
Pion-pion scattering phase shifts with the
stochastic LapH method

Brendan Fahy
Carnegie Mellon University

The 32nd International Symposium on Lattice Field Theory
New York, NY, USA

June 23, 2014

B. Fahy π − π phase shifts 1



People

John Bulava
Trinity, Dublin

Brendan Fahy
CMU

Justin Foley
NVIDIA

Ben Hörz
Trinity, Dublin

Jimmy Juge
U Pacific, Stockton C. Morningstar

CMU
Ricky Wong

UC San Diego
You-Cyuan Jhang

CMU

Thanks to NSF Teragrid/XSEDE:
Athena+Kraken at NICS
Ranger+Stampede at TACC

B. Fahy π − π phase shifts 2



Scattering using Lattice QCD

energies will be shifted from their non-interacting values.
Accurate measurements of single and two-hadron energies
below inelastic thresholds can give information of the phase
shifts.
Method:

Compute energies of ππ and ρ like operators in many channels
with different momentum

Get the energy Ecm in the center of mass frame

Then pcm is computed from Ecm = 2
√
pcm2 +m2

π which can be
used to find the elastic pion-pion phase shift.
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Computing the phase shift

Lüscher’s method for phase shifts:

det

[
e2iδ(pcm) − U (P,Λ)

(
pcmL

2π

)]
= 0

The first term is diagonal and independent upon the lattice
volume
The matrix U has rows corresponding to different angular
momenta ` which subduce onto the irrep Λ of the little group.
Assume that δ1 � δl>1, neglect all but the lowest partial wave
making this is a single equation with one unknown.
The U can be expressed U = (M + i)/(M − i) where M is
dependent upon the irrep and pcm
This M is expressed in terms of generalized zeta functions which
have an integral representation and can be numerical estimated.
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Resonances in a box: an example

Consider a simple quantum mechanical example.
Hamiltonian

H = 1
2p

2 + V (r), V (r) = (−4 + 1
16r

4) e−r
2/8
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Spectrum of example Hamiltonian

spectrum for E < 4 and l = 0, 1, 2, 3, 4, 5 of example system
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Scattering phase shifts

scattering phase shifts for various partial waves
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Spectrum in box: A1g channel

spectrum discrete in box, periodic b.c., momenta quantized
stationary-state energies in A1g channel shown below
narrow resonance is avoided level crossing
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The challenge

To compute the phase shift requires very precise measurements
of the energy eigenstates in finite volume
Must construct operators which strongly overlap with the states
of interest
Smeared operators will overlap strong with the low-laying elastic
two pion states

Stout link smearing
LapH quark smearing

Two hadron (pion-pion) operators can be efficiently computed
using the stochastic-LapH method, including disconnected
diagrams
Using a matrix of correlators and diagonalizing using a GEVP to
extract the low energy eigenstates
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Stochastic estimation of quark propagators

do not need exact inverse of Dirac matrix K[U ]

use noise vectors η satisfying E(ηi) = 0 and E(ηiη
∗
j ) = δij

Z4 noise is used {1, i,−1,−i}
solve K[U ]X(r) = η(r) for each of NR noise vectors η(r), then
obtain a Monte Carlo estimate of all elements of K−1

K−1
ij ≈

1

NR

NR∑
r=1

X
(r)
i η

(r)∗
j

variance reduction using noise dilution
dilution introduces projectors

P (a)P (b) = δabP (a),
∑
a

P (a) = 1, P (a)† = P (a)

define
η[a] = P (a)η, X [a] = K−1η[a]

to obtain Monte Carlo estimate with drastically reduced variance

K−1
ij ≈

1

NR

NR∑
r=1

∑
a

X
(r)[a]
i η

(r)[a]∗
j
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Extended operators for single hadrons

quark displacements build up orbital, radial structure

Φ
AB

αβ (p, t) =
∑

x e
ip·(x+ 1

2 (dα+dβ))δab q
B
bβ(x, t) qAaα(x, t)

group-theory projections onto irreps of lattice symmetry group

M l(t) = c
(l)∗
αβ Φ

AB

αβ (t)

definite momentum p, irreps of little group of p
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Two-hadron operators

our approach: superposition of products of single-hadron
operators of definite momenta

cI3aI3bpaλa; pbλb
M IaI3aSa

paΛaλaia
M IbI3bSb

pbΛbλbib

fixed total momentum p = pa + pb, fixed Λa, ia,Λb, ib

group-theory projections onto little group of p and isospin irreps
Included momentum (nx, ny, nz):

n2 = 1 (±1, 0, 0), (0,±1, 0), (0, 0,±1)
n2 = 2 (±1,±1, 0), (0,±1,±1), (±1, 0,±1)
n2 = 3 (±1,±1,±1)
n2 = 4 (±2, 0, 0) . . .
n2 = 5 (±2,±1, 0) . . .
n2 = 6 (±2,±1,±1) . . .
n2 = 8 (±2,±2, 0) . . .

efficient creating large numbers of two-hadron operators
generalizes to three, four, . . . hadron operators
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Excited states from correlation matrices

in finite volume, energies are discrete (neglect wrap-around)

Cij(t) =
∑
n

Z
(n)
i Z

(n)∗
j e−Ent, Z

(n)
j = 〈0| Oj |n〉

not practical to do fits using above form to the whole matrix
define new correlation matrix C̃(t) using a single rotation

C̃(t) = U† C(τ0)−1/2 C(t) C(τ0)−1/2 U

columns of U are eigenvectors of C(τ0)−1/2 C(τD)C(τ0)−1/2

choose τ0 and τD large enough so C̃(t) diagonal for t > τD

fits to the diagonal correlators give the N lowest-lying stationary
state energies
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Fitting

Energies from correlated- χ2 fits over some range (tmin, tmax)

Fit all energy levels below inelastic threshold

Fits functions account for around the world effects

Fixed tmax = 38at, tmin adjusted to find region without excited
state contamination

Fitting was done using MINUIT minimization routine on many
bootstrap samples to determine statistical errors.
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Ensembles and run parameters

plan to use three Monte Carlo ensembles
(323|240): 412 configs 323 × 256, mπ ≈ 240 MeV, mπL ∼ 4.4
(243|390): 551 configs 243 × 128, mπ ≈ 390 MeV, mπL ∼ 5.7

anisotropic improved gluon action, clover quarks (stout links)
QCD coupling β = 1.5 such that as ∼ 0.12 fm, at ∼ 0.035 fm
strange quark mass ms = −0.0743 nearly physical (using kaon)
work in mu = md limit so SU(2) isospin exact
generated using RHMC, configs separated by 20 trajectories

stout-link smearing in operators ξ = 0.10 and nξ = 10

LapH smearing cutoff σ2
s = 0.33 such that

Nv = 112 for 243 lattices
Nv = 264 for 323 lattices

source times:
4 widely-separated t0 values on 243

8 t0 values used on 323 lattice
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Irreps and momentum

Irrep Ptot # of directions # of levels # of operators

A1p n2 = 1 3 3 10
Ep n2 = 1 3 1 7

A1p n2 = 2 6 4 10
B1p n2 = 2 6 2 9
B2p n2 = 2 6 1 7

A1p n2 = 3 4 4 12
Ep n2 = 3 4 2 8

A1p n2 = 4 3 1 7
Ep n2 = 4 3 2 9
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322 I = 1 Fits PRELIMINARY

Effective masses (with fits), various irreps and momenta
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Renormalized anisotropy

anisotropy from energy of πs with different momenta
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Dispersion Relation

dispersion relation to determine the anisotropy

(atEn2)2 = (atm)2 +
1

ξ2

(
2π

4as

)
n2

Computed on each bootstrap
Top: E2 vs total momentum squared n2

Bottom: Distribution of anisotropy on each bootstrap
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δ1 32
3 results

The phase shift for l = 1, I = 1 π − π on 323 lattice, mπ ≈ 240 MeV
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Breit-Wigner fit atmR = 0.1355± 0.0019, g = 4.3± 1.6
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Wednesday

Preview of talk on Wednesday. C. Morningstar
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Conclusions

The stochastic LapH method is suitable for phase shift
calculations
Able to extract the ρ− ππ phase shift from fits on a single lattice
This method allows us to compute on reasonably large lattices
with minimal inversions compared to other methods
Can extract energies of excited states using correlator matrices
involving many multi-hadron operators even in channels which
have disconnected diagrams
Other channels and phase shifts are possible with this method in
the future
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