'$	$O_{2,k}^{D^*K} = [\bar{s}\gamma_t\gamma_5 u] (\vec{p}=0) [\bar{u}\gamma_t\gamma_k c] (\vec{p}=0) + \{u \to d\}$
		5	$ar q \gamma_5 \overline abla_i q'$	$O_{3k}^{D^*K} = \sum [\bar{s}\gamma_5 u](\vec{p})[\bar{u}\gamma_k c](-\vec{p}) + \{u \to d\}$.
		6	$\bar{q}\gamma_t\gamma_5\overline{ abla}_iq'$	$\vec{p} = \pm e_{x,y,z} \ 2\pi/L$
		7	$ar{q}\overline{ abla}_i\gamma_j\gamma_5\overline{ abla}_iq'$	
		8	$\bar{q}\overleftarrow{\nabla}_i\gamma_t\gamma_j\gamma_5\overrightarrow{\nabla}_iq'$	
T_2^+	$2^+, 3^+, 4^+, \ldots$	1	$\bar{q} \epsilon_{ijk} \gamma_{j}\overrightarrow{ abla}_{k}q'$	
		2	$\bar{q} \epsilon_{ijk} \gamma_t\gamma_j\overrightarrow{\nabla}_kq'$	

Necessary contractions

2 Configuration ensembles

- Ensemble 1:
 - Hasenfratz et al., PRD 78, 014515 & 054511 (2008)
 - n_f=2 Wilson improved,
 4 nHYP
 - 16³x32, L_x=2 fm,
 279 configs.
 - m_π=266 MeV,
 m_κ=552 MeV

Ensemble 2:

- PACS-CS, Aoki et al, PRD
 79, 034503 (2009)
- n_f=2+1 Wilson improved,
 3D HYP
- 32³x64, L_x=2.9 fm, 196 configs.
- m_π=156 MeV,
 m_K=504 MeV

Propagators

Distillation

- HSC, Peardon et al., PRD80, 054506 (2009)
- n_v=96
- perambulators

- Stochastic Distillation
 - Morningstar et al., PRD 83, 114505 (2011)
 - n_v=192, n_b=12, n_{ti}=8
 - stochastic sources $S_b^{\overline{\alpha}[r]}(\vec{x},c;t) = \sum_i v_i(\vec{x},c;t) \eta_{ib}^{\overline{\alpha}[r]}$
 - (half) stochastic perambulators $T_{ib}^{[r]}(t,t') = v_i^*(t) G(t;t') S_b^{[r]}(t')$

 $\langle M(t') M^{\dagger}(t) \rangle = -\mathrm{tr} \left[\phi(t') \tau(t', t) \phi(t) \tau(t, t') \right]$

 $\tau_{ij}^{\overline{\alpha}\overline{\beta}}(t',t) = v_i^*(t') \, G^{\overline{\alpha}\overline{\beta}}(t';t) \, v_j(t)$

Quark mass parameters

С	valence	valence	074504(2013)
S	valence m_{Φ} =1016(12) MeV m_{K} =552(7) MeV	partially quenched m_{Φ} =1018(14) MeV m_{K} =504(7) MeV $m_{\eta s}$ =693(10)MeV	m _{ηs} =688(2) MeV from Dowdall et al., PRD 88,
u d	m _π =266(6)MeV	m _π =156(7)	

Fermilab method

Tune spin-average mass \bar{m} (M_2 in the d.r.) for D, D_s and charmonium, respectively and determine $m - \bar{m}$

D.rel.:
$$E(p) = M_1 + \frac{\mathbf{p}^2}{2M_2} - \frac{(\mathbf{p}^2)^2}{8M_4^3}$$

E.g. $\bar{m} = \frac{1}{4}(m_{D_s} + 3m_{D_s^*})$

El Khadra et al., PRD 55, 3933 (1997),..., C. Bernard et al., PRD 83, 034503 (2011)

Energy levels (a)

"Variational method" Michael NPB259 (1985) 58 Lüscher/Wolff, NPB339 (1990) 222 Blossier et al., JHEP0904 (2009) 094

 Determine correlation matrix for many interpolators (lattice operators coupling to the given quantum channel)

 $C_{ij}(t) = \langle \mathcal{O}_i(t) | \mathcal{O}_j^{\dagger}(0) \rangle$

• Solve the generalized eigenvalue problem, then

 $\lambda^{(n)} \sim \exp(-E_n t)$

- The eigenstates approach the physical eigenstates when the operator basis is sufficiently complete
- Overlap factors $\langle n | \mathcal{O}_i \rangle$

Energy levels (b)

Lüscher, CMP 105(86) 153, NP B354 (91) 531, NP B 364 (91) 237

Energy levels in finite volume ↔ phase shift in infinite volume (in the elastic region)

UChPT model calculations:

Döring et al., Eur. Phys. J. A 47, 139&163 (2011) Martinez Torres et al., PRD 85, 014027 (2012) Albaladejo et al., PRD 88, 014510 (2013)

Energy levels (b)

Lüscher, CMP 105(86) 153, NP B354 (91) 531, NP B 364 (91) 237

Energy levels in finite volume ↔ phase shift in infinite volume (in the elastic region)

UChPT model calculations:

Döring et al., Eur. Phys. J. A 47, 139&163 (2011) Martinez Torres et al., PRD 85, 014027 (2012) Albaladejo et al., PRD 88, 014510 (2013)

$$T^{-1} = \begin{cases} K^{-1} - ip & \text{for } p^2 > 0\\ K^{-1} + |p| & \text{for } p^2 < 0 \end{cases}$$

Lüscher, CMP 105(86) 153,
NP B354 (91) 531, NP B 364 (91) 237
$$K^{-1} = \frac{2\mathcal{Z}_{00}(1; (\frac{pL}{2\pi})^2)}{L\sqrt{\pi}}$$

$$\approx \frac{1}{a_0} + \frac{1}{2}r_0 p^2$$

$$T^{-1} = \begin{cases} K^{-1} - ip & \text{for } p^2 > 0\\ K^{-1} + |p| & \text{for } p^2 < 0 \end{cases}$$

Lüscher, CMP 105(86) 153,
NP B354 (91) 531, NP B 364 (91) 237
$$K^{-1} = \frac{2\mathcal{Z}_{00}(1; (\frac{pL}{2\pi})^2)}{L\sqrt{\pi}}$$

threshold

$$p^2$$

 p^2
 p^2

$$\approx \frac{1}{a_0} + \frac{1}{2}r_0 p^2$$

$$T^{-1} = \begin{cases} K^{-1} - ip & \text{for } p^2 > 0\\ K^{-1} + |p| & \text{for } p^2 < 0 \end{cases}$$

Lüscher, CMP 105(86) 153, NP B354 (91) 531, NP B 364 (91) 237 $K^{-1} = \frac{2\mathcal{Z}_{00}(1; (\frac{pL}{2\pi})^2)}{L\sqrt{\pi}}$

$$\approx \frac{1}{a_0} + \frac{1}{2}r_0 p^2$$

$$T^{-1} = \begin{cases} K^{-1} - ip & \text{for } p^2 > 0\\ K^{-1} + |p| & \text{for } p^2 < 0 \end{cases}$$

bound state $-|p_B|^2$ threshold p^2 $1/a_0$

Lüscher, CMP 105(86) 153, NP B354 (91) 531, NP B 364 (91) 237 $K^{-1} = \frac{2\mathcal{Z}_{00}(1; (\frac{pL}{2\pi})^2)}{L\sqrt{\pi}}$

$$\approx \frac{1}{a_0} + \frac{1}{2}r_0 p^2$$

$$T^{-1} = \begin{cases} K^{-1} - ip & \text{for } p^2 > 0\\ K^{-1} + |p| & \text{for } p^2 < 0 \end{cases}$$

bound state $-|p_B|^2$ threshold \downarrow \downarrow p^2 $1/a_0$

Lüscher, CMP 105(86) 153, NP B354 (91) 531, NP B 364 (91) 237 $K^{-1} = \frac{2\mathcal{Z}_{00}(1; (\frac{pL}{2\pi})^2)}{L\sqrt{\pi}}$

$$\approx \frac{1}{a_0} + \frac{1}{2} r_0 p^2$$

 $K^{-1} = p \cot \delta(p) \quad \text{for } p^2 > 0$

$$T^{-1} = \begin{cases} K^{-1} - ip & \text{for } p^2 > 0\\ K^{-1} + |p| & \text{for } p^2 < 0 \end{cases}$$

bound state $-|p_B|^2$ threshold p^2 ****1/a₀ δ

Lüscher, CMP 105(86) 153, NP B354 (91) 531, NP B 364 (91) 237 $K^{-1} = \frac{2\mathcal{Z}_{00}(1; (\frac{pL}{2\pi})^2)}{L\sqrt{\pi}}$

$$\approx \frac{1}{a_0} + \frac{1}{2}r_0 p^2$$

 $K^{-1} = p \cot \delta(p) \quad \text{for } p^2 > 0$

Eigenstates: example T₁⁺, ensemble 2

Composition of eigenstates (ensemble 2)

Identification of eigenstates (ensemble 2)

Energy levels

1.172(9)	$D^{*}(1)K(-1)$)shifted
1.081(6)	$D^*(0)K(0)$	shifted
1.079(5)	$D_{s1}(2536)$	couples
	in s-wave weak	dv to D*K

1.026(5) $D_{s1}(2460)$

Results T_1^+

 $D_{s1}(2460)$ $a_0^{D^*K}$ $r_0^{D^*K}$ $m_B - \frac{1}{4}(m_{D_s} + 3m_{D_s^*})$ $m_K + m_{D^*} - m_B$ set [fm] [fm] [MeV] [MeV] Ensemble (1)-0.665(25)-0.106(37)93.2(4.7)(1.0)404.6(4.5)(4.2)Ensemble (2)-1.15(19)0.13(22)43.2(13.8)(0.6)408(13)(5.8)set 1 44.2(9.9)(0.6)set 2-1.11(11)0.10(10)407.0(8.8)(5.8)Experiment 44.7383 $m_{D_{s1}(2536)} - \frac{1}{4}(m_{D_s} + 3m_{D_s^*}) \quad m_{D_{s1}(2536)} - m_K - m_{D^*}$ set [MeV] [MeV] Ensemble (1)444(12)-53(12)Ensemble (2)set 1 507(10)56(11) $D_{s1}(2536)$ set 2501(8)50(8)Experiment 31 459

T₁⁺ near threshold Ensemble 1

Ensemble 2

Results A₁+

Results T_2^+

 $D_{s2}^*(2573) \longrightarrow DK \text{ in d-wave}$ well described by cs:

Ensemble 1 473(19)(5) MeV Ensemble 2 520(8)(7) MeV Experiment 496 MeV

Results summary

Thank you!