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Scattering using Lattice QCD

@ energies will be shifted from their non-interacting values.

@ Accurate measurements of single and two-hadron energies
below inelastic thresholds can give information of the phase
shifts.

@ Method:

e Compute energies of 77 and p like operators in many channels
with different momentum

o Get the energy E.., in the center of mass frame

e Then p.,, is computed from E.,,, = 21/pem? + m2 which can be
used to find the elastic pion-pion phase shift.
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Computing the phase shift

@ Lischer’s method for phase shifts:

et |¢29en) _ (P (PL)} ~0
2

@ The first term is diagonal and independent upon the lattice
volume

@ The matrix U has rows corresponding to different angular
momenta ¢ which subduce onto the irrep A of the little group.

@ Assume that §; > ¢;~1, neglect all but the lowest partial wave
making this is a single equation with one unknown.

@ The U can be expressed U = (M +i)/(M — i) where M is
dependent upon the irrep and p.,,

@ This M is expressed in terms of generalized zeta functions which
have an integral representation and can be numerical estimated.

7 — m phase shifts 4



Resonances in a box: an example

@ Consider a simple quantum mechanical example.
@ Hamiltonian

2

H=1ip>+V(r), V()= (-4+Lr)e/®
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Spectrum of example Hamiltonian

@ spectrumfor E <4and ! =0,1,2,3,4,5 of example system
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Scattering phase shifts

@ scattering phase shifts for various partial waves

8,(E) of;

B. Fahy

ST N oI = amaans!
S-wave - r Pwave | D-wave |
] 4F 4 B
] 2 ] r
1 8B K 180
o
1 -\] \f 2r
] B ]
| L ] I | ] | L
2 3 4 1 2 4 2 3 4
E E E
 ARRERERE 2 BRRRERE T  ABRERERE
H-wave ]

84(E)-2 [

7w — m phase shifts

ol



Spectrum in box: A;, channel

@ spectrum discrete in box, periodic b.c., momenta quantized
@ stationary-state energies in A;, channel shown below
@ narrow resonance is avoided level crossing

[=0bound state at -0.41 |
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The challenge

@ To compute the phase shift requires very precise measurements
of the energy eigenstates in finite volume

@ Must construct operators which strongly overlap with the states
of interest
@ Smeared operators will overlap strong with the low-laying elastic
two pion states
e Stout link smearing
e LapH quark smearing
@ Two hadron (pion-pion) operators can be efficiently computed
using the stochastic-LapH method, including disconnected
diagrams
@ Using a matrix of correlators and diagonalizing using a GEVP to
extract the low energy eigenstates
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Stochastic estimation of quark propagators

@ do not need exact inverse of Dirac matrix K[U]

@ use noise vectors 7 satisfying £(n;) = 0 and E(n,n;) = 0;;

@ Z, noise is used {1,i, —1, —i}

@ solve K[U]X (™ = n(") for each of N noise vectors 5", then
obtain a Monte Carlo estimate of all elements of K !

Ngr
-1 (r), (r)*
~ 52 2 X
R r=1
variance reduction using noise dilution

dilution introduces projectors
pla) pb) — sabp( a) Z pla) — 1, p@t — pa)

@ define plal = ply, xlal = fg—1ylal

to obtain Monte Carlo estimate with drastically reduced variance

ZZX r)[a] (7 I

r=1 a
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Extended operators for single hadrons

@ quark displacements build up orbital, radial structure

Meson configurations

» e 1, 1T I

58 5D DDL TDU TDO

_AB el _
Tl (p,t) = 3, ePOtildatdas, g8 (2. t) ¢/l (2,t)

@ group-theory projections onto irreps of lattice symmetry group
7 l)x =AB
My(t) = ¢} 5 (1)

@ definite momentum p, irreps of little group of p
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Two-hadron operators

@ our approach: superposition of products of single-hadron
operators of definite momenta

VEPRETS Io134Sa Iy13 Sy
PaXai PoAb ]\[Pa/\ Aala AfphAb)\blb

@ fixed total momentum p = p, + py, fixed A,, 14, Ay, iy
@ group-theory projections onto little group of p and isospin irreps
@ Included momentum (n,,n,,n,):
e n’=1 (%1,0,0),(0,%£1,0),(0,0,+1)
: +1,+1,0), (0, £1,£1), (£1,0, £1)

C

e n’=2 (

o n? =3 (&1,£1,£1)
e n’=4 (£2,0,0)...
e n?=5 (42,+1,0)...
e n?=6 (£2,+1,£1)...
e n®=8 (£2,42,0)...

o efficient creating large numbers of two-hadron operators
@ generalizes to three, four, ... hadron operators
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Excited states from correlation matrices

@ in finite volume, energies are discrete (neglect wrap-around)
Cii(t) =Y 2z e bt z" = (0] 05 |n)

n

@ not practical to do fits using above form to the whole matrix

@ define new correlation matrix C(t) using a single rotation
C(t) =U" C(r) 2 C(t) Clro) V2 U

@ columns of U are eigenvectors of C(7y)~'/2 C(p) C (1)~ /2

@ choose 7y and 7p large enough so 5(7&) diagonal for t > mp

o fits to the diagonal correlators give the N lowest-lying stationary
state energies
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Fitting

@ Energies from correlated- \? fits over some range (#,in, tmaz)
o Fit all energy levels below inelastic threshold
@ Fits functions account for around the world effects

@ Fixed t,,4. = 38ay, t;:n adjusted to find region without excited
state contamination

@ Fitting was done using MINUIT minimization routine on many
bootstrap samples to determine statistical errors.
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Ensembles and run parameters

plan to use three Monte Carlo ensembles
o (32%]240): 412 configs 32° x 256, m. ~ 240 MeV, m.L ~ 4.4
e (24%|390): 551 configs 24°® x 128, m, ~ 390 MeV, m.L ~ 5.7

anisotropic improved gluon action, clover quarks (stout links)
QCD coupling 5 = 1.5 such that a, ~ 0.12 fm, a; ~ 0.035 fm
strange quark mass m, = —0.0743 nearly physical (using kaon)
work in m,, = my limit so SU(2) isospin exact

generated using RHMC, configs separated by 20 trajectories

stout-link smearing in operators £ = 0.10 and ng = 10

LapH smearing cutoff 2 = 0.33 such that
e N, = 112 for 242 lattices
e N, = 264 for 322 lattices

source times:

e 4 widely-separated ¢, values on 243
@ 8t values used on 323 lattice
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Irreps and momentum

] Irrep ‘ P+  #of directions | # of levels | # of operators
Alp [ n?=1 3 3 10
Ep | n?2=1 3 1 7
Alp | n2 =2 6 4 10
Bip | n?=2 6 2 9
B2p | n?=2 6 1 7
Alp | n?=3 4 4 12
Ep | n?=3 4 2 8
Alp | n? =4 3 1 7
Ep | n?=4 3 2 9
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322 I =1 Fits PRELIMINARY

Effective masses (with fits), various irreps and momenta
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Renormalized anisotropy

anisotropy from energy of =s with different momenta
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Dispersion Relation

@ dispersion relation to determine the anisotropy

(a4 Ep2)? = (agm)? + giz (277) n

dag

@ Computed on each bootstrap
@ Top: E? vs total momentum squared n?

@ Bottom: Distribution of anisotropy on each bootstrap
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o1 323 results

The phase shiftfor i = 1, I = 1 © — 7 on 32?2 lattice, m ~ 240 MeV
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o Breit-Wigner fit azmp = 0.1355 + 0.0019, g = 4.3 + 1.6
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Wednesday

Preview of talk on Wednesday. C. Morningstar
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Conclusions

@ The stochastic LapH method is suitable for phase shift
calculations

@ Able to extract the p — 7 phase shift from fits on a single lattice

@ This method allows us to compute on reasonably large lattices
with minimal inversions compared to other methods

@ Can extract energies of excited states using correlator matrices
involving many multi-hadron operators even in channels which
have disconnected diagrams

@ Other channels and phase shifts are possible with this method in
the future
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