Pion-pion scattering phase shifts with the stochastic LapH method

Brendan Fahy Carnegie Mellon University

The 32nd International Symposium on Lattice Field Theory New York, NY, USA

June 23, 2014

B. Fahy

 $\pi - \pi$ phase shifts

1

People

John Bulava Trinity, Dublin

Jimmy Juge U Pacific, Stockton

Brendan Fahy CMU

C. Morningstar CMU

Justin Foley NVIDIA

UC San Diego

B

Ben Hörz Trinity, Dublin

You-Cyuan Jhang CMU

- Thanks to NSF Teragrid/XSEDE:
 - Athena+Kraken at NICS
 - Ranger+Stampede at TACC

Scattering using Lattice QCD

- energies will be shifted from their non-interacting values.
- Accurate measurements of single and two-hadron energies below inelastic thresholds can give information of the phase shifts.
- Method:
 - Compute energies of $\pi\pi$ and ρ like operators in many channels with different momentum
 - Get the energy E_{cm} in the center of mass frame
 - Then p_{cm} is computed from $E_{cm} = 2\sqrt{p_{cm}^2 + m_{\pi}^2}$ which can be used to find the elastic pion-pion phase shift.

Computing the phase shift

• Lüscher's method for phase shifts:

$$\det\left[e^{2i\delta(p_{cm})} - U^{(P,\Lambda)}\left(\frac{p_{cm}L}{2\pi}\right)\right] = 0$$

- The first term is diagonal and independent upon the lattice volume
- The matrix U has rows corresponding to different angular momenta ℓ which subduce onto the irrep Λ of the little group.
- Assume that $\delta_1 \gg \delta_{l>1}$, neglect all but the lowest partial wave making this is a single equation with one unknown.
- The *U* can be expressed U = (M + i)/(M i) where *M* is dependent upon the irrep and p_{cm}
- This *M* is expressed in terms of generalized zeta functions which have an integral representation and can be numerical estimated.

Resonances in a box: an example

- Consider a simple quantum mechanical example.
- Hamiltonian

Spectrum of example Hamiltonian

• spectrum for E < 4 and l = 0, 1, 2, 3, 4, 5 of example system

B. Fahy

Scattering phase shifts

scattering phase shifts for various partial waves

Spectrum in box: A_{1g} channel

- spectrum discrete in box, periodic b.c., momenta quantized
- stationary-state energies in A_{1q} channel shown below
- narrow resonance is avoided level crossing

B. Fahy

The challenge

- To compute the phase shift requires very precise measurements of the energy eigenstates in finite volume
- Must construct operators which strongly overlap with the states of interest
- Smeared operators will overlap strong with the low-laying elastic two pion states
 - Stout link smearing
 - LapH quark smearing
- Two hadron (pion-pion) operators can be efficiently computed using the stochastic-LapH method, including disconnected diagrams
- Using a matrix of correlators and diagonalizing using a GEVP to extract the low energy eigenstates

Stochastic estimation of quark propagators

- do not need exact inverse of Dirac matrix K[U]
- use noise vectors η satisfying $E(\eta_i) = 0$ and $E(\eta_i \eta_j^*) = \delta_{ij}$
- Z_4 noise is used $\{1, i, -1, -i\}$
- solve $K[U]X^{(r)} = \eta^{(r)}$ for each of N_R noise vectors $\eta^{(r)}$, then obtain a Monte Carlo estimate of all elements of K^{-1}

$$K_{ij}^{-1} \approx \frac{1}{N_R} \sum_{r=1}^{N_R} X_i^{(r)} \eta_j^{(r)}$$

- variance reduction using noise dilution
- dilution introduces projectors

$$\begin{split} P^{(a)}P^{(b)} &= \delta^{ab}P^{(a)}, \qquad \sum_{a}P^{(a)} = 1, \qquad P^{(a)\dagger} = P^{(a)} \\ \bullet \mbox{ define } & \eta^{[a]} = P^{(a)}\eta, \qquad X^{[a]} = K^{-1}\eta^{[a]} \end{split}$$

to obtain Monte Carlo estimate with drastically reduced variance

$$\begin{split} K_{ij}^{-1} &\approx \frac{1}{N_R} \sum_{r=1}^{N_R} \sum_{a} X_i^{(r)[a]} \eta_j^{(r)[a]*} \\ &\pi - \pi \, \text{phase shifts} \end{split}$$

B. Fahy

Extended operators for single hadrons

- quark displacements build up orbital, radial structure Meson configurations $\overset{\bullet}{SS}$ $\overset{\bullet}{SD}$ $\overset{\bullet}{DDL}$ $\overset{\bullet}{TDU}$ $\overset{\bullet}{TDO}$ $\overline{\Phi}^{AB}_{\alpha\beta}(\boldsymbol{p},t) = \sum_{\boldsymbol{x}} e^{i\boldsymbol{p}\cdot(\mathbf{x}+\frac{1}{2}(\boldsymbol{d}_{\alpha}+\boldsymbol{d}_{\beta}))} \delta_{ab} \ \overline{q}^{B}_{b\beta}(\boldsymbol{x},t) \ q^{A}_{a\alpha}(\boldsymbol{x},t)$
- group-theory projections onto irreps of lattice symmetry group $\overline{M}_l(t) = c^{(l)*}_{\alpha\beta} \overline{\Phi}^{AB}_{\alpha\beta}(t)$
- definite momentum p, irreps of little group of p

Two-hadron operators

 our approach: superposition of products of single-hadron operators of definite momenta

 $c_{\boldsymbol{p}_a\lambda_a; \ \boldsymbol{p}_b\lambda_b}^{I_aI_{3a}S_a} M_{\boldsymbol{p}_a\Lambda_a\lambda_ai_a}^{I_bI_{3b}S_b} M_{\boldsymbol{p}_b\Lambda_b\lambda_bi_b}^{I_aI_{3a}S_a}$

- fixed total momentum $p = p_a + p_b$, fixed $\Lambda_a, i_a, \Lambda_b, i_b$
- group-theory projections onto little group of p and isospin irreps
- Included momentum (n_x, n_y, n_z) :

•
$$n^2 = 1$$
 (±1,0,0), (0,±1,0), (0,0,±1)
• $n^2 = 2$ (±1,±1,0), (0,±1,±1), (±1,0,±1)
• $n^2 = 3$ (±1,±1,±1)
• $n^2 = 4$ (±2,0,0)...
• $n^2 = 5$ (±2,±1,0)...
• $n^2 = 6$ (±2,±1,±1)...
• $n^2 = 8$ (±2,±2,0)...

- efficient creating large numbers of two-hadron operators
- generalizes to three, four, ... hadron operators

Excited states from correlation matrices

in finite volume, energies are discrete (neglect wrap-around)

 $C_{ij}(t) = \sum_{n} Z_i^{(n)} Z_j^{(n)*} e^{-E_n t}, \qquad Z_j^{(n)} = \langle 0 | O_j | n \rangle$

- not practical to do fits using above form to the whole matrix
- define new correlation matrix $\widetilde{C}(t)$ using a single rotation

 $\widetilde{C}(t) = U^{\dagger} C(\tau_0)^{-1/2} C(t) C(\tau_0)^{-1/2} U$

- columns of U are eigenvectors of $C(\tau_0)^{-1/2} C(\tau_D) C(\tau_0)^{-1/2}$
- choose au_0 and au_D large enough so $\widetilde{C}(t)$ diagonal for $t > au_D$
- fits to the diagonal correlators give the N lowest-lying stationary state energies

Fitting

- Energies from correlated- χ^2 fits over some range (t_{min}, t_{max})
- Fit all energy levels below inelastic threshold
- Fits functions account for around the world effects
- Fixed $t_{max} = 38a_t$, t_{min} adjusted to find region without excited state contamination
- Fitting was done using MINUIT minimization routine on many bootstrap samples to determine statistical errors.

Ensembles and run parameters

- plan to use three Monte Carlo ensembles
 - $(32^3|240)$: 412 configs $32^3 \times 256$, $m_\pi \approx 240$ MeV, $m_\pi L \sim 4.4$
 - $(24^3|390)$: 551 configs $24^3 \times 128$, $m_\pi \approx 390$ MeV, $m_\pi L \sim 5.7$
- anisotropic improved gluon action, clover quarks (stout links)
- QCD coupling $\beta = 1.5$ such that $a_s \sim 0.12$ fm, $a_t \sim 0.035$ fm
- strange quark mass $m_s = -0.0743$ nearly physical (using kaon)
- work in $m_u = m_d$ limit so SU(2) isospin exact
- generated using RHMC, configs separated by 20 trajectories
- stout-link smearing in operators $\xi = 0.10$ and $n_{\xi} = 10$
- LapH smearing cutoff $\sigma_s^2 = 0.33$ such that
 - $N_v = 112$ for 24^3 lattices
 - $N_v = 264$ for 32^3 lattices
- source times:
 - 4 widely-separated t₀ values on 24³
 - 8 t₀ values used on 32³ lattice

Irreps and momentum

Irrep	P_{tot}	# of directions	# of levels	# of operators
A1p	$n^2 = 1$	3	3	10
Ep	$n^2 = 1$	3	1	7
A1p	$n^2 = 2$	6	4	10
B1p	$n^2 = 2$	6	2	9
B2p	$n^2 = 2$	6	1	7
A1p	$n^2 = 3$	4	4	12
Ep	$n^2 = 3$	4	2	8
A1p	$n^2 = 4$	3	1	7
Ep	$n^2 = 4$	3	2	9

$32^2 I = 1$ Fits PRELIMINARY

Effective masses (with fits), various irreps and momenta

B. Fahy

 $\pi - \pi$ phase shifts

17

Renormalized anisotropy

anisotropy from energy of πs with different momenta

B. Fahy

$\pi - \pi$ phase shifts

18

Dispersion Relation

dispersion relation to determine the anisotropy

$$(a_t E_{n^2})^2 = (a_t m)^2 + \frac{1}{\xi^2} \left(\frac{2\pi}{4a_s}\right) n^2$$

- Computed on each bootstrap
- Top: E^2 vs total momentum squared n^2
- Bottom: Distribution of anisotropy on each bootstrap

$\delta_1 \ 32^3$ results

The phase shift for l = 1, $I = 1 \pi - \pi$ on 32^3 lattice, $m_{\pi} \approx 240 \text{ MeV}$

• Breit-Wigner fit $a_t m_R = 0.1355 \pm 0.0019, g = 4.3 \pm 1.6$

B. Fahy

 $\pi - \pi$ phase shifts

20

Wednesday

Preview of talk on Wednesday. C. Morningstar

T1up 1

Conclusions

- The stochastic LapH method is suitable for phase shift calculations
- Able to extract the $\rho \pi\pi$ phase shift from fits on a single lattice
- This method allows us to compute on reasonably large lattices with minimal inversions compared to other methods
- Can extract energies of excited states using correlator matrices involving many multi-hadron operators even in channels which have disconnected diagrams
- Other channels and phase shifts are possible with this method in the future