
Simulating N = 4 Yang-Mills

Simon Catterall

Syracuse University

June 24, 2014

Simon Catterall Simulating N = 4 Yang-Mills



Why (lattice) N = 4 Yang-Mills?

I Finite QFT - true at 1 loop even on lattice!

I Conformally invariant in continuum. How does this get
restored on lattice as V →∞ and a→ 0 ?

I Cornerstone of AdSCFT correspondence.

I Only known example of 4D theory which admits a SUSY
preserving discretization. Lattice formulation defines theory
outside of perturbation theory.

I Gravity as (N = 4) Yang-Mills squared ...
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People

Many people contributed to development of lattice formulation eg.
Unsal, Kaplan, Sugino, Kawamoto, Hanada, Joseph,...
Here, report on recent results from (somewhat) large scale
simulations with:

I Tom DeGrand, CU Boulder

I Poul Damgaard, NBI

I Joel Giedt, RPI

I David Schaich, Syracuse U.

I Aarti Veernala, Syracuse U.

I S.C
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Topics

I Introduction.

I Key ingredients in lattice formulation.

I Continuum limit. Restoration of full SUSY (Joel Giedt)
I Practical issues:

I Regulating flat directions (S.C)
I Suppressing U(1) monopoles (S.C)
I Sign problems (or lack of them) (David Schaich)

I Static potential (David Schaich)
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Key ingredients

Continuum N = 4 YM obtained by dimensional reduction of 5D
theory:

S = Q
∫

d5x

(
χabFab + η

[
Da,Da

]
+

1

2
ηd

)
+

∫
d5x εabcdeχabDcχde

Usual fields Twisted fields
Aµ, µ = 1 . . . 4 φi , i = 1 . . . 6 Aa, a = 1 . . . 5

Ψf , f = 1 . . . 4 η, ψa, χab, a, b = 1 . . . 5

Complex bosons: Aa = Aa + iφa, Da = ∂a +Aa, Fab = [Da,Db]

Q is scalar supersymmetry
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Scalar supersymmetry

Where did Q come from ?

Appearance of scalar fermion η implies scalar SUSY.
Action:

QAa = ψa Qψa = 0 + . . . similar on other fields

Notice Q2 = 0 !

I Any action of form S = Q (something) will be trivially
invariant under Q.

I This is how theory evades usual problems of lattice susy
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Some lattice details

I Place all fields on links (η degenerate case - site field). Gauge
transform like endpoints.

I Prescription exists for replacing derivatives by gauge covariant
finite difference operators.

I But what lattice to use ? Natural to look for 4D lattice with a
basis of 5 equivalent basis vectors – A∗

4 lattice

A4: set of points in 5D hypercubic lattice Z 5 which satisfy
n1 + n2 + n3 + n4 + n5 = 0
A∗
4 is just dual lattice to A4.

(Also: weight lattice of SU(5), basis vectors for 4-simplex, ...)
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Examples of A∗d

Symmetry group: Sd+1. Low lying irreps match SO(d)

d = 2 d = 3
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Advantages of formulation

Single exact SUSY is enough to:

I Pair boson/fermion states

I Classical moduli space survives in quantum theory: no scalar
potential developed to all orders in lattice perturbation theory

I Fine tuning is reduced to single log tuning (Joel)

I beta function of lattice theory vanishes at 1loop.

I Certain quantities eg partition function can be computed
exactly at 1-loop.
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Novel Features

I Exact SUSY requires complexified links in algebra of U(N)!

Ua(x) =
N2∑
i=1

T iU i
a(x)

I Naive continuum limit requires U0
a = 1 + . . . (T 0 ≡ IN)

I One of many possible vacua .. stabilize by adding potential
term

δS1 = µ2
∑
x ,a

(
1

N
Tr Ua(x)Ua(x)− 1

)2

I Selects correct vacuum state. Breaks exact SUSY but all
counter terms must vanish as µ→ 0.
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Restoration of exact Q SUSY

Q Ward identity:
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But ..

Unfortunately this is not quite enough ...
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Confinement of U(1) at strong coupling

U(1) monopole density det(plaquette)
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The fix ..

Add to action a term that (approximately) projects
U(N)→ SU(N)

δS2 = κ
∑
x ,µ<ν

|detPµν − 1|2

To leading order

δS2 = 2κ
∑
x ,µ<ν

(
1− cosF 0

ab

)
+ . . .

For κ > 0.5 U(1) sector weakly coupled and monopole density very
small.
Marginal coupling to sector which decouples in continuum limit.
Extrapolate κ→ 0 ?

Allows us to push to strong coupling in non-abelian sector
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Kappa dependence
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Simulations

I RHMC algorithm to handle Pfaffian with multiple time scale
Omelyan integrator.

I Code base extension to MILC. Arbitrary numbers of colors.
A∗
4 lattice communication.

I Lattices stored as hypercubic {nµ} with additional
body-diagonal link. Map to physical space-time needed only
for correlators and only at analysis stage. R =

∑4
ν=1 êνnν

I 64, 84, 83 × 24, 163 × 32 lattices with apbc for fermions in
temporal direction.
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Summary

I Currently employing large(ish) simulations to study new
lattice formulation of N = 4 super Yang-Mills.

I Retains exact SUSY. Reduces dramatically number of
couplings needed to tune to supersymmetric continuum limit
(Joel’s talk).

I “Naive formulation” requires supplementary couplings (µ, κ).
Limit µ, κ→ 0 under control.

I No sign problem (David’s talk)

I No confinement even at strong coupling (David’s talk).

Starting to look at physically interesting quantities eg. anomalous
dimensions (Konishi) ....
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