Pion-pion scattering phase shifts with the stochastic LapH method

Brendan Fahy
Carnegie Mellon University

The 32nd International Symposium on Lattice Field Theory
New York, NY, USA
June 23, 2014

People

- Thanks to NSF Teragrid/XSEDE:
- Athena+Kraken at NICS
- Ranger+Stampede at TACC

Scattering using Lattice QCD

- energies will be shifted from their non-interacting values.
- Accurate measurements of single and two-hadron energies below inelastic thresholds can give information of the phase shifts.
- Method:
- Compute energies of $\pi \pi$ and ρ like operators in many channels with different momentum
- Get the energy $E_{c m}$ in the center of mass frame
- Then $p_{c m}$ is computed from $E_{c m}=2 \sqrt{p_{c m}{ }^{2}+m_{\pi}^{2}}$ which can be used to find the elastic pion-pion phase shift.

Computing the phase shift

- Lüscher's method for phase shifts:

$$
\operatorname{det}\left[e^{2 i \delta\left(p_{c m}\right)}-U^{(P, \Lambda)}\left(\frac{p_{c m} L}{2 \pi}\right)\right]=0
$$

- The first term is diagonal and independent upon the lattice volume
- The matrix U has rows corresponding to different angular momenta ℓ which subduce onto the irrep Λ of the little group.
- Assume that $\delta_{1} \gg \delta_{l>1}$, neglect all but the lowest partial wave making this is a single equation with one unknown.
- The U can be expressed $U=(M+i) /(M-i)$ where M is dependent upon the irrep and $p_{c m}$
- This M is expressed in terms of generalized zeta functions which have an integral representation and can be numerical estimated.

Resonances in a box: an example

- Consider a simple quantum mechanical example.
- Hamiltonian

$$
H=\frac{1}{2} \boldsymbol{p}^{2}+V(r), \quad V(r)=\left(-4+\frac{1}{16} r^{4}\right) e^{-r^{2} / 8}
$$

Spectrum of example Hamiltonian

- spectrum for $E<4$ and $l=0,1,2,3,4,5$ of example system

Scattering phase shifts

- scattering phase shifts for various partial waves

Spectrum in box: $A_{1 g}$ channel

- spectrum discrete in box, periodic b.c., momenta quantized
- stationary-state energies in $A_{1 g}$ channel shown below
- narrow resonance is avoided level crossing

The challenge

- To compute the phase shift requires very precise measurements of the energy eigenstates in finite volume
- Must construct operators which strongly overlap with the states of interest
- Smeared operators will overlap strong with the low-laying elastic two pion states
- Stout link smearing
- LapH quark smearing
- Two hadron (pion-pion) operators can be efficiently computed using the stochastic-LapH method, including disconnected diagrams
- Using a matrix of correlators and diagonalizing using a GEVP to extract the low energy eigenstates

Stochastic estimation of quark propagators

- do not need exact inverse of Dirac matrix $K[U]$
- use noise vectors η satisfying $E\left(\eta_{i}\right)=0$ and $E\left(\eta_{i} \eta_{j}^{*}\right)=\delta_{i j}$
- Z_{4} noise is used $\{1, i,-1,-i\}$
- solve $K[U] X^{(r)}=\eta^{(r)}$ for each of N_{R} noise vectors $\eta^{(r)}$, then obtain a Monte Carlo estimate of all elements of K^{-1}

$$
K_{i j}^{-1} \approx \frac{1}{N_{R}} \sum_{r=1}^{N_{R}} X_{i}^{(r)} \eta_{j}^{(r) *}
$$

- variance reduction using noise dilution
- dilution introduces projectors

$$
P^{(a)} P^{(b)}=\delta^{a b} P^{(a)}, \quad \sum_{a} P^{(a)}=1, \quad P^{(a) \dagger}=P^{(a)}
$$

- define

$$
\eta^{[a]}=P^{(a)} \eta, \quad X^{[a]}=K^{-1} \eta^{[a]}
$$

to obtain Monte Carlo estimate with drastically reduced variance

$$
K_{i j}^{-1} \approx \frac{1}{N_{R}} \sum_{r=1}^{N_{R}} \sum_{a} X_{i}^{(r)[a]} \eta_{j}^{(r)[a] *}
$$

B. Fahy
$\pi-\pi$ phase shifts

Extended operators for single hadrons

- quark displacements build up orbital, radial structure

Meson configurations

- group-theory projections onto irreps of lattice symmetry group

$$
\bar{M}_{l}(t)=c_{\alpha \beta}^{(l) *} \bar{\Phi}_{\alpha \beta}^{A B}(t)
$$

- definite momentum p, irreps of little group of p

Two-hadron operators

- our approach: superposition of products of single-hadron operators of definite momenta

$$
c_{\boldsymbol{p}_{a} \lambda_{a} ; \boldsymbol{p}_{b} \lambda_{b}}^{I_{3 a} I_{3 b}} M_{\boldsymbol{p}_{a} \Lambda_{a} \lambda_{a} i_{a}}^{I_{a} I_{3 a} S_{a}} M_{\boldsymbol{p}_{b} \Lambda_{b} \lambda_{b} i_{b}}^{I_{b} I_{3 b} S_{b}}
$$

- fixed total momentum $\boldsymbol{p}=\boldsymbol{p}_{a}+\boldsymbol{p}_{b}$, fixed $\Lambda_{a}, i_{a}, \Lambda_{b}, i_{b}$
- group-theory projections onto little group of p and isospin irreps
- Included momentum $\left(n_{x}, n_{y}, n_{z}\right)$:

$$
\begin{array}{ll}
\text { - } & n^{2}=1 \\
\text { - } & (\pm 1,0,0),(0, \pm 1,0),(0,0, \pm 1) \\
\text { - } n^{2}=3 & (\pm 1, \pm 1,0),(0, \pm 1, \pm 1),(\pm 1,0, \pm 1) \\
\text { - } n^{2}=4 & (\pm 1, \pm 1, \pm 1) \\
\text { - } n^{2}=5 & (\pm 2,0,0) \ldots \\
\text { - } n^{2}=6 & (\pm 2, \pm 1,0) \ldots \\
\text { - } n^{2}=8 & (\pm 2, \pm 2, \pm) \ldots
\end{array}
$$

- efficient creating large numbers of two-hadron operators
- generalizes to three, four, ... hadron operators

Excited states from correlation matrices

- in finite volume, energies are discrete (neglect wrap-around)

$$
C_{i j}(t)=\sum_{n} Z_{i}^{(n)} Z_{j}^{(n) *} e^{-E_{n} t}, \quad Z_{j}^{(n)}=\langle 0| O_{j}|n\rangle
$$

- not practical to do fits using above form to the whole matrix
- define new correlation matrix $\widetilde{C}(t)$ using a single rotation

$$
\widetilde{C}(t)=U^{\dagger} C\left(\tau_{0}\right)^{-1 / 2} C(t) C\left(\tau_{0}\right)^{-1 / 2} U
$$

- columns of U are eigenvectors of $C\left(\tau_{0}\right)^{-1 / 2} C\left(\tau_{D}\right) C\left(\tau_{0}\right)^{-1 / 2}$
- choose τ_{0} and τ_{D} large enough so $\widetilde{C}(t)$ diagonal for $t>\tau_{D}$
- fits to the diagonal correlators give the N lowest-lying stationary state energies

Fitting

- Energies from correlated- χ^{2} fits over some range $\left(t_{\min }, t_{\max }\right)$
- Fit all energy levels below inelastic threshold
- Fits functions account for around the world effects
- Fixed $t_{\text {max }}=38 a_{t}, t_{\text {min }}$ adjusted to find region without excited state contamination
- Fitting was done using Minuit minimization routine on many bootstrap samples to determine statistical errors.

Ensembles and run parameters

- plan to use three Monte Carlo ensembles
- $\left(32^{3} \mid 240\right)$: 412 configs $32^{3} \times 256, \quad m_{\pi} \approx 240 \mathrm{MeV}, \quad m_{\pi} L \sim 4.4$
- $\left(24^{3} \mid 390\right): 551$ configs $24^{3} \times 128, \quad m_{\pi} \approx 390 \mathrm{MeV}, \quad m_{\pi} L \sim 5.7$
- anisotropic improved gluon action, clover quarks (stout links)
- QCD coupling $\beta=1.5$ such that $a_{s} \sim 0.12 \mathrm{fm}, a_{t} \sim 0.035 \mathrm{fm}$
- strange quark mass $m_{s}=-0.0743$ nearly physical (using kaon)
- work in $m_{u}=m_{d}$ limit so $S U(2)$ isospin exact
- generated using RHMC, configs separated by 20 trajectories
- stout-link smearing in operators $\xi=0.10$ and $n_{\xi}=10$
- LapH smearing cutoff $\sigma_{s}^{2}=0.33$ such that
- $N_{v}=112$ for 24^{3} lattices
- $N_{v}=264$ for 32^{3} lattices
- source times:
- 4 widely-separated t_{0} values on 24^{3}
- $8 t_{0}$ values used on 32^{3} lattice

Irreps and momentum

Irrep	$P_{\text {tot }}$	\# of directions	\# of levels	\# of operators
A1p	$n^{2}=1$	3	3	10
Ep	$n^{2}=1$	3	1	7
A1p	$n^{2}=2$	6	4	10
B1p	$n^{2}=2$	6	2	9
B2p	$n^{2}=2$	6	1	7
A1p	$n^{2}=3$	4	4	12
Ep	$n^{2}=3$	4	2	8
A1p	$n^{2}=4$	3	1	7
Ep	$n^{2}=4$	3	2	9

$32^{2} I=1$ Fits \quad PRELIMINARY

Effective masses (with fits), various irreps and momenta

Renormalized anisotropy

anisotropy from energy of $\pi \mathrm{s}$ with different momenta

Dispersion Relation

- dispersion relation to determine the anisotropy

$$
\left(a_{t} E_{n^{2}}\right)^{2}=\left(a_{t} m\right)^{2}+\frac{1}{\xi^{2}}\left(\frac{2 \pi}{4 a_{s}}\right) n^{2}
$$

- Computed on each bootstrap
- Top: E^{2} vs total momentum squared n^{2}
- Bottom: Distribution of anisotropy on each bootstrap

$\delta_{1} 32^{3}$ results

The phase shift for $l=1, I=1 \pi-\pi$ on 32^{3} lattice, $m_{\pi} \approx 240 \mathrm{MeV}$

- Breit-Wigner fit $a_{t} m_{R}=0.1355 \pm 0.0019, g=4.3 \pm 1.6$

Wednesday

Preview of talk on Wednesday. C. Morningstar
T1up 1

Conclusions

- The stochastic LapH method is suitable for phase shift calculations
- Able to extract the $\rho-\pi \pi$ phase shift from fits on a single lattice
- This method allows us to compute on reasonably large lattices with minimal inversions compared to other methods
- Can extract energies of excited states using correlator matrices involving many multi-hadron operators even in channels which have disconnected diagrams
- Other channels and phase shifts are possible with this method in the future

